七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则导学案(无答案)
- 格式:doc
- 大小:81.50 KB
- 文档页数:4
有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。
由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。
2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。
3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。
难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。
〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。
结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。
1.4.2 有理数的除法 第1课时 有理数的除法1.了解有理数除法的定义.2.经历有理数除法法则的探索过程,会进行有理数的除法运算. 3.会化简分数.重点正确运用法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商.一、复习导入1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、推进新课(一)有理数除法法则的推导师提出问题:1.怎样计算8÷(-4)呢? 2.小学学过的除法的意义是什么?学生进行讨论、思考、交流,然后师生共同得出法则. 除以一个不等于0的数,等于乘这个数的倒数. 可以表示为: a ÷b =a·1b(b≠0)师指出,将除法转化为乘法以后类似的除法法则我们有:两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);(2)法则揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例5. 计算:(1)(-36)÷9;(2)(-1225)÷(-35).师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值.教师出示教材例6.化简下列分数:(1)-123;(2)-45-12.教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.教师出示教材例7.计算:(1)(-12557)÷(-5);(2)-2.5÷58×(-14).教师分析,学生口述完成.三、课堂练习教材第36页上方练习 四、课堂小结小结:谈谈本节课的收获. 五、布置作业教材习题1.4第4~6题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用。
七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第
1课时有理数的乘法法则导学案(无答案)(新版)新人教版
1.4 有理数的乘除法
1.4.1 有理数的乘法
第1课时 有理数的乘法法则
学习目标:1.掌握有理数的乘法法则并能进行熟练地运算.
2.掌握多个有理数相乘的积的符号法则.
重点:有理数的乘法法则,多个数相乘的符号法则. 难点:积的符号的确定.
一、知识链接
1.计算:(1)777++= ;(2)1212121212++++= .
2.将以上两个加法运算用乘法运算表示出来:
3.计算:(1)3×2;(2)3×11
2;(3)3126⨯;(4)3
20.4
⨯
二、新知预习 1.计算:(1)222++=(-)(-)(-) ; (2)99999++++=(-)(-)(-)(-)(-) . 2.你能将上面两个算式写成乘法算式吗?
3.怎样计算?
(1)6×(-5);(2)(-4)×(-5);(3)0×(-5).
【自主归纳】 有理数的乘法:正数乘正数,积为 数;负数乘负数,积为 数; 负数乘正数,积为 数;正数乘负数,积为 数;零与任何数相乘或任何数与零相乘结果是 . 三、自学自测
1.计算 (1)53⨯-() (2)46⨯(-) (3)79-⨯-()() (4)0.98⨯
2.填空
(1)-3的倒数是___________;
3
4
的倒数是_____________. (2)______的倒数是6;___________的倒数2
3
-.
四、我的疑惑
___________________________________________________________________________________________
___________________________________________________________
一、要点探究
探究点1:有理数的乘法运算
1.如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的点O.
填一填:
(1)如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行 2cm应记为________;
(2)如果3分钟以后记为+3分钟,那么3分钟以前应记为___________.
想一想:
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
结果:3分钟后蜗牛在l上点O_________ cm处.可以表示为: .
(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
结果:3分钟后蜗牛在l上点O_________ cm处.可以表示为: .
(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
结果:3分钟前蜗牛在l上点O_________ cm处.可以表示为: .
(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
结果:3分钟前蜗牛在l上点O___________ cm处.可以表示为: .
(5)原地不动或运动了零次,结果是什么?
结果:仍在原处,即结果都是___________,可以表示为: .
根据上面结果可知:
1.正数乘正数积为______数;负数乘负数积为______数;(同号得正)
2.负数乘正数积为______数;正数乘负数积为______数;(异号得负)
3.乘积的绝对值等于各乘数绝对值的______.
4.零与任何数相乘或任何数与零相乘结果是______.
有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.
讨论:
(1)若a<0,b>0,则ab 0 ;
(2)若a<0,b<0,则ab 0 ;
(3)若ab>0,则a、b应满足什么条件?
(4)若ab<0,则a、b应满足什么条件?
例1计算:(1)3×(-4); (2)(-3)×(-4).
归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.
课堂探究
教学备注
配套PPT讲授
1.情景引入
(见幻灯片3)
2.探究点1新
知讲授
(见幻灯片
4-16)
例2 计算: (1)(-3)×
65×(-59)×(-41);(2)(-5)×6×(-54)×4
1
归纳:
(1)几个不等于零的数相乘,积的符号由_____________决定.
(2)当负因数有_____个时,积为负;当负因数有_____个时,积为正. (3)几个数相乘,如果其中有因数为0,_________
探究点2:倒数 例3 计算: (1)
21×2; (2)(-2
1
)×(-2)
要点归纳:有理数中仍然有:乘积是1的两个数互为倒数. 思考:数a(a ≠0)的倒数是什么?
探究点3:有理数的乘法的应用 例4 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km ,气温的变化量为-6℃,攀登3km 后,气温有什么变化?
例5 一种水笔,甲商店每支售价2元,乙商店搞促销,每支只售1.8元.小明在甲商店买这种水笔10支,小华在乙商店也买这种水笔10支.两人所付的钱数哪个少?少多少?
1.计算:(1)566
⨯-(-)()
; (2)8×(-1.25). 2.填空:
-0.5的倒数是 ,一个数的倒数等于这个数本身,则这个数是 .
3.已知a 与b 互为倒数,c 与d 互为相反数,m 的绝对值是4,求m ×(c +d )+a ×b -3×m 的值.
4.
气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km 处的气温大约是多少?。