电动力学复习提纲
- 格式:docx
- 大小:19.51 KB
- 文档页数:6
电动力学重点知识总结(期末复习必备)电动力学重点知识总结(期末复习必备)电动力学是物理学的重要分支之一,研究电荷之间相互作用导致的电场和磁场的规律。
在这篇文章中,我们将整理电动力学的重点知识,以帮助大家进行期末复习。
一、库仑定律库仑定律是描述电荷之间相互作用的基本定律。
根据库仑定律,电荷之间的力与它们的电量大小和距离的平方成正比。
即$$ F = k\frac{q_1q_2}{r^2} $$其中$F$为电荷之间的力,$q_1$和$q_2$分别为两个电荷的电量,$r$为它们之间的距离,$k$为库仑常数。
二、电场电场是描述电荷对周围空间产生影响的物理量。
任何一个电荷在其周围都会产生一个电场,其他电荷受到这个电场的力作用。
1. 电场强度电场强度$E$定义为单位正电荷所受到的电场力。
即$$ E =\frac{F}{q} $$电场强度的方向与电场力方向相同。
2. 电荷在电场中的受力当一个电荷$q$在电场中时,它受到的电场力$F$为$F = qE$,其中$E$为电场强度。
3. 电场线电场线是一种用于表示电场分布的图形。
电场线从正电荷发出,或者进入负电荷。
电场线的密度表示电场强度大小,电场线越密集,电场强度越大。
三、高斯定律高斯定律是用于计算电场分布的重要工具。
它描述了电场与通过闭合曲面的电通量之间的关系。
1. 电通量电通量是电场通过曲面的总电场线数。
电通量的大小等于电场强度与曲面垂直方向的投影之积。
电通量的计算公式为$$ \Phi = \int \mathbf{E} \cdot \mathbf{dA} $$其中$\mathbf{E}$为电场强度,$\mathbf{dA}$为曲面元。
2. 高斯定律高斯定律表示电通量与包围曲面内所有电荷之和的比例关系。
即$$ \Phi = \frac{Q_{\text{内}}}{\epsilon_0} $$其中$\Phi$为通过曲面的电通量,$Q_{\text{内}}$为曲面内的总电荷,$\epsilon_0$为真空介电常数。
电动力学知识点归纳电动力学是物理学的一个分支,研究电荷和电流以及它们与电场和磁场之间的相互作用。
电动力学是现代工程学和科学研究的基础,也是解释电子、电力、磁性材料、光学和无线通信等现象的关键。
以下是电动力学的几个重要知识点的归纳:1.库仑定律:描述了两个电荷之间的作用力,称为电场力。
它表明,两个电荷之间的作用力正比于它们的电荷量的乘积,反比于它们之间距离的平方。
2.电场:由电荷产生的电场是描述电荷周围的空间的力场。
电场可以通过电场线来可视化,箭头指向正电荷,箭头离开负电荷,线的密度表示电场的强度。
3.电势能和电势差:电势能是一个电荷在电场中的能量,它与电荷量、电场强度和距离之间都有关系。
电势差是沿电场中两点之间的电势能变化,用来描述电荷从一个点移动到另一个点时的能量变化。
4.电流和电阻:电流是电荷在单位时间内通过导体的量,通常用安培(A)来衡量。
电阻是导体对电流的阻碍,其大小与导体材料的特性有关。
欧姆定律描述了电流、电势差和电阻之间的关系,即电流等于电势差与电阻的比值。
5.麦克斯韦方程组:麦克斯韦方程组是描述电磁场行为的一组方程,它们是电动力学的核心。
方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和高斯磁定律。
这些方程描述了电荷和电流如何产生电场和磁场,以及电场和磁场之间如何相互作用。
6.磁场:磁场是由电流产生的,可以通过磁感线来可视化,箭头指向磁南极,箭头离开磁北极。
磁场对运动带电粒子施以洛伦兹力,使其偏离原来的轨道。
7.麦克斯韦-安培定理:描述了电流生成的磁场的环路积分等于通过环路的总电流的情况。
它建立了电流与磁场之间的关系。
8.电感和电容:电感是储存电磁能的元件,通过存储磁场的能量来抵抗电流变化。
电容是储存电荷的元件,通过储存电场的能量来抵抗电压变化。
以上只是电动力学领域中的一些重要概念和原理,还有很多细节和衍生知识需要进一步学习和理解。
电动力学的应用也非常广泛,例如电路设计、电子设备制造、电力输送、无线通信等领域都离不开电动力学的原理。
最新电动力学重点知识总结电动力学是物理学的一个重要分支,研究带电粒子在电场和磁场中的运动规律及其相互作用。
以下是最新的电动力学重点知识总结:1.库仑定律:库仑定律描述了两个点电荷之间的电荷间相互作用力的大小和方向。
它以电荷的量及其相对距离为参数,公式为F=k*q1*q2/r^2,其中F是作用力,q1和q2分别是两个电荷的电量,r是两个电荷之间的距离,k是库仑常数。
2.电场强度:电场强度描述了空间中各点受电场力的大小和方向。
电场强度与点电荷的大小和距离成反比,可以用公式E=k*q/r^2表示,其中E是电场强度,q是点电荷的电量,r是点电荷与观察点之间的距离。
3. 电通量:电通量是电场线通过单位面积的数量。
如果一个闭合曲面上的电通量为零,那么在该曲面上没有净电荷。
电通量可以用公式Φ=E*A*cosθ表示,其中Φ是电通量,E是电场强度,A是曲面的面积,θ是电场线与曲面法线之间的夹角。
4.高斯定律:高斯定律是描述电场的一个基本定律,它表明电场的总通量与包围该电场的闭合曲面上的净电荷成正比。
数学表达式为Φ=Q/ε₀,其中Φ是闭合曲面上的电通量,Q是闭合曲面内的净电荷,ε₀是真空的介电常数。
5.电势能:电荷在电场中具有电势能。
电势能是一个量值,并且仅依赖于电荷和它在电场中的位置。
电势能可以用公式U=q*V表示,其中U是电势能,q是电荷的电量,V是电势。
6. 电势差:电势差是单位正电荷从一个点到另一个点的电势能的差值,也可以看作是电场力对单位正电荷所做的功。
电势差可以用公式ΔV=∫E·dl来计算,其中ΔV是电势差,∫E·dl是电场强度在路径上的线积分。
7.电容器:电容器是一种可以存储电荷的装置。
它由两个导体板和介质组成,其中导体板上的电荷存储在电场中。
电容器的电容可以用公式C=Q/V表示,其中C是电容,Q是电荷的量,V是电势差。
8.电流:电流是单位时间内通过导体横截面的电荷量。
电流可以用公式I=ΔQ/Δt表示,其中I是电流,ΔQ是通过导体横截面的电荷量,Δt是时间。
《电动力学》复习资料第一章:电磁现象的普遍规律*1、库仑定律:真空中静止点电荷Q 对另一静止点电荷Q '的作用力为r e r Q Q F2041'=πε式中r e的方向由Q 指向Q ',0ε是真空介电常量,大小为m F /10854.812-0⨯=ε.【注】是静止电荷对静止电荷的作用力。
2、电场强度:(1)单个点电荷所激发的电场强度:(末考)★★★r r Q E3041πε=(决定式)(2)多个点电荷所激发的电场强度:(根据电场的叠加原理)①当电荷不连续分布时,总电场强度为:∑=i iii r r Q E3041πε②当电荷连续分布在某一区域时,P 点的电场强度为:★★★V d r rx x E V ''=⎰304)()(περ (积分形式)3、高斯定理:★★⎰⎰⎰⋅∇=⋅SVdV A S d A物理意义:把一个闭合曲面的面积分转化为对该曲面所包围体积的体积分。
4、电场强度的高斯定理:★★★(1)积分形式:(末考)⎪⎪⎩⎪⎪⎨⎧=⋅=⋅⎰⎰⎰V S S dVS d E Q Q QS d E ρεε001 某区域,则若电荷连续分布于空间)(一个点电荷为闭合曲面内的总电荷其中 (2)微分形式:0ερ=⋅∇E此式也叫静电场的散度方程,是静电场的基本微分方程,它说明静电场有源。
*【注1】散度的局域形式:虽然对任一个包围着电荷的曲面都有电通量,但是散度只存在于有电荷分布的区域内,在没有电荷分布的空间电场的散度为零。
【注2】电场强度的高斯公式:⎰⎰⋅∇=⋅S V dVE S d E【注3】哈密顿算符∇:ze y e x e z y x∂∂+∂∂+∂∂=∇⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂+∂∂=⋅∇∂∂+∂∂+∂∂=∇z A y A x A A z e z e y e x zy x y xϕϕϕϕ =⨯∇A x x A x e ∂∂ y y A y e ∂∂ zzA ze ∂∂2222222z y x ∂∂+∂∂+∂∂=∇ϕϕϕϕ 5、静电场的环路方程:★★★⎰=⋅Ll d E 0说明静电场是保守力场6、静电场的旋度方程:★★★0)(=⋅⨯∇=⋅⎰⎰S d E l d E Sl是静电场的基本微分方程,它说明静电场无旋。
一1.静电场的基本方程#微分形式:积分形式:物理意义:反映电荷激发电场及电场内部联系的规律性 物理图像:电荷是电场的源,静电场是有源无旋场2.静磁场的基本方程#微分形式 积分形式反映静磁场为无源有旋场,磁力线总闭合。
它的激发源仍然是运动的电荷。
注意:静电场可单独存在,稳恒电流磁场不能单独存在(永磁体磁场可以单独存在,且没有宏观静电场)。
#电荷守恒实验定律:#稳恒电流: ,*#3.真空中的麦克斯韦方程组0,E E ρε∇⨯=∇⋅=()010LSVQE dl E dS x dV ρεε''⋅=⋅==⎰⎰⎰ , 0J tρ∂∇⋅+=∂00LSB dl I B d S μ⋅=⋅=⎰⎰, 00B J B μ∇⨯=∇⋅=,0J ∇⋅=21(-)0n J J ⋅=揭示了电磁场内部的矛盾和运动,即电荷激发电场,时变电磁场相互激发。
微分形式反映点与点之间场的联系,积分方程反映场的局域特性。
*真空中位移电流,实质上是电场的变化率*#4.介质中的麦克斯韦方程组1)介质中普适的电磁场基本方程,可用于任意介质,当 ,回到真空情况。
2)12个未知量,6个独立方程,求解必须给出 与 , 与 的关系。
#5.1)边值关系一般表达式 2)理想介质边值关系表达式6.电磁场能量守恒公式D J t D ρ∂BE =-∂H =+∂∇⋅=⋅B =0==P M H B E D)(00M H B P E D+=+=με()()⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅ασ12121212ˆ0ˆ0)(ˆ)(ˆH H nE E nB B nD D n ()()⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅0ˆ0ˆ0) (ˆ0)(ˆ12121212H H nE E nB B nD D nDE J tε∂=∂二1.静电场的标势#静电势:电势差:#2. 电势满足的方程泊松方程(适用于均匀介质):拉普拉斯方程(适用于无自由电荷分布的均匀介质):3. 静电势的边值关系#1) 两介质分界面2)导体表面上的边值关系*4. 静电场的能量1)一般方程:能量密度:2)只适合于静电场情况。
电动力学第一章 电磁现象的普遍规律第一节电荷和电场1. 库仑定理和电场强度(1) 定理的表示形式及其物理解释;(2) 电荷激发电场的形式及其计算(点电荷、点电荷系、一定形状分布的电荷体系) (点电荷) (点电荷系) ()30()4V x r E x dV r ρπε''=⎰ (体电荷分布) (面电荷分布) ()30()4L x r E x dl r λπε''=⎰ (线电荷分布) 2. 高斯定理和电场的散度(1)高斯定理的形式及其意义S Q E dS ε⋅=⎰ ()VQ x dV ρ''=⎰ (2)静电场的散度及其物理意义E ρε∇⋅= 意义:电荷是电场的源,电场线从正电荷发出终止于负电荷。
反应了局域性:空间某点邻域上场的散度只和该点上的电荷有关,而和其他地点的电荷分布无关;电荷只直接激发其邻近的场,而远处的场则是通过场本身的内部作用传递出去的。
3. 静电场的旋度()0L S E dl E dS ⋅=∇⨯⋅=⎰⎰ ,0E ∇⨯= (环路定理) 书本例题(p7)第二节 电流和磁场1. 电荷守恒定律电流密度(矢量)的定义J ,电荷守恒定律的微分积分形式:2014QQ F r r πε'= 30()4F Q r E x Q r πε==' 3110()4n n i i i i i i Q r E x E r πε====∑∑()30()4S x r E x dS r σπε''=⎰S V J dS dV t ρ∂⋅=-∂⎰⎰ (积分形式)0J tρ∂∇⋅+=∂ (微分形式,也称电流连续性方程) 2. 毕奥—萨伐尔定律034Idl r dB r μπ⨯= ,034L Idl r B rμπ⨯=⎰ (闭合导线情形下,毕—萨定律的积分微分表示式) 034Jdv r dB r μπ⨯= ,034V J r B dV r μπ⨯=⎰ (闭合导体情形下,毕—萨定律的积分微分表示式) 掌握定理的内容及用此定理求电流分布激发的磁场。
《电动力学》知识点归纳及典型例题分析一、知识点归纳知识点1:一般情况下,电磁场的基本方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇+∂∂=⨯∇∂∂-=⨯∇.0;;B D J t D H t B Eρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==Jρ)的自由空间(或均匀介质)的电磁场方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇∂∂=⨯∇∂∂-=⨯∇.0;0;B D t D H t B E(齐次的麦克斯韦方程组)知识点2:位移电流及与传导电流的区别。
答:我们知道恒定电流是闭合的: ()恒定电流.0=⋅∇J在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。
一般说来,在非恒定情况下,由电荷守恒定律有.0≠∂∂-=⋅∇t J ρ现在我们考虑电流激发磁场的规律:()@.0J B μ=⨯∇ 取两边散度,由于0≡⨯∇⋅∇B ,因此上式只有当0=⋅∇J 时才能成立。
在非恒定情形下,一般有0≠⋅∇J ,因而()@式与电荷守恒定律发生矛盾。
由于电荷守恒定律是精确的普遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。
把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流J 合起来构成闭合的量 ()()*,0=+⋅∇D J J 并假设位移电流D J 与电流J 一样产生磁效应,即把()@修改为 ()D J J B +=⨯∇0μ。
此式两边的散度都等于零,因而理论上就不再有矛盾。
由电荷守恒定律.0=∂∂+⋅∇tJ ρ电荷密度ρ与电场散度有关系式 .0ερ=⋅∇E 两式合起来得:.00=⎪⎭⎫ ⎝⎛∂∂+⋅∇t E J ε与()*式比较可得D J 的一个可能表示式.0tEJ D ∂∂=ε 位移电流与传导电流有何区别:位移电流本质上并不是电荷的流动,而是电场的变化。
它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。
而传导电流实际上是电荷的流动而产生的。
知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。
电动力学基本内容复习提纲电动力学(Electrodynamics)是物理学中研究电荷、电场、电流和磁场之间相互作用的分支学科。
下面是电动力学的基本内容复习提纲:一、电荷和电场的基本概念1.电荷的基本特性和定义2.电荷守恒定律及其应用3.质点电荷和连续分布电荷的电场计算4.电势的定义和性质5.电场和电势的关系二、电场的基本性质和电场的运动1.电场强度的定义和性质2.电场线的性质和规律3.正电荷和负电荷在电场中的运动4.点电荷在电场中受力的性质和计算三、电场的高斯定律1.高斯定律的基本概念和表述2.高斯定律的应用:计算电场和电势3.高斯定律在导体中的应用四、电势与电势能1.电势能的概念和计算2.连续分布电荷系统的电势计算3.轴对称电荷分布的电势计算五、电场中的静电力1.静电力的基本概念和性质2.电场中两个点电荷互相作用的力计算3.连续分布电荷系统的静电力计算六、电荷在电场中的运动1.电场中带电微粒的加速和速度计算2.电场中带电微粒的轨迹和运动方程3.带电粒子在均匀磁场中的运动七、导体中的静电平衡1.导体的基本性质和导体中的电荷分布2.导体中电荷的自由移动和静电平衡条件3.导体表面电荷密度和电势的分布八、电流和电阻1.电流和电流密度的概念和计算2.电阻和电导的概念和性质3. Ohm定律及其应用九、电路和电动势1.串联和并联电路的电流和电压计算2.电动势的概念和性质3. Kirchhoff定律的应用十、磁场和电磁感应1.磁场的基本概念和性质2.安培定律和洛伦兹力的计算3.静磁场和恒定磁场4.电磁感应的基本概念和现象十一、电磁感应和电磁波1.法拉第电磁感应定律的应用2.涡旋感应和电磁感应的计算3.麦克斯韦方程组的基本概念和应用4.电磁波的基本性质和特点以上提纲主要囊括了电动力学的基本内容,希望对你的复习有所帮助。
如果还有其他问题,请随时追加提问。
矢量分析
重点内容:三矢量的混合积、叉乘及顺序;nabla算符和梯度、散度、旋度的定义;nabla算符的微分特和矢量性;拉普拉斯算符;各种矢量公式的推导;梯度场和旋度场的重要性质。
电磁场的普遍规律
重点内容:电场磁场的定义,以及散度旋度性质的推导;位移电流;各种情况下的麦克斯韦方程组(必考);边界条件;电荷守恒定律;本构关系;能量守恒定律,能流密度,能量密度。
重点内容:静电场的散度旋度方程,和边界条件;静电势的泊松方程和拉普拉斯方程,及边界条件(分电介质和导体情况);唯一性定理所对应的两种边界条件;本征函数展开法的物理根据,和用此法求解电势(必考);镜像法求解电势(必考)。
重点内容:重点掌握概念和定义,如下。
静磁场的散度旋度方程,和边界条件;矢势的泊松方程,及边界条件;磁标势的适用条件,方程和边界条件
电磁波传播
重点内容:从麦克斯韦方程组推导波动方程,以及波动方程的物理意义;如何从波动方程得到Helmholtz 方程(Helmholtz方程要配合∇∙D=0和∇∙B=0一起使用);电磁波在均匀的各向同性且无衰减介质中的色散关系;如何通过∇∙D=0和∇∙B=0(横波条件)得出电磁波是否为TE波和TM波;求得电场后,如何通过法拉第关系得到磁场H,以及电磁波的手性问题;介质的折射率和阻抗的定义;电磁波的偏振;斯涅尔定律的物理意义;从界面处切向波矢守恒的角度讨论全反射和倏逝波问题;菲涅耳公式中的TE(s波)和TM(p波)如何区分,以及界面处入射光反射和透射光的偏振示意图(菲涅耳公式不用记);Brewster角;导体的趋肤效应;完美金属边界条件;从驻波的角度得到谐振腔的本征振荡模式满足的条件,并理解其物理意义,以及从驻波条件得出谐振腔的所允许的最低振荡频率;从驻波的角度得到波导的本征传播模式满足的条件,并理解其物理意义,以及从驻波条件理解波导的最低截止频率及意义(即最低传播频率);波导内传播模式的偏振特点。
(谐振腔和波导必考)
狭义相对论
重点内容:迈克尔逊莫雷实验的意义;狭义相对论的两条基本假设;狭义相对论时空观中事件间隔的定义和时空结构分类;事件在不同参考系中的洛伦兹变换(必考);狭义相对论的基本效应,包括同时相对性,运动时钟的变慢,运动长度的缩短,速度变换;间隔不变和洛伦兹变换在闵可夫斯基空间中的意义。