带通滤波器的仿真设计
- 格式:doc
- 大小:286.50 KB
- 文档页数:8
带通滤波器的PSPICE仿真⽬录摘要 (1)1绪论 (1)2仿真软件OrCAD/PSpice (2)3原理分析 (6)4原理图 (6)5ORCAD设计具体步骤 (7)6仿真波形 (12)7结束语 (13)8参考⽂献 (14)带通滤波器的PSPICE仿真摘要:带通滤波器是⽤来通过某⼀频段内的信号,抑制此外频段的信号。
带通滤波器重要有两类,⼀类是窄带带通滤波器(简称窄带滤波器),另⼀类是宽带带通滤波器(简称宽带滤波器)。
窄带滤波器⼀般⽤带通滤波器电路实现,宽带滤波器通常⽤低通滤波器和⾼通滤波器级联实现。
本⽂主要应⽤⼀种电⼦系统优秀仿真软件——orCAD,通过该软件设计与仿真带通滤波电路, 以获得理想的实验结果。
关键词:capture电路设计; PSpice模拟仿真; 带通滤波器Abstract: Belt-filter is used by a band of the signal contain Furthermore band signal. Belt-filter is an important two categories : one category is Narrowband belt-filter (short for Narrowband filter), the other is broadband take-filter (short for broadband filters). Narrowband filters generally used to achieve access to filter circuits, broadband filter normally used high - and low-filter filter cascading achieved. The main application of a fine simulation software --orCAD electronic systems through the design and simulation software to filter circuits - in order to obtain the desired experimental results.Keyword: Capture electric circuit design; PSpice emulation imitates really; Belt-filter1绪论⼤部分运算放⼤器要求双电源(正负电源)供电,为简化电路,在放⼤交流信号的应⽤中,可以采⽤单电源(正电源或负电源)供电,应此要求将集成运放组成的交流放⼤器设计成单电源供电⽅式。
带通滤波器的设计和仿真学院信息学院姓名吴建亮学号 201203090224班级电信1202时间 2014年10月1.设计要求设计带通为300Hz~10KHz的带通滤波器并仿真。
2.原理与方案2.1工作原理:带通滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制,本实验通过一个4阶低通滤波器和一个4阶高通滤波器的级联实现带通滤波器。
2.2总体方案易知低通滤波电路的截止角频率ωH大于高通滤波电路的截止角频率ωn,两者覆盖的通带就提供了一个带通响应。
先设计4阶的低通滤波器,截止频率,选取第一级高通滤波器的,第二级的高通滤波器的。
主要参数:电容则基准电阻,,取标称值2400pF,,取标称值14.7kΩ,,取标称值14.7kΩ,,取标称值7.32kΩ,,取标称值6.04kΩ,,,取标称值0.013μF,,取标称值3.01ķΩ,同理,设计一个4阶高通滤波器,通带增益,截止频率,选取第一级高通滤波器的,第二级的高通滤波器的。
主要参数如下:电容,,取标称值10kΩ,,取标称值27kΩ,,取标称值3.9kΩ,,取标称值62kΩ。
3 电路设计图3-1 高通滤波器图3-2 低通滤波器如上图3-1与图3-2所示为滤波器的电路,函数信号发生器生成信号经过级联在一起的4阶低通、高通滤波器后完成滤波。
4仿真、分析图4-1,图4-2,图4-3为频率分别为300Hz、1kHz与10kHz时的示波器波形显示,其输入的正弦信号的幅值均为2V,滤波器的仿真结果符合预期结果。
图4-1 时滤波器仿真结果图 4-2 f=1000Hz滤波器仿真结果图4-3 f=10kHz滤波器仿真结果图4-4 下限截止频率图4-5 上限截止频率图4-6 通带频率电路的波特图如图4-4,图4-5,图4-6所示。
从表4-1和图4-4所仿真结果看,滤波器通带范围理论值在,且在通带范围内增益较为稳定,在1左右。
ADS仿真平行耦合微带线带通滤波器滤波器是用来分离不同频率信号的一种器件。
它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。
平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。
1 基本原理当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。
根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。
每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。
单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。
如果将多个单元级联,级联后的网络可以具有良好的滤波特性。
图1 5级耦合微带线带通滤波器2 设计步骤2. 1 设计低通原型根据带通滤波器的一系列参数通过频率变换和查表选择低通原型滤波器的归一化原型参量。
用ω1 和ω2 表示带通滤波器的下边界和上边界,ω0表示中心频率。
将带通滤波器变换为低通原型。
归一化带宽:查表得到归一化设计参数g1, g2. . . gN gN + 1。
2. 2 计算各节偶模和奇模的特性阻抗设计用g1, g2. . . gN gN + 1和BW 确定带通滤波器电路中的设计参数耦合传输线的奇模和偶模的特性阻抗:2. 3 计算微带线的几何尺寸根据微带线的偶模和奇模阻抗,按照给定的微带线路板的参数,使用ADS 中的微带线计算器L ineC alc计算得到微带线的几何尺寸W, S, L。
《耦合带通滤波器的仿真与设计》篇一一、引言随着通信技术的不断发展,信号处理技术也日益成为研究的热点。
在信号处理中,滤波器是一种重要的器件,用于从混合信号中提取所需信号。
其中,带通滤波器是一种能够通过特定频率范围内的信号并抑制其他频率信号的滤波器。
耦合带通滤波器则是带通滤波器中的一种,其通过电感或电容等元件将不同频率的信号进行耦合和滤波。
本文旨在探讨耦合带通滤波器的仿真与设计,以期为相关领域的研究提供一定的参考。
二、耦合带通滤波器的基本原理耦合带通滤波器主要由电感、电容等元件组成,通过这些元件的耦合作用,实现对特定频率范围内信号的滤波。
其基本原理是利用电感、电容等元件的频率特性,使不同频率的信号在传输过程中产生不同的相移和衰减,从而实现滤波。
三、耦合带通滤波器的设计1. 设计目标与参数设定在耦合带通滤波器的设计中,首先需要明确设计目标,如所需通过的频率范围、滤波器的插损、回波损耗等指标。
然后根据这些指标进行参数设定,如电感、电容的值等。
2. 元件选择与电路拓扑在选择元件时,需要考虑元件的频率特性、精度、稳定性等因素。
常用的电感元件有空气电感、磁芯电感等;常用的电容元件有陶瓷电容、电解电容等。
根据设计需求和元件特性,选择合适的电路拓扑,如T型、π型等。
3. 仿真与分析利用仿真软件对电路进行仿真,观察电路的频率响应、插损、回波损耗等指标是否满足设计要求。
通过对仿真结果的分析,不断调整电路参数,以达到最佳性能。
四、耦合带通滤波器的仿真仿真是一种重要的手段,可以帮助我们更好地理解电路的性能和优化电路设计。
在仿真过程中,我们可以观察电路的频率响应、插损、回波损耗等指标的变化,从而了解电路的性能特点。
对于耦合带通滤波器,我们可以通过改变电感、电容等元件的参数来调整其性能。
在仿真过程中,我们可以使用各种工具来帮助我们更好地分析和优化电路设计。
五、实验与结果分析在完成电路设计后,我们需要进行实验验证。
通过实验测试电路的频率响应、插损、回波损耗等指标,将实验结果与仿真结果进行对比,以验证设计的正确性和可行性。
电子科技大学中山学院电子工程系之宇文皓月创作学生实验陈述课程名称HFSS电磁仿真实验实验名称实验一-带通滤波器的仿真班级,分组14无线技术实验时间 2017年03月07日姓名,学号指导教师袁海军报告内容一、实验目的(1)加深对滤波器理论方面的理解,提高用程序实现相关信号处理的能力;(2)掌握HFSS实现带通滤波器混频的方法和步调;(3)掌握用HFSS实现带通滤波器的设计方法和过程,为以后的设计打下良好的基础。
二、实验原理和电路说明带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。
一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。
这些滤波器也可以用低通滤波器同高通滤波器组合来发生.三、实验内容和数据记录为了方便创建模型,在Tools>Options>HFSSOptions中将Duplicate boundaries with geometry复选框选中,这样可以使得在复制模型的同时,所设置的鸿沟也一同复制。
2)设置求解类型将求解类型设置为激励求解类型:(1)在菜单栏中点击HFSS>SolutionType。
(2)如图5-1-7所示,在弹出的SolutionType窗口中:(a)选择DrivenModal。
(b)点击OK按钮。
图5-1-7设置求解类型3)设置模型单位(1)在菜单栏中点击3DModeler>Units。
(2)在弹出的如图5-1-8所示的窗口中设置模型单位,在此可选择:mm。
图5-1-8设置单位4)建立滤波器模型(1)首先建立介质基片,建立后的模型如图5-1-9所示。
图5-1-9建立介质基片(a)在菜单栏中点击Draw>Box或者在工具栏中点击按钮,这时可以在3D窗口中创建长方体模型。
(b)在右下角的坐标输入栏中输入长方体的起始点位置坐标,即X:-20,Y:-35,Z:0.0按回车键结束输入。
毕业设计LC带通滤波器的设计与仿真设计引言:滤波器是电子电路中非常重要的一个部分,它可以对输入信号进行频率选择性的处理。
而LC带通滤波器是一种常见的滤波器,它能够选择特定的频带通过,达到滤波的目的。
本文将介绍LC带通滤波器的设计和仿真,并带有实际案例进行说明。
设计目标:设计一个LC带通滤波器,达到对输入信号的特定频率带进行增强或抑制的效果。
设计的滤波器需要满足以下要求:1.通带范围:10kHz-20kHz2.阻带范围:0-5kHz和25kHz-正无穷大3.通带衰减:小于3dB4.阻带衰减:大于40dB设计步骤:1.确定滤波器的类型和拓扑结构。
对于LC带通滤波器,常用的拓扑结构有L型和π型两种。
本文选择π型结构进行设计。
2.根据设计要求,计算滤波器的理论参数。
计算中需要考虑到通带范围、阻带要求和通带衰减等因素。
3.根据计算结果,选择合适的电感和电容值。
4.绘制原理图,并进行仿真。
使用专业的电子设计自动化(EDA)软件进行仿真,如SPICE仿真软件。
5.优化滤波器的性能。
根据仿真结果进行进一步调整,优化滤波器的通带范围和衰减性能。
仿真设计案例:选取一个实例进行LC带通滤波器的设计和仿真。
示例要求:通带范围:12kHz-18kHz阻带范围:0-10kHz和20kHz-正无穷大通带衰减:小于2dB阻带衰减:大于50dB设计步骤:1.选择π型结构,选取合适的电感和电容值。
2.计算得到电感值为L=100μH,电容值为C1=22nF和C2=47nF。
3.绘制原理图,并进行SPICE仿真。
4.仿真结果显示,滤波器在通带范围内的衰减小于2dB,在阻带范围内的衰减高于50dB。
5.进行微调和优化,根据需要调整电感和电容值,以获得更理想的滤波器性能。
结论:通过设计和仿真,成功地完成了LC带通滤波器的设计过程。
根据示例结果,可见所设计的滤波器在设计要求范围内达到了优良的滤波效果。
这个设计过程可以用于其他LC带通滤波器的设计,只需根据实际要求进行参数选择和优化。
HFSS高性能平行耦合微带带通滤波器设计与仿真攻略HFSS(High Frequency Structural Simulator)是一款广泛应用于高频电磁场仿真的软件工具,具有高效准确的计算能力,广泛应用于微波通信、天线设计、微带滤波器设计等领域。
在微带带通滤波器设计中,HFSS软件可以帮助工程师快速准确地设计出性能优异的滤波器,提高设计效率和准确性。
本文将介绍HFSS软件在高性能平行耦合微带带通滤波器设计与仿真中的一般步骤和攻略。
一、平行耦合微带带通滤波器原理平行耦合微带带通滤波器是一种结构简单、性能良好的微带滤波器,通常由一组垂直耦合微带谐振器和几个开路微带谐振器组成。
通过合理设计电路结构中的微带谐振器的长度、宽度和耦合间隔等参数,可以实现所需的滤波特性。
平行耦合微带带通滤波器通常具有较低的插入损耗、较高的带宽和较好的阻带衰减等性能。
二、HFSS平行耦合微带带通滤波器设计步骤1.确定滤波器的工作频率和性能指标,如通带中心频率、通带带宽、阻带衰减等;2.设计滤波器的电路拓扑结构,包括微带谐振器的种类和数量、耦合方式等;3.利用HFSS软件建立滤波器的三维模型,并设置仿真参数,如工作频率、网格精度等;4.通过HFSS软件进行电磁场仿真,分析滤波器的传输特性和谐振器的工作状态,调整设计参数以满足性能指标;5.优化滤波器的结构设计,如微带谐振器的长度、宽度和耦合间隔等参数;6.在HFSS软件中进行频域和时域仿真,验证滤波器的性能指标是否满足设计要求;7.在满足性能指标的前提下,进一步优化滤波器的结构设计,以降低损耗和提高性能;8.导出最终的滤波器设计文件,用于制作和验证实际器件性能。
1.合理选择HFSS软件版本和许可证类型,确保软件功能和性能满足设计需求;2.熟练掌握HFSS软件的操作界面和基本功能,包括建模、设置仿真参数、网格划分、分析结果等;3.在建立滤波器的三维模型时,注意设计精度和模型简化,提高仿真效率和准确性;4.在仿真过程中,结合HFSS软件的参数优化功能,快速有效地调整设计参数,实现滤波器性能的优化;5.结合HFSS软件的频域和时域仿真功能,全面分析滤波器的传输特性和动态响应,确保性能指标的准确性;6.在滤波器设计的不同阶段,及时保存和备份仿真文件和结果,方便后续验证和分析;8.最终,通过HFSS软件的仿真和验证结果,确定滤波器的结构设计方案,并导出制作文件进行实际器件的制作和测试。
WIFI频段带通滤波器设计仿真
提出了一种小型多层低温共烧陶瓷(LTCC)三级带通滤波器的结构并给出其设计方法。
该滤波器采用阶跃阻抗谐振器(SIR)作为谐振单元,可以有效编短谐振器长度。
各级谐振器分别位于两个平面,且采用紧凑的旋转对称结构,极大地减小了体积。
通过在输入输出抽头之间跨接电容的方法增加了一个传输零点,使得滤波器频响曲线更为陡峭。
该滤波器尺寸小,谐波抑制能力强,在小型化微波通信系统以及雷达系统中有着广阔的应用前景。
实验九:10.1交指型带通滤波器设计
(自我认为仿真的不错的一个)
一、设计要求
设计一个交指型带通滤波器。
要求:(1)建立电磁结构图,进行‘AXIEM电磁仿真,检查网格剖分,添加注释,观察电流的静、动态分布;(2)建立电路原理图,调用电磁模型,比对电路性能。
二、实验仪器
硬件:PC
软件:AWR软件
三、设计步骤
1、创建电磁结构图
2、观察三维视图
3、查看网格剖分
4、测量回波损耗
5、观察电流分布
6、完整滤波器
7、扫描AFS
8、原理图调用
四、数据记录及分析
1、创建电磁结构图
2、观察三维视图绘制导体:
3、查看网格剖分
4、测量回波损耗
5、观察电流分布
6、完整滤波器
7、扫描AFS
8、原理图调用最终结果:
可见最后1图和2图的结果一致!。
电子科技大学学院电子工程系学生实验报告课程名称HFSS电磁仿真实验实验名称实验一-带通滤波器的仿真班级,分组14无线技术实验时间 2017年03月07日,学号指导教师袁海军报告容一、实验目的(1)加深对滤波器理论方面的理解,提高用程序实现相关信号处理的能力;(2)掌握HFSS实现带通滤波器混频的方法和步骤;(3)掌握用HFSS实现带通滤波器的设计方法和过程,为以后的设计打下良好的基础。
二、实验原理和电路说明带通滤波器是指能通过某一频率围的频率分量、但将其他围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。
一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。
这些滤波器也可以用低通滤波器同高通滤波器组合来产生.三、实验容和数据记录为了方便创建模型,在Tools>Options>HFSSOptions中将Duplicate boundaries with geometry 复选框选中,这样可以使得在复制模型的同时,所设置的边界也一同复制。
2)设置求解类型将求解类型设置为激励求解类型:(1)在菜单栏中点击HFSS>SolutionType。
(2)如图5-1-7所示,在弹出的SolutionType窗口中:(a)选择DrivenModal。
(b)点击OK按钮。
图5-1-7设置求解类型3)设置模型单位(1)在菜单栏中点击3DModeler>Units。
(2)在弹出的如图5-1-8所示的窗口中设置模型单位,在此可选择:mm。
图5-1-8设置单位4)建立滤波器模型(1)首先建立介质基片,建立后的模型如图5-1-9所示。
图5-1-9建立介质基片(a)在菜单栏中点击Draw>Box或者在工具栏中点击按钮,这时可以在3D窗口中创建长方体模型。
(b)在右下角的坐标输入栏中输入长方体的起始点位置坐标,即X:-20,Y:-35,Z:0.0按回车键结束输入。
输入各坐标时,可用Tab键来切换。
(c)输入长方体X、Y、Z三个方向的尺寸,即dX:40,dY:70,dZ:-1.27按回车键结束坐标输入。
(d)在特性(Property)窗口中选择Attribute标签,将该长方体的名字修改为Substrate。
(e)点击Material对应的按钮,在弹出的材料设置窗口中点击AddMaterial按钮,添加介电常数为10.8的介质,将其命名为sub。
(2)建立Ring-1。
(a)在菜单栏中点击Draw>Rectangle以创建矩形模型。
图5-1-10建立Ring-1(3)移动Ring-1。
(a)将Ring-1沿Y轴作微小的移动。
在菜单栏中点击择Ring-1。
(b)在菜单栏中点击Edit>Arrange>Move,在坐标输入栏中输入移动的向量,即X:0.0,Y:0.0,Z:0.0dX:0.0,dY:-0.9,dZ:0.0按回车键结束输入。
(4)创建Ring_2。
图5-1-11建立Ring-2(5)创建Ring-3。
(a)在菜单栏中点击Draw>Rectangle。
(b)在右下角的坐标输入栏中输入起始点位置坐标,即X:0.0,Y:-12.5,Z:0.0按回车键结束输入。
(c)输入矩形边长,即dX:-10,dY:+25,dZ:0.0按回车键结束输入。
点击OK按钮。
(6)移动Ring-3。
移动Ring-3,使之与Ring-1和Ring-2有0.5mm的缝隙。
(a)在菜单栏中点击Edit>Select>ByName,在弹出的窗口中选择Ring-3。
(b)在菜单栏中点击Edit>Arrange>Move,在坐标输入栏中输入移动的向量,即X:0.0,Y:0.0,Z:0.0dX:-0.5,dY:25,dZ:0.0按回车键结束输入。
建立的模型如图5-1-12所示。
图5-1-12 建立Ring_3(7)创建Feedline-1。
创建滤波器的馈线结构,该馈线由特性阻抗不同的两段微带传输线组成。
(a)在菜单栏中点击Draw>Rectangle。
(b)在右下角的坐标输入栏中输入如下点的坐标:X:10.4,Y:-25.9,Z:0.0dX:0.4,dY:25,dZ:0.0按回车键结束输入。
(c)创建矩形后,在弹出的特性(Property)窗口中选择Attribute标签,将该名字修改为F-1。
(d)在菜单栏中点击Draw>Rectangle。
(e)在右下角的坐标输入栏中输入如下点的坐标:X:10.4,Y:-25.9,Z:0.0dX:1,dY:-9.1,dZ:0.0按回车键结束输入。
(f)在弹出的特性(Property)窗口中选择Attribute标签,将该名字修改为F-2。
(g)在菜单栏中点击Edit>Select>ByName,在弹出的窗口中利用Ctrl键选择F-1和F-2。
(h)在菜单栏中点击3DModeler>Boolean>Unite,在如图5-1-13所示的历史操作树中,双击新组合的模型F-1,在特性窗口中将其重新命名为Feedline-1。
图5-1-13历史操作树(8)创建Feedline-2。
同样地,Feedline-2与Feedline-1沿X轴对称,因此也可以通过对称复制操作来创建。
图5-1-14建立Feeline(9)组合Ring-1、Ring-2、Ring-3、Feedline-1和Feedline-2将上述各步骤中创建的Ring-1、Ring-2、Ring-3、Feedline-1(a)在菜单栏中点击Edit>Select>ByName,在弹出的窗口中选择Feedline-1和Feedline-2。
(b)在菜单栏中点击3DModeler>Boolean>Unite。
(c)在操作历史树中双击组合模型,在特性窗口中将其重新命名为5)创建端口微带滤波器采用集总端口激励,因此需要首先创建供设置端口用的矩形,该矩形连接了馈线与地X轴对称,因此可以利用对称复制操作创建。
(b)在菜单栏中点击Edit>Duplicate>Mirror,输入向量,即X:0.0,Y:0.0,Z:0.0dX:0.0,dY:1.0,dZ:0.0按回车键结束输入。
(c)在操作历史树中双击新建的端口,在特性窗口中将其重新命名为port-2。
由于在建立工程的第一步已经设置了复制边界选项,因此在复制创建port-2之后,端口上设置的激励也一同复制了。
6)创建Air(1)在菜单栏中点击Draw>Box或者在工具栏中点击按钮。
(2)在右下角的坐标输入栏中输入长方体的起始点位置坐标,即X:-70,Y:-90,Z:-50按回车键结束输入。
输入各坐标时,可用Tab键来切换。
(3)输入长方体X、Y、Z三个方向的尺寸,即dX:140,dY:180,dZ:100按回车键结束输入。
(4)在特性(Property)窗口中选择Attribute标签,将该长方体的名字修改为Air。
7)设置边界条件边界条件包括理想金属边界条件和辐射边界条件。
滤波器的导带部分、介质基片下底面地板要设置为理想金属边界。
设置辐射边界是为了截断求解区域。
(1)设置理想金属边界条件。
(a)在菜单栏中点击Edit>Select>ByName,在弹出的窗口中选择Trace。
(b)在菜单栏中点击HFSS>Boundaries>Assign>PerfectE,在弹出的对话框中将其命名为Perf-Trace,点击OK按钮。
(c)在菜单栏中点击Edit>Select>Faces,这时已经将鼠标所选设置为选择模型的表面了。
然后点击ByName,选择Substrate,选择其下底面,选择的时候在3D窗口中进行观察,确保选择到下底面。
(d)在菜单栏中点击HFSS>Boundaries>Assign>PerfectE,在弹出的对话框中将其命名为Perf_Ground,点击OK按钮。
(2)设置辐射边界条件。
(a)在菜单栏中点击Edit>Select>Objects,然后点击ByName,选择Air。
(b)在菜单栏中点击HFSS>Boundaries>Assign>Radiation,在弹出的对话框中点击OK结束。
8)为该问题设置求解频率及扫频围(1)设置求解频率。
(a)在菜单栏中点击HFSS>Analysis Setup>AddSolution Setup。
(b)在求解设置窗口中做如下设置:Solution Frequency:910MHzMaximum Number of Passes:15Maximum Delta S per Pass:0.02(c)点击OK按钮。
(2)设置扫频。
(a)在菜单栏中点击HFSS>Analysis Setup>Add Sweep。
(b)选择Setup1,点击OK。
(c)在扫频设置窗口中做如下设置:Sweep Type:FastFrequency SetupType:Linear CountStart:700MHzStop:1100MHzCount:501(d)将Save Field复选框选中,点击OK按钮。
9)保存工程在菜单栏中点击File>Save As,在弹出的窗口中将该工程命名为hfss-3couple,并选择路径保存。
10)后处理操作在仿真计算结束后,查看滤波器的S参数。
(1)点击菜单栏HFSS>Result>Create Report。
(2)在创建报告窗口中做如下设置:Report Type:Modal S ParametersDisplay Type:Rectangle点击OK按钮。
(3)在Trace窗口中做如下设置:Solution:Setup1:Sweep1Domain:Sweep点击Y标签,选择:Category:Sparameter;Quantity:S(p1,p1)、S(p2,p1);Function:dB,然后点击Add Trace按钮。
最后点击Done按钮完成设置。
反射系数和传输系数曲线如图5-1-15所示。
四、结论与心得第一次使用HFSS软件难免会出一些错误,但只要细心检查都能都一个一个的解决,比如在这次的实验中在给模型取名的时候不可以用下划线(_)还有起点坐标要看清,否则就会导致错误的结果,在模型的删减中应当注意哪个减哪个,最后在添加场的时候要注意哪个面,还有激励。
最后就得到最终的结果,本次实验让我熟悉了HFSS软件的基本操作,还有简单的设计流程,希望下次能更好。
成绩教师签名批改时间年月日。