线 性 回 归 方 程 推 导
- 格式:pdf
- 大小:266.54 KB
- 文档页数:21
线性回归方程公式推导从现代经济学研究看,线性回归是一种多变量经济分析方法,它能够用来研究变量之间的关系,以便确定哪些变量具有影响性。
线性回归模型是描述一个响应变量和一组predictor变量之间关系的线性关系模型。
线性回归模型有多种形式,其中最常见的是最小二乘法,即OLS,其核心思想是通过最小化以下损失函数来确定回归系数:S=1/n (yi-i)其中,yi是实际值,i是预测值,n是数据样本的个数。
有了线性回归模型,就可以推导出公式,即OLS回归方程。
它表述的意思是,假设回归系数β的值是已知的,即满足公式:β=(XX)^-1XY其中,X指的是一个有m个变量的矩阵,Y指的是一个有n个观测值的矩阵,X指的是X矩阵的转置矩阵,(XX)^-1指的是求XX的逆矩阵,XY指的是X和Y的点乘积。
由此,OLS回归模型就可以用变量yi=b1x1i+b2x2i+…+bpxpi+εi来表示,其中b1, b2,, bp分别是变量x1i, x2i,, xpi的回归系数,εi是误差项,它以期望值为零的正态分布的形式出现,表示随机噪声。
一般来说,OLS即可用来估计参数的可能性,但是,由于它们常常受到多重共线性的影响,因此需要检验其可靠性。
OLS的优点是可以提供一种最优的参数估计法,它能够有效地提高参数估计的准确性。
此外,OLS进行变量检验时,也可以有效地识别出具有影响性的变量。
不过,OLS也有其缺点,尤其是当数据存在某些问题时,可能会导致OLS的估计结果出现偏差。
主要问题包括多重共线性、异方差性和异常值。
对于这些问题,最好的解决方法是对数据进行相关性分析,从而将偏差减少到最小。
综上所述,OLS回归方程公式能够有效地描述变量之间的关系,检验其可靠性,以便确定哪些变量具有影响性。
为了确保其准确性,应当有效地处理多重共线性等问题,从而使得OLS具有更强的适用性。
最小二乘法的推导过程
最小二乘法是一种线性回归分析方法,用于解决当回归方程中的自变量与因变量之间存在一定误差时,如何求出最优解的问题。
其推
导过程如下:
1. 假设回归方程为y = β0 + β1x1 + β2x2 + ... + βkxk + ε,其中y为因变量,x1,x2,...,xk为自变量,β0,β1,...,βk为
回归系数,ε为误差项。
2. 根据最小二乘法的原理,我们需要求出使误差之和最小的回
归系数,即最小化残差平方和:Σ(yi - ŷi)^2,其中yi为实际值,ŷi为预测值。
3. 将回归方程中的自变量和误差项写成矩阵的形式,得到一个
线性模型:Y = Xβ + e,其中Y为n行1列的因变量向量,X为n行
k+1列的自变量矩阵,β为(k+1)行1列的回归系数向量,e为n行1
列的误差向量。
4. 利用最小二乘法的原理,将残差平方和对回归系数向量β求偏导数,并令其等于0,得到一个求解回归系数的正规方程组:X'Xβ = X'Y,其中X'为X矩阵的转置。
5. 解正规方程组,得到回归系数向量β的估计值:β =
(X'X)^-1X'Y。
6. 将得到的回归系数代入原始的回归方程中,即可得到最终的
线性回归方程。
通过以上推导过程,我们可以利用最小二乘法求解线性回归方程中的回归系数,从而预测因变量的值。
这种方法常用于统计学、金融学、经济学等领域,可以帮助我们更好地理解和分析数据。
线性回归——正规方程推导过程线性回归——正规方程推导过程我们知道线性回归中除了利用梯度下降算法来求最优解之外,还可以通过正规方程的形式来求解。
首先看到我们的线性回归模型:f(xi)=wTxif(x_i)=w^Tx_if(xi?)=wTxi?其中w=(w0w1.wn)w=begin{pmatrix}w_0w_1.w_nend{pmatrix}w=?w0?w1?. wn?,xi=(x0x1.xn)x_i=begin{pmatrix}x_0x_1.x_nend{pmatrix}xi?=?x0 x1.xn,m表示样本数,n是特征数。
然后我们的代价函数(这里使用均方误差):J(w)=∑i=1m(f(xi)?yi)2J(w)=sum_{i=1}^m(f(x_i)-y_i)^2J(w) =i=1∑m?(f(xi?)?yi?)2接着把我的代价函数写成向量的形式:J(w)=(Xw?y)T(Xw?y)J(w)=(Xw-y)^T(Xw-y)J(w)=(Xw?y)T(Xw?y) 其中X=(1x11x12?x1n1x21x22?x2n?1xm1xm2?xmn)X=begin{pmatrix}1 x_{11} x_{12} cdots x_{1n}1 x_{21} x_{22} cdots x_{2n}vdots vdots vdots ddots vdots1 x_{m1} x_{m2} cdots x_{mn}end{pmatrix}X=?11?1?x11?x21?xm1?x12?x22?xm2?x1n?x2n?xmn?最后我们对w进行求导,等于0,即求出最优解。
在求导之前,先补充一下线性代数中矩阵的知识:1.左分配率:A(B+C)=AB+ACA(B+C) = AB+ACA(B+C)=AB+AC;右分配率:(B+C)A=BA+CA(B+C)A = BA + CA(B+C)A=BA+CA2.转置和逆:(AT)?1=(A?1)T(A^T)^{-1}=(A^{-1})^T(AT)?1=(A?1)T,(AT)T=A(A^T)^T=A(AT)T=A3.矩阵转置的运算规律:(A+B)T=AT+BT(A+B)^T=A^T+B^T(A+B)T=AT+BT;(AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT然后介绍一下常用的矩阵求导公式:1.δXTAXδX=(A+AT)Xfrac{delta X^TAX}{delta X}=(A+A^T)XδXδXTAX?=(A+AT)X2.δAXδX=ATfrac{delta AX}{delta X}=A^TδXδAX?=AT3.δXTAδX=Afrac{delta X^TA}{delta X}=AδXδXTA?=A然后我们来看一下求导的过程:1.展开原函数,利用上面的定理J(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yTXw+yT yJ(w)=(Xw-y)^T(Xw-y)=((Xw)^T-y^T)(Xw-y)=w^TX^TXw-w^TX^Ty-y^TXw+y^TyJ(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yT Xw+yTy2.求导,化简得,δJ(w)δw=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTXw?2XTy=0?XTXw=X Ty?w=(XXT)?1XTyfrac{delta J(w)}{delta w}=(X^TX+(X^TX)^T)w-X^Ty-(y^TX)^T=0implies2X^TXw-2X^Ty=0implies X^TXw=X^Tyimplies w=(XX^T)^{-1}X^TyδwδJ(w)?=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTX w?2XTy=0?XTXw=XTy?w=(XXT)?1XTy最后补充一下关于矩阵求导的一些知识,不懂可以查阅:矩阵求导、几种重要的矩阵及常用的矩阵求导公式这次接着一元线性回归继续介绍多元线性回归,同样还是参靠周志华老师的《机器学习》,把其中我一开始学习时花了较大精力弄通的推导环节详细叙述一下。
线性回归算法推导线性回归之最小二乘法推导及python实现前言线性模型基本形式模型评估寻找最优解python实现最小二乘法本文章为个人的学习笔记。
学习书籍《机器学习》(周志华著,俗称西瓜书)。
线性模型基本形式首先是最基本的线性模型:f(x)=w1x1+w2x2+w3x3+.+wnxn+bf( textbf{x} )=w_1x_1+w_2x_2+w_3x_3+.+w_nx_n+bf(x)=w1?x1?+w 2?x2?+w3?x3?+.+wn?xn?+b化简成向量形式f(x)=xw+bf( textbf{x})= textbf{x}textbf{w} +b f(x)=xw+bf(x)≈yf( textbf{x})approx yf(x)≈y其中x=(x1,x2,x3.,xn)textbf{x}=(x_1,x_2,x_3.,x_n)x=(x1?,x2?,x3?. ,xn?),xix_ixi? 代表xtextbf{x}x的第i个属性。
而w=(w1;w2;w3;.;wn)textbf{w}=(w_1;w_2;w_3;.;w_n)w=(w1?;w2?;w3 ;.;wn)对应于 xtextbf{x}x 不同属性的系数。
其中yyy代表了数据xtextbf{x}x的真实情况,而f(x)f(bf{x})f(x)得到的是对xtextbf{x}x的预测值,我们通过(y,x)(y,textbf{x})(y,x)对模型进行训练,力求通过线性模型f(x)f(bf{x})f(x)来对yyy未知的数据进行预测。
为了计算方便,令:x=(x1,x2,x3.,xn,1)textbf{x}=(x_1,x_2,x_3.,x_n,1)x=(x1?,x 2?,x3?.,xn?,1)w=(w1;w2;w3;.;wn;b)textbf{w}=(w_1;w_2;w_3;.;w _n;b)w=(w1?;w2?;w3?;.;wn?;b)线性模型就写成如下形式:f(x)=wxf( textbf{x})= textbf{w} textbf{x} f(x)=wx模型评估线性回归的目标就是要找到一个最合适的模型来使得预测的准确度最大化。
线性回归方程lnx公式b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。
线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。
线性回归方程公式求法第一:用所给样本求出两个相关变量的(算术)平均值:x_=(x1+x2+x3+...+xn)/ny_=(y1+y2+y3+...+yn)/n第二:分别计算分子和分母:(两个公式任选其一)分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2第三:计算b:b=分子/分母用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值X,Y再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)后把x,y的平均数X,Y代入a=Y-bX求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)线性回归线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。
变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。
因此,可以认为关于的回归函数的类型为线性函数。
分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
线性回归之最小二乘法线性回归Linear Regression——线性回归是机器学习中有监督机器学习下的一种简单的回归算法。
分为一元线性回归(简单线性回归)和多元线性回归,其中一元线性回归是多元线性回归的一种特殊情况,我们主要讨论多元线性回归如果因变量和自变量之间的关系满足线性关系(自变量的最高幂为一次),那么我们可以用线性回归模型来拟合因变量与自变量之间的关系.简单线性回归的公式如下:y^=ax+b hat y=ax+by^?=ax+b多元线性回归的公式如下:y^=θTx hat y= theta^T x y^?=θTx上式中的θthetaθ为系数矩阵,x为单个多元样本.由训练集中的样本数据来求得系数矩阵,求解的结果就是线性回归模型,预测样本带入x就能获得预测值y^hat yy^?,求解系数矩阵的具体公式接下来会推导.推导过程推导总似然函数假设线性回归公式为y^=θxhat y= theta xy^?=θx.真实值y与预测值y^hat yy^?之间必然有误差?=y^?yepsilon=haty-y?=y^?y,按照中心极限定理(见知识储备),我们可以假定?epsilon?服从正态分布,正态分布的概率密度公式为:ρ(x)=1σ2πe?(x?μ)22σ2rho (x)=frac {1}{sigmasqrt{2pi}}e^{-frac{(x-mu)^2}{2sigma^2}}ρ(x)=σ2π1e2σ2(x?μ)2?为了模型的准确性,我们希望?epsilon?的值越小越好,所以正态分布的期望μmuμ为0.概率函数需要由概率密度函数求积分,计算太复杂,但是概率函数和概率密度函数呈正相关,当概率密度函数求得最大值时概率函数也在此时能得到最大值,因此之后会用概率密度函数代替概率函数做计算.我们就得到了单个样本的误差似然函数(μ=0,σmu=0,sigmaμ=0,σ为某个定值):ρ(?)=1σ2πe?(?0)22σ2rho (epsilon)=frac {1}{sigmasqrt{2pi}}e^{-frac{(epsilon-0)^2}{2sigma^2}}ρ(?)=σ2π?1?e?2σ2(?0)2?而一组样本的误差总似然函数即为:Lθ(?1,?,?m)=f(?1,?,?m∣μ,σ2)L_theta(epsilon_1,cdots,e psilon_m)=f(epsilon_1,cdots,epsilon_m|mu,sigma^2)Lθ?(?1?,? ,?m?)=f(?1?,?,?m?∣μ,σ2)因为我们假定了?epsilon?服从正态分布,也就是说样本之间互相独立,所以我们可以把上式写成连乘的形式:f(?1,?,?m∣μ,σ2)=f(?1∣μ,σ2)?f(?m∣μ,σ2)f(epsilon_1,cdots,epsilon_m|mu,sigma^2)=f(epsilon_1|mu,sigma^2)*cdots *f(epsilon_m|mu,sigma^2)f(?1?,?,?m?∣μ,σ2)=f(?1?∣μ,σ2)?f(?m?∣μ,σ2) Lθ(?1,?,?m)=∏i=1mf(?i∣μ,σ2)=∏i=1m1σ2πe?(?i?0)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1}f(epsilon _i|mu,sigma^2)=prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}Lθ? (?1?,?,?m?)=i=1∏m?f(?i?∣μ,σ2)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?在线性回归中,误差函数可以写为如下形式:i=∣yiy^i∣=∣yiθTxi∣epsilon_i=|y_i-haty_i|=|y_i-theta^Tx_i|?i?=∣yi?y^?i?∣=∣yi?θTxi?∣最后可以得到在正态分布假设下的总似然估计函数如下:Lθ(?1,?,?m)=∏i=1m1σ2πe?(?i?0)22σ2=∏i=1m1σ2πe?(yi θTxi)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1} frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}=pro d^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}L θ?(?1?,?,?m?)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?=i=1∏m?σ2π?1 e2σ2(yi?θTxi?)2?推导损失函数按照最大总似然的数学思想(见知识储备),我们可以试着去求总似然的最大值.遇到连乘符号的时候,一般思路是对两边做对数运算(见知识储备),获得对数总似然函数:l(θ)=loge(Lθ(?1,?,?m))=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)l(theta)=log_e(L_theta(epsilon_1,cdots,epsilon_m))=log_ e(prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) l(θ)=loge?(Lθ?(?1?,?,?m?))=loge?(i=1∏m?σ2π?1?e?2σ2(yi θTxi?)2?)l(θ)=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)=∑i=1mloge1σ2πexp(?(yi?θTxi)22σ2)=mloge1σ2π?12σ2∑i=1m(yi?θTxi)2l (theta) = log_e(prod^m_{i=1}frac {1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) = sum_{i=1}^mlog_efrac {1}{sigmasqrt{2pi}}exp({-frac{(y_i-theta^Tx_i)^2}{2sigma^2} })=mlog_efrac{1}{sigmasqrt{2pi}}-frac{1}{2sigma^2}sum^m_{i= 1}(y^i-theta^Tx^i)^2l(θ)=loge?(i=1∏m?σ2π?1?e?2σ2(yi?θTxi?)2?)=i=1∑m?loge?σ2π?1?exp(?2σ2(yi?θTxi?)2?)=mloge?σ2π?1?2σ21?i=1∑m?(yi?θTxi)2前部分是一个常数,后部分越小那么总似然值越大,后部分则称之为损失函数,则有损失函数的公式J(θ)J(theta)J(θ):J(θ)=12∑i=1m(yi?θTxi)2=12∑i=1m(yi?hθ(xi))2=12∑i=1m (hθ(xi)?yi)2J(theta)=frac{1}{2}sum^m_{i=1}(y^i-theta^Tx^i)^2=frac{1}{2} sum^m_{i=1}(y^i-h_theta(x^i))^2=frac{1}{2}sum^m_{i=1}(h_the ta(x^i)-y^i)^2J(θ)=21?i=1∑m?(yi?θTxi)2=21?i=1∑m?(yi?hθ?(xi))2=21?i=1∑m?(hθ?(xi)?yi)2解析方法求解线性回归要求的总似然最大,需要使得损失函数最小,我们可以对损失函数求导.首先对损失函数做进一步推导:J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)J(theta)=fr ac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1}{2}(Xtheta-y )^T(Xtheta-y)J(θ)=21?i=1∑m?(hθ?(xi)?yi)2=21?(Xθ?y)T(Xθy)注意上式中的X是一组样本形成的样本矩阵,θthetaθ是系数向量,y也是样本真实值形成的矩阵,这一步转换不能理解的话可以试着把12(Xθ?y)T(Xθ?y)frac{1}{2}(Xtheta-y)^T(Xtheta-y)21?(Xθ?y) T(Xθ?y)带入值展开试试.J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)=12((Xθ)T? yT)(Xθ?y)=12(θTXT?yT)(Xθ?y)=12(θTXTXθ?yTXθ?θTXTy+yTy)J(theta)=frac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1} {2}(Xtheta-y)^T(Xtheta-y)=frac{1}{2}((Xtheta)^T-y^T)(Xtheta -y)=frac{1}{2}(theta^TX^T-y^T)(Xtheta-y)=frac{1}{2}(theta^T X^TXtheta-y^TXtheta-theta^TX^Ty+y^Ty)J(θ)=21?i=1∑m?(hθ?( xi)?yi)2=21?(Xθ?y)T(Xθ?y)=21?((Xθ)T?yT)(Xθ?y)=21?(θTXT yT)(Xθ?y)=21?(θTXTXθ?yTXθ?θTXTy+yTy)根据黑塞矩阵可以判断出J(θ)J(theta)J(θ)是凸函数,即J(θ)J(theta)J(θ)的对θthetaθ的导数为零时可以求得J(θ)J(theta)J(θ)的最小值.J(θ)?θ=12(2XTXθ?(yTX)T?XTy)=12(2XTXθ?XTy?XTy)=XTXθXTyfrac{partialJ(theta)}{partialtheta}=frac{1}{2}(2X^TXtheta-(y^TX)^T-X^Ty )=frac{1}{2}(2X^TXtheta-X^Ty-X^Ty)=X^TXtheta-X^Ty?θ?J(θ)? =21?(2XTXθ?(yTX)T?XTy)=21?(2XTXθ?XTy?XTy)=XTXθ?XTy 当上式等于零时可以求得损失函数最小时对应的θthetaθ,即我们最终想要获得的系数矩阵:XTXθ?XTy=0XTXθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1 XTyθ=(XTX)?1XTyX^TXtheta-X^Ty=0X^TXtheta=X^Ty((X^TX)^{-1}X^TX)theta=(X^TX)^{-1}X^TyEtheta=(X^TX)^{-1}X^Tytheta=(X^TX)^{-1}X^TyXTXθ?XTy=0XT Xθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1XTyθ=(XTX)?1XTy (顺便附上一元线性回归的系数解析解公式:θ=∑i=1m(xi?x ̄)(yi?y ̄)∑i=1m(xi?x  ̄)2theta=frac{sum^m_{i=1}(x_i-overline{x})(y_i-overline{y} )}{sum^m_{i=1}(x_i-overline{x})^2}θ=∑i=1m?(xi?x)2∑i=1m?( xi?x)(yi?y?)?)简单实现import numpy as npimport matplotlib.pyplot as plt# 随机创建训练集,X中有一列全为'1'作为截距项X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 按上面获得的解析解来求得系数矩阵thetatheta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)# 打印结果print(theta)# 测试部分X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict = X_test.dot(theta)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()sklearn实现import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 新建线性回归模型model = LinearRegression(fit_intercept=False)# 代入训练集数据做训练model.fit(X,y)# 打印训练结果print(model.intercept_,model.coef_)X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict =model.predict(X_test)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()使用解析解的公式来求得地模型是最准确的.计算量非常大,这会使得求解耗时极多,因此我们一般用的都是梯度下降法求解.知识储备距离公式机器学习中常见的距离公式 - WingPig - 博客园中心极限定理是讨论随机变量序列部分和分布渐近于正态分布的一类定理。
sklearn - 线性回归(正规方程与梯度下降)一: 线性回归方程线性回归(英语:linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。
这种函数是一个或多个称为回归系数的模型参数的线性组合。
只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。
这些模型被叫做线性模型。
最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。
像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X 和y的联合概率分布(多元分析领域)。
线性回归有很多实际用途。
分为以下两大类:如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。
当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y给定一个变量y和一些变量X1X1.,XpXp{displaystyleX_{1}}X_1.,{displaystyle X_{p}}X_pX1?X1?.,Xp?Xp?,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的,XjXj{displaystyle X_{j}}X_jXj?Xj?并识别出哪些XjXj{displaystyle X_{j}}X_jXj?Xj?的子集包含了关于y的冗余信息。
使用sklearn线性回归模型(jupyter)这里我们以波士顿的房价数据来进行使用分析(一): 导入sklearnimport numpy as np# 线性回归,拟合方程,求解系数, 一次幂# 线性方程:直来直去,不拐弯from sklearn.linear_model import LinearRegression# 导入数据集from sklearn import datasets# 导入数据分离的方法(获取数据后,一部分数据用来让回归模型学习,另一部分用来预测)from sklearn.model_selection import train_test_split(二): 获取波士顿房价数据# 获取的数据是numpy,ndarray类型data = datasets.load_boston()# 该数据内有完整的影响房价的因素和完整的房价信息,本次实验就是将数据分为两部分, 一部分用来训练模型,另一部分用来预测,最后将预测出来的数据和已有的完整信息进行对比,判断该模型是否适用于这组房价数据data # 查看data的数据结构data.feature_names # 查看影响房价的属性名# x是属性,特征,未知数X = data['data']X.shape # 运行结果是(506, 13), 506表示样本是506个, 每个样本采集了13个属性特征;13个属性,需要构建构建了13元一次方程# y是房价的估值y = data['target']# X, y = datasets.load_boston(True) 获取到X, y的值和以上的一样(三): 使用模型进行预测X_train, X_test, y_train, y_test = train_test_split(X, y) # 将数据进行分离(默认是3:1); train_test_split(X, y)函数会随机打乱顺序display(X_train.shape, X_test.shape) # (379, 13) ; (127, 13) # 声明算法linear = LinearRegression()# 训练模型linear.fit(X_train, y_train) # X_train, y_train是之前分离出来用来训练模型的数据y_ = linear.predict(X_test).round(1) # X_test是影响房价的因素,该预测模型能根据影响房价的因素预测剩余部分的房价# 预估数据和实际数据比较print(y_)print(y_test)经过估计数据和实际数据对比,说明算法模型适用于数据(四): 自建方程预测数据与使用线性模型得到的数据对比假设波士顿的房价数据符合线性回归的特性,则我们可以通过构建线性方程来预测波士顿剩余部分的房价信息根据一次线性回归方程: f(X)=Xw+bf(X) = Xw+bf(X)=Xw+b 可推导得出: f(X)=w1x1+W2x2+.+w13x13+b f(X) = w_1x_1+W_2x_2+.+w_{13}x_{13} +bf(X)=w1?x1?+W2?x2?+.+w13?x13?+b (有13个影响房价的因素)代码如下:# 通过训练模型,可从模型中得出系数ww_ = linear.coef_# 通过训练模型,可从模型中得出截距bb_ = linear.intercept_# 自建方程def fun(w_, b_, X):return np.dot(X, w_)+b_# 调用方程得到预估的房价信息fun(w_, b_, X_test).round(1) # round(1)保留一位小数array([31.3, 13.4, 28.6, 20.5, 20.4, 19.4, 32.2, 24. , 25.8, 29.5,24.5,25.2, 31.9, 8.2, 20.9, 29.3, 22.3, 35.2, 16.4, 18.5, 30.8, 41.1,16.2, 13.7, 17.7, 23.8, 7.8, 12. , 20.5, 15.3, 29.3, 26.8, 31.8,26. , 30.4, 39.2, 25.3, 40.7, 11.6, 27.3, 16.7, 18.8, 19.5, 19.9,20.7, 22.8, 17.4, 21.6, 23.3, 30. , 25.2, 23.7, 34.2, 18.2, 33.5,16. , 28.3, 14.1, 24.2, 16.2, 16.7, 23.5, 16. , 21.4, 21.8, 28.2,25.7, 31.2, 18.8, 26.4, 28.3, 21.9, 27.5, 27.1, 27.1, 15. , 26. ,26.3, 13.2, 13.3, 26.1, 20.5, 16.8, 24.3, 36.6, 21.4, 8.3, 27.8,3.6, 19.2, 27.5, 33.6, 28.4, 34.3, 28.2, 13.3, 18. , 23.5, 30.4,32.9, 23.7, 30.5, 19.8, 19.5, 18.7, 30.9, 36.3, 8. , 18.2, 13.9,15. , 26.4, 24. , 30.2, 20. , 5.6, 21.4, 22.9, 17.6, 32.8, 22.1,32.6, 20.9, 19.3, 23.1, 21. , 21.5])# 使用sklesrn中的线性模型得到的预估房价信息linear.predict(X_test).round(1)array([31.3, 13.4, 28.6, 20.5, 20.4, 19.4, 32.2, 24. , 25.8, 29.5,24.5,25.2, 31.9, 8.2, 20.9, 29.3, 22.3, 35.2, 16.4, 18.5, 30.8, 41.1,16.2, 13.7, 17.7, 23.8, 7.8, 12. , 20.5, 15.3, 29.3, 26.8, 31.8,26. , 30.4, 39.2, 25.3, 40.7, 11.6, 27.3, 16.7, 18.8, 19.5, 19.9,20.7, 22.8, 17.4, 21.6, 23.3, 30. , 25.2, 23.7, 34.2, 18.2, 33.5,16. , 28.3, 14.1, 24.2, 16.2, 16.7, 23.5, 16. , 21.4, 21.8, 28.2,25.7, 31.2, 18.8, 26.4, 28.3, 21.9, 27.5, 27.1, 27.1, 15. , 26. ,26.3, 13.2, 13.3, 26.1, 20.5, 16.8, 24.3, 36.6, 21.4, 8.3, 27.8,3.6, 19.2, 27.5, 33.6, 28.4, 34.3, 28.2, 13.3, 18. , 23.5, 30.4,32.9, 23.7, 30.5, 19.8, 19.5, 18.7, 30.9, 36.3, 8. , 18.2, 13.9,15. , 26.4, 24. , 30.2, 20. , 5.6, 21.4, 22.9, 17.6, 32.8, 22.1,32.6, 20.9, 19.3, 23.1, 21. , 21.5])通过自建模型获取预估数据与使用模型获取预估数据进行比较,两组数据完全一致;(五): 使用线性回归,求解斜率和截距根据最小二乘法: min?w∣∣Xw?y∣∣22min_{w}||Xw-y||_2^2wmin?∣∣Xw?y∣∣22? 推到得出公式: w=(XTX)?1XTyw = (X^TX)^{-1}X^Tyw=(XTX)?1XTy 以上公式只能求出w,我们可以先求出w再计算出b;但此处我们有更简单的方法:根据线性回归方程f(x)=w1x1+w2x2+b f(x) = w_1x_1+w_2x_2+bf(x)=w1?x1?+w2?x2?+b 我们可以将方程中的b看成是w3x30w_3x_3^0w3?x30?,所以可得: f(x)=w1x11+w2x21+w3x30f(x) = w_1x_1^1+w_2x_2^1+w_3x_3^0f(x)=w1?x11?+w2?x21?+w3?x30?代码如下:import numpy as npfrom sklearn.linear_model import LinearRegressionfrom sklearn import datasetsX, y = datasets.load_boston(True)linear = LinearRegression()linear.fit(X,y)w_ = linear.coef_b_ = linear.intercept_# 向X中插入一列全是1的数据(任何数的0次方都是1)X = np.concatenate([X, np.ones(shape = (506, 1))], axis=1) # 根据最小二乘法的推导公式:w和b的值为(最后一个值是b)w = ((np.linalg.inv(X.T.dot(X))).dot(X.T)).dot(y)# 以上w的写法过于装逼,所以分解为:# A = X.T.dot(X) 求X和转置后的X的内积(公式中的XTX)# B = np.linalg.inv(A) 求A的逆矩阵(公式中的-1次方)# C = B.dot(X.T) 求以上矩阵和X的转置矩阵的内积(公式中的XT) # w = C.dot(y) 与y求内积,得出w和b运行结果:array([-1.08011358e-01, 4.64204584e-02, 2.05586264e-02, 2.68673382e+00,-1.77666112e+01, 3.80986521e+00, 6.92224640e-04, -1.47556685e+00,3.06049479e-01, -1.23345939e-02, -9.52747232e-01,9.31168327e-03,-5.24758378e-01, 3.64594884e+01])print(b_)运行结果:36.45948838509001扩展一: 最小二乘法和向量范数min?w∣∣Xw?y∣∣22min_{w}||Xw-y||_2^2wmi n?∣∣Xw?y∣∣22?右上角的2是平方右下角的2是向量2范数竖线内的表达式是向量根据最小二乘法的公式, 推导得出w=(XTX)?1XTyw = (X^TX)^{-1}X^Tyw=(XTX)?1XTy向量的1-范数(表示各个元素的绝对值的和)∣∣X∣∣1=∑i=1n∣xi∣||X||_1 = sumlimits_{i=1}^n |x_i|∣∣X∣∣1?=i=1∑n?∣xi?∣向量的2-范数(表示每个元素的平方和再开平方)∣∣X∣∣2=∑i=1nxi2||X||_2 = sqrt{suml imits_{i=1}^n x_i^2}∣∣X∣∣2?=i=1∑n?xi2?向量的无穷范数(所有向量元素绝对值中的最大值)∣∣X∣∣∞=max?1≥i≤n∣Xi∣||X||_{infty} = maxlimits_{1 geq i leq n}|X_i|∣∣X∣∣∞?=1≥i≤nmax?∣Xi?∣扩展二: 导数, 偏导数对函数f(x)=x2+3x+8f(x) = x^2+3x+8f(x)=x2+3x+8 求导得: f(x)′=2x+3f(x)' = 2x+3f(x)′=2x+3求导规则:参数求导为0参数乘变量求导为常数变量的次方求导: xyx^yxy求导为yxy?1yx^{y-1}yxy?1复合函数求导:$$(x^2-x)^2$$求导: 先将括号看成一个整体求导, 结果再乘以括号内的求导结果$$2(x^2-x)(2x-1)$$有多个变量得函数求导:对函数: f(x,y)=x2+xy+y2f(x, y) = x^2+xy+y^2f(x,y)=x2+xy+y2 求导:求导规则: 多变量函数只能针对某一个变量求导,此时将其他变量看成常数将x看成常数a: fa(y)=a2+ay+y2f_a(y) = a^2+ay+y^2fa?(y)=a2+ay+y2求导得:fa′(y)=a+2yf_a'(y) = a+2yfa′?(y)=a+2y故求导得: ?f?y(x,y)=x+2yfrac{partial f}{partial y}(x,y)=x+2y?y?f?(x,y)=x+2y实现线性回归的两种方式:正规方程梯度下降二: 正规方程(一): 损失函数最小二乘法:min?w∣∣Xw?y∣∣22minlimits_{w}||Xw-y||_2^2wmin?∣∣Xw?y∣∣22?当X和y都是常数时,按照向量2范数将上面的最小二乘法解开:f(w)=(Xw?y)2f(w)=(Xw-y)^2f(w)=(Xw?y)2将X,y替换成常数a,bf(w)=(aw?b)2f(w)=(aw-b)^2f(w)=(aw?b)2f(w)=a2w2?2abw+b2f(w)=a^2w^2 - 2abw + b^2f(w)=a2w2?2abw+b2 由于最小二乘法方程的函数值都是大雨或等于0的,所以此时得到一个开口向上的抛物线(一元二次方程)此时的f(w)f(w)f(w)就是损失函数,在此时求该函数的导数(抛物线函数顶点的导数为0)就能得到该函数的最小值,也就是最小损失f′(w)=2a2w?2ab=0f'(w)=2a^2w-2ab=0f′(w)=2a2w?2ab=0(二): 矩阵常用求导公式X的转置矩阵对X矩阵求导, 求解出来是单位矩阵dXTdX=Ifrac{dX^T}{dX} = IdXdXT?=IdXdXT=Ifrac{dX}{dX^T} = IdXTdX?=IX的转置矩阵和一个常数矩阵相乘再对X矩阵求导, 求解出来就是改常数矩阵dXTAdX=Afrac{dX^TA}{dX} = AdXdXTA?=AdAXdX=ATfrac{dAX}{dX} = A^TdXdAX?=ATdXAdX=ATfrac{dXA}{dX} = A^TdXdXA?=ATdAXdXT=Afrac{dAX}{dX^T} = AdXTdAX?=A(三): 正规方程矩阵推导过程此时X,w,y都是矩阵1: 公式化简1: 最小二乘法:f(w)=∣∣Xw?y∣∣22f(w) = ||Xw-y||_2^2f(w)=∣∣Xw?y∣∣22?2: 向量2范数:∣∣X∣∣2=∑i=1nxi2||X||_2 = sqrt{sumlimits_{i = 1}^nx_i^2}∣∣X∣∣2?=i=1∑n?xi2?3: 将向量2范数的公式带入到最小二乘法中得:f(w)=((Xw?y)2)2f(w)=(sqrt{(Xw-y)^2})^2f(w)=((Xw?y)2?)2f(w)=(Xw?y)2f(w)=(Xw-y)^2f(w)=(Xw?y)2由于X, w, y都是矩阵, 运算后还是矩阵; 矩阵得乘法是一个矩阵得行和另一个矩阵得列相乘; 所以矩阵的平方就是该矩阵乘以他本身的转置矩阵f(w)=(Xw?y)T(Xw?y)f(w)=(Xw-y)^T(Xw-y)f(w)=(Xw?y)T(Xw?y)注意: 整体转置变成每个元素都转置时,若是有乘法, 则相乘的两个矩阵要交换位置; 如下所示!f(w)=(wTXT?yT)(Xw?y)f(w)=(w^TX^T-y^T)(Xw-y)f(w)=(wTXT?yT)(Xw y)f(w)=wTXTXw?wTXTy?yTXw+yTyf(w)=w^TX^TXw-w^TX^Ty-y^TXw+y^Tyf( w)=wTXTXw?wTXTy?yTXw+yTy注意: 若想交换两个相乘的矩阵在算式中的位置,则交换之后双方都需要转置一次; 如下所示!f(w)=wTXTXw?(XTy)T(wT)T?yTXw+yTyf(w)=w^TX^TXw-(X^Ty)^T(w^T)^ T-y^TXw+y^Tyf(w)=wTXTXw?(XTy)T(wT)T?yTXw+yTyf(w)=wTXTXw?yTXw?yTXw+yTyf(w)=w^TX^TXw-y^TXw-y^TXw+y^Tyf(w)= wTXTXw?yTXw?yTXw+yTyf(w)=wTXTXw?2yTXw+yTyf(w) = w^TX^TXw - 2y^TXw + y^Ty f(w)=wTXTXw?2yTXw+yTyf(w)=wTXTXw?2yTXw+yTyf(w) = w^TX^TXw - 2y^TXw + y^Ty f(w)=wTXTXw?2yTXw+yTy这里 yTyy^TyyTy 是常数求导后为02yTXw2y^TXw2yTXw 求导:d(2yTX)wdw=(2yTX)T=2XT(yT)T=2XTyfrac{d(2y^TX)w}{dw}=(2y^TX)^ T=2X^T(y^T)^T=2X^Tydwd(2yTX)w?=(2yTX)T=2XT(yT)T=2XTy wTXTXww^TX^TXwwTXTXw求导:dwTXTXwdw=d(wTXTX)wdw+dwT(XTXw)dw=(wTXTX)T+XTXw=XT(XT)T(wT)T +XTXw=2XTXwfrac{dw^TX^TXw}{dw}=frac{d(w^TX^TX)w}{dw}+frac{dw^T(X^TXw)}{dw}=(w^TX^TX)^T+X^TXw=X^T(X^T)^T(w^T)^T+X^TXw=2X^TXwdwd wTXTXw?=dwd(wTXTX)w?+dwdwT(XTXw)?=(wTXTX)T+XTXw=XT(XT)T(wT)T+XT Xw=2XTXwf′(w)=2XTXw?2XTyf'(w) = 2X^TXw - 2X^Tyf′(w)=2XTXw?2XTy令f′(w)=0f'(w)=0f′(w)=0,则:2XTXw?2XTy=02X^TXw - 2X^Ty = 02XTXw?2XTy=0XTXw=XTyX^TXw=X^TyXTXw=XTy矩阵运算没有除法,可以用逆矩阵实现除法的效果等式两边同时乘以XTXX^TXXTX的逆矩阵(XTX)?1(X^TX)^{-1}(XTX)?1 (XTX)?1(XTX)w=(XTX)?1XTy(X^TX)^{-1}(X^TX)w=(X^TX)^{-1}X^Ty(X TX)?1(XTX)w=(XTX)?1XTyIw=(XTX)?1XTyIw=(X^TX)^{-1}X^TyIw=(XTX)?1XTy I是单位矩阵得到正规方程:w=(XTX)?1XTyw=(X^TX)^{-1}X^Tyw=(XTX)?1XTy(四): 数据挖掘实例(预测2020年淘宝双十一交易额)import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegressionX = np.arange(2009, 2020) # 年份X = X -2008 # 年份数值太大,差别不明显y = np.array([0.5, 9.36, 52, 191, 350, 571, 912, 1207, 1682, 2135, 2684]) # 09年到19年的交易额假设X和y之间是一元三次的关系(按照前几年的数据走势提出的假设)f(x)=w1x+w2x2+w3x3+bf(x)=w_1x+w_2x^2+w_3x^3+bf(x)=w1?x+w2?x2 +w3?x3+bf(x)=w0x0+w1x1+w2x2+w3x3f(x)=w_0x^0+w_1x^1+w_2x^2+w_3x^3f(x) =w0?x0+w1?x1+w2?x2+w3?x3# X_oo = np.concatenate([a,a]) # 横着级联X_train = np.c_[X**0, X**1, X**2, X**3] # 竖着级联array([[ 1, 1, 1, 1],[ 1, 2, 4, 8],[ 1, 3, 9, 27],[ 1, 4, 16, 64],[ 1, 5, 25, 125],[ 1, 6, 36, 216],[ 1, 7, 49, 343],[ 1, 8, 64, 512],[ 1, 9, 81, 729],[ 1, 10, 100, 1000],[ 1, 11, 121, 1331]], dtype=int32)linear = LinearRegression(fit_intercept=False) # 声明算法; fit_intercept=False将截距设置为0, w0就是截距linear.fit(X_train, y) # 训练w_ = linear.coef_print(linear.coef_.round(2)) # 获取系数print(linear.intercept_) # 获取截距[ 58.77 -84.06 27.95 0.13]可以得到方程:f(x)=58.77?84.06x+27.95x2+0.13x3f(x)=58.77-84.06x+27.95x^2+0 .13x^3f(x)=58.77?84.06x+27.95x2+0.13x3X_test = np.linspace(0,12,126) # 线性分割(将0,12之间分成126分)等差数列包含1和12X_test = np.c_[X_test**0, X_test**1, X_test**2, X_test**3] # 和训练数据保持一致y_ = linear.predict(X_test) # 使用模型预测plt.plot(np.linspace(0,12,126), y_, color='g') # 绘制预测方程曲线plt.scatter(np.arange(1,12), y, color='red') # 绘制每年的真实销量# 定义函数fun = lambda x : w_[0] + w_[1]*x + w_[2]*x**2 + w_[-1]*x**3 '''3294.2775757576132'''三: 梯度下降梯度下降法的基本思想可以类比为一个下山的过程。
高中数学回归直线方程的推导教案新人教A版选修一、教学目标:1. 让学生理解回归直线方程的概念,掌握最小二乘法的原理及应用。
2. 培养学生运用数学知识解决实际问题的能力,提高对线性回归分析的认识。
3. 通过对回归直线方程的推导,培养学生动手操作、合作交流的能力。
二、教学内容:1. 回归直线方程的定义及意义。
2. 最小二乘法的原理及步骤。
3. 回归直线方程的推导过程。
4. 回归直线方程的应用实例。
三、教学重点与难点:1. 重点:回归直线方程的推导过程,最小二乘法的应用。
2. 难点:对回归直线方程的理解,以及对实际问题数据的处理。
四、教学方法:1. 采用问题驱动法,引导学生主动探究回归直线方程的推导过程。
2. 利用多媒体辅助教学,展示实际问题数据处理的过程。
3. 组织小组讨论,培养学生的合作交流能力。
4. 结合课后练习,巩固所学知识。
五、教学过程:1. 导入新课:通过一个实际问题,引入回归直线方程的概念。
2. 讲解回归直线方程的定义及意义,让学生理解其作用。
3. 介绍最小二乘法的原理,引导学生掌握其应用步骤。
4. 推导回归直线方程,让学生动手操作,体会推导过程。
5. 运用实例讲解回归直线方程的应用,让学生学会解决实际问题。
6. 课堂小结,回顾本节课所学内容。
7. 布置课后练习,巩固所学知识。
8. 课后反思:对课堂教学进行总结,针对学生的掌握情况,调整教学策略。
六、教学评价:1. 通过课堂问答、作业批改等方式,评价学生对回归直线方程概念的理解和掌握程度。
2. 结合课后练习及实际问题,评价学生运用最小二乘法和回归直线方程解决实际问题的能力。
3. 通过小组讨论和课堂展示,评价学生的合作交流和动手操作能力。
七、课后作业:1. 请学生完成教材后的相关练习题,巩固对回归直线方程的理解。
2. 选取一个实际问题,运用最小二乘法和回归直线方程进行数据处理和分析。
八、课程拓展:1. 介绍回归直线方程在实际应用中的广泛性,如经济学、生物学、社会科学等领域。
线性回归方程推导理论推导机器学习所针对的问题有两种:一种是回归,一种是分类。
回归是解决连续数据的预测问题,而分类是解决离散数据的预测问题。
线性回归是一个典型的回归问题。
其实我们在中学时期就接触过,叫最小二乘法。
线性回归试图学得一个线性模型以尽可能准确地预测输出结果。
?先从简单的模型看起:?首先,我们只考虑单组变量的情况,有:?使得?假设有m个数据,我们希望通过x预测的结果f(x)来估计y。
其中w和b都是线性回归模型的参数。
?为了能更好地预测出结果,我们希望自己预测的结果f(x)与y 的差值尽可能地小,所以我们可以写出代价函数(cost function)如下:?接着代入f(x)的公式可以得到:?不难看出,这里的代价函数表示的是预测值f(x)与实际值y之间的误差的平方。
它对应了常用的欧几里得距离简称“欧氏距离”。
基于均方误差最小化来求解模型的方法我们叫做“最小二乘法”。
在线性回归中,最小二乘法实质上就是找到一条直线,使所有样本数据到该直线的欧式距离之和最小,即误差最小。
?我们希望这个代价函数能有最小值,那么就分别对其求w和b的偏导,使其等于0,求解方程。
?先求偏导,得到下面两个式子:?很明显,公式中的参数m,b,w都与i无关,简化时可以直接提出来。
?另这两个偏导等于0:?求解方程组,解得:?这样根据数据集中给出的x和y,我们可以求出w和b来构建简单的线性模型来预测结果。
接下来,推广到更一般的情况:?我们假设数据集中共有m个样本,每个样本有n个特征,用X矩阵表示样本和特征,是一个m×n的矩阵:?用Y矩阵表示标签,是一个m×1的矩阵:?为了构建线性模型,我们还需要假设一些参数:?(有时还要加一个偏差(bias)也就是,为了推导方便没加,实际上结果是一样的)好了,我们可以表示出线性模型了:?h(x)表示假设,即hypothesis。
通过矩阵乘法,我们知道结果是一个n×1的矩阵。
耿老师总结的高考统计部分的两个重要公式的具体如何应用第一公式:线性回归方程为ˆˆˆy bx a =+的求法:(1) 先求变量x 的平均值,既1231()n x x x x x n=+++⋅⋅⋅+ (2) 求变量y 的平均值,既1231()n y y y y y n=+++⋅⋅⋅+ (3) 求变量x 的系数ˆb,有两个方法 法1121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=⎡⎤-+-++-⎣⎦(需理解并会代入数据)法2121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]1122222212...,...n n n x y x y x y nx y x x x nx ++-⋅=⎡⎤+++-⎣⎦(这个公式需要自己记忆,稍微简单些)(4) 求常数ˆa,既ˆˆa y bx =- 最后写出写出回归方程ˆˆˆybx a =+。
可以改写为:ˆˆy bx a =-(ˆy y 与不做区分) 例.已知,x y 之间的一组数据:求y 与x 的回归方程:解:(1)先求变量x 的平均值,既1(0123) 1.54x =+++= (2)求变量y 的平均值,既1(1357)44y =+++= (3)求变量x 的系数ˆb,有两个方法 法1ˆb =[]11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=⎡⎤-+-+-+-⎣⎦--+--+--+--==⎡⎤-+-+-+-⎣⎦法2ˆb =[][]11222222222212...011325374 1.5457...0123n n n x y x y x y nx y x x x nx ++-⋅⨯+⨯+⨯+⨯-⨯⨯==⎡⎤⎡⎤+++-+++⎣⎦⎣⎦ (4)求常数ˆa,既525ˆˆ4 1.577a y bx =-=-⨯=最后写出写出回归方程525ˆˆˆ77ybx a x =+=+第二公式:独立性检验两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。
一元线性回归与多元线性回归理论及公式推导一元线性回归回归分析只涉及到两个变量的,称一元回归分析。
一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。
回归分析就是要找出一个数学模型Y=f(x)y=ax+b多元线性回归注:为使似然函数越大,则需要最小二乘法函数越小越好线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值误差满足,均值为0的高斯分布,即正态分布。
这个假设是靠谱的,符合一般客观统计规律。
若使模型与测量数据最接近,那么其概率积就最大。
概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计。
对最大似然函数估计进行推导,就得出了推导后结果:平方和最小公式1.x的平方等于x的转置乘以x。
2.机器学习中普遍认为函数属于凸函数(凸优化问题),函数图形如下,从图中可以看出函数要想取到最小值或者极小值,就需要使偏导等于0。
3.一些问题上没办法直接求解,则可以在上图中选一个点,依次一步步优化,取得最小值(梯度优化)SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。
解决方案:1.动态更改学习速率a的大小,可以增大或者减小2.随机选样本进行学习批量梯度下降每次更新使用了所有的训练数据,最小化损失函数,如果只有一个极小值,那么批梯度下降是考虑了训练集所有数据,是朝着最小值迭代运动的,但是缺点是如果样本值很大的话,更新速度会很慢。
随机梯度下降在每次更新的时候,只考虑了一个样本点,这样会大大加快训练数据,也恰好是批梯度下降的缺点,但是有可能由于训练数据的噪声点较多,那么每一次利用噪声点进行更新的过程中,就不一定是朝着极小值方向更新,但是由于更新多轮,整体方向还是大致朝着极小值方向更新,又提高了速度。
小批量梯度下降法是为了解决批梯度下降法的训练速度慢,以及随机梯度下降法的准确性综合而来,但是这里注意,不同问题的batch是不一样的,nlp的parser训练部分batch一般就设置为10000,那么为什么是10000呢,我觉得这就和每一个问题中神经网络需要设置多少层,没有一个人能够准确答出,只能通过实验结果来进行超参数的调整。
线性回归及其变式Q1:线性回归的原理Q2:线性回归损失函数的推导过程Q3:求解线性回归损失函数的方法有哪些Q4:如何解决共线性(待补充)Q5:如何防止过拟合Q6:分布式训练怎么做(待补充)Q7:正则化的目的和方法Q8:为什么L1正则化能产生稀疏解,L2则不可以Q1:线性回归的原理线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
其表达形式为y = w'x+e,e 为误差服从均值为0的正态分布。
可以利用梯度下降法等方法求出权重w'的值。
Q2:线性回归损失函数的推导过程首先线性回归有3个假设:(1)误差存在且为;(2)误差的分布基本符合正态分布,因为通常我们不知道是什么分布的时候,根据经验来说正态分布往往效果不错。
(3)每一个样本的误差都是独立同分布的,且满足随机性。
于是我们可以得到第个样本的误差为的概率是:然后,?是真实值与预测值之间的误差,于是把这两个值代进去。
这是一个似然函数,我们希望它的值越大越好!常规操作取一个log,于是就有由此可以得到线性回归的损失函数或者说目标函数就是之所以有1-2这么个系数,只是因为后续用到梯度下降的时候,求导可以把它约掉,方便计算而已,这不会影响最终的结果。
而且注意噢,这里可是没有除以m的!!!!Q3:求解线性回归损失函数的方法有哪些(1)梯度下降法梯度下降又可以是批梯度下降,也可以是随机梯度下降。
下面是只有一个样本的时候的批梯度下降的公式推导。
当有m个样本时,在学习速率后面做一个累加即可。
如果是随机梯度下降,每次只需要用到一个样本就行了。
(2)正规方程组上一个简单的推导过程。
Q4:如何解决共线性Q5:如何防止过拟合通过添加正则化项来防止过拟合。
(1)Lasso回归使用L1正则化(2)Ridge回归使用L2正则化(3)ElasticNet回归使用L1+L2正则化Lasso回归可以将系数收缩到0,从而达到变量选择的效果,这是一种非常流行的变量选择方法。
多元线性回归推导过程常用算法一多元线性回归详解1此次我们来学习人工智能的第一个算法:多元线性回归.文章会包含必要的数学知识回顾,大部分比较简单,数学功底好的朋友只需要浏览标题,简单了解需要哪些数学知识即可.本章主要包括以下内容数学基础知识回顾什么是多元线性回归多元线性回归的推导过程详解如何求得最优解详解数学基础知识回顾我们知道,y=ax+b这个一元一次函数的图像是一条直线.当x=0时,y=b,所以直线经过点(0,b),我们把当x=0时直线与y轴交点到x轴的距离称为直线y=ax+b图像在x轴上的截距,其实截距就是这个常数b.(有点拗口,多读两遍)截距在数学中的定义是:直线的截距分为横截距和纵截距,横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。
根据上边的例子可以看出,我们一般讨论的截距默认指纵截距.既然已知y=ax+b中b是截距,为了不考虑常数b的影响,我们让b=0,则函数变为y=ax.注意变换后表达式的图像.当a=1时,y=ax的图像是经过原点,与x轴呈45°夹角的直线(第一,三象限的角平分线),当a的值发生变化时,y=ax 的图像与x轴和y轴的夹角也都会相应变化,我们称为这条直线y=ax的倾斜程度在发生变化,又因为a是决定直线倾斜程度的唯一的量(即便b不等于0也不影响倾斜程度),那么我们就称a为直线y=ax+b的斜率.斜率在数学中的解释是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量.还是y=ax+b,我们知道这个函数的图像是一条直线,每个不同的x对应着直线上一点y.那么当自变量x的值变化的时候,y值也会随之变化.数学中我们把x的变化量成为Δx,把对应的y的变化量成为Δy,自变量的变化量Δx与因变量的变化量Δy的比值称为导数.记作y'.y'=Δy-Δx常用的求导公式在这部分不涉及,我们用到一个记住一个即可.4-矩阵和向量什么是向量:向量就是一个数组.比如[1,2,3]是一个有三个元素的向量.有行向量和列向量之分,行向量就是数字横向排列:X=[1,2,3],列向量是数字竖向排列,如下图什么是矩阵:矩阵就是元素是数组的数组,也就是多维数组,比如[[1,2,3],[4,5,6]]是一个两行三列的矩阵,也叫2*3的矩阵. 行代表内层数组的个数,列代表内层数组的元素数.一个矩阵中的所有数组元素相同.5-向量的运算:一个数乘以一个向量等于这个数同向量中的每个元素相乘,结果还是一个向量.2 * [1,2,3] = [2,4,6]一个行向量乘以一个列向量,是两个向量对位相乘再相加,结果是一个实数.= 11 + 22 + 3*3 = 14附加:转置转置用数学符号T来表示,比如W向量的转置表示为.转置就是将向量或者矩阵旋转九十度.一个行向量的转置是列向量,列向量的转置是行向量.一个m*n的矩阵转置是n*m的矩阵.注:以上概念完全是为了读者能容易理解,并不严谨,若想知道上述名词的严谨解释,请自行百度.什么是多元线性回归我们知道y=ax+b是一元一次方程,y=ax1+bx2+c(1和2是角标,原谅我的懒)是二元一次方程.其中,"次"指的是未知数的最大幂数,"元"指的是表达式中未知数的个数(这里就是x的个数).那么"多元"的意思可想而知,就是表达式中x(或者叫自变量,也叫属性)有很多个.当b=0时,我们说y=ax,y和x的大小始终符合y-x=a,图像上任意一点的坐标,y值都是x值的a倍.我们把这种横纵坐标始终呈固定倍数的关系叫做"线性".线性函数的图像是一条直线.所以我们知道了多元线性回归函数的图像一定也是一条直线.现在我们知道了多元线性回归的多元和线性,而回归的概念我们在人工智能开篇(很简短,请点搜索"回归"查看概念)中有讲述,所以多元线性回归就是:用多个x(变量或属性)与结果y的关系式来描述一些散列点之间的共同特性.这些x和一个y关系的图像并不完全满足任意两点之间的关系(两点一线),但这条直线是综合所有的点,最适合描述他们共同特性的,因为他到所有点的距离之和最小也就是总体误差最小.所以多元线性回归的表达式可以写成:y= w0x0 + w1x1 + w2x2 + . + wnxn (0到n都是下标哦)我们知道y=ax+b这个线性函数中,b表示截距.我们又不能确定多元线性回归函数中预测出的回归函数图像经过原点,所以在多元线性回归函数中,需要保留一项常数为截距.所以我们规定 y= w0x0 + w1x1 + w2x2 + . + wnxn中,x0=1,这样多元线性回归函数就变成了: y= w0 + w1x1 + w2x2 + . + wnxn,w0项为截距.如果没有w0项,我们 y= w0x0 + w1x1 + w2x2 + . + wnxn就是一个由n+1个自变量所构成的图像经过原点的直线函数.那么就会导致我们一直在用一条经过原点的直线来概括描述一些散列点的分布规律.这样显然增大了局限性,造成的结果就是预测出的结果函数准确率大幅度下降.有的朋友还会纠结为什么是x0=1而不是x2,其实不管是哪个自变量等于1,我们的目的是让函数 y= w0x0 + w1x1 + w2x2 + . + wnxn编程一个包含常数项的线性函数.选取任何一个x都可以.选x0是因为他位置刚好且容易理解.多元线性回归的推导过程详解1-向量表达形式我们前边回顾了向量的概念,向量就是一个数组,就是一堆数.那么表达式y= w0x0 + w1x1 + w2x2 + . + wnxn是否可以写成两个向量相乘的形式呢?让我们来尝试一下.假设向量W= [w1,w2.wn]是行向量,向量X= [x1,x2.xn],行向量和列向量相乘的法则是对位相乘再相加, 结果是一个实数.符合我们的逾期结果等于y,所以可以将表达式写成y=W * X.但是设定两个向量一个是行向量一个是列向量又容易混淆,所以我们不如规定W和X都为列向量.所以表达式可以写成 (还是行向量)与向量X 相乘.所以最终的表达式为:y= * X,其中也经常用θ(theta的转置,t是上标)表示.此处,如果将两个表达式都设为行向量,y=W * 也是一样的,只是大家为了统一表达形式,选择第一种形式而已.2-最大似然估计最大似然估计的意思就是最大可能性估计,其内容为:如果两件事A,B 相互独立,那么A和B同时发生的概率满足公式P(A , B) = P(A) * P(B)P(x)表示事件x发生的概率.如何来理解独立呢?两件事独立是说这两件事不想关,比如我们随机抽取两个人A和B,这两个人有一个共同特性就是在同一个公司,那么抽取这两个人A和B的件事就不独立,如果A和B没有任何关系,那么这两件事就是独立的.我们使用多元线性回归的目的是总结一些不想关元素的规律,比如以前提到的散列点的表达式,这些点是随机的,所以我们认为这些点没有相关性,也就是独立的.总结不相关事件发生的规律也可以认为是总结所有事件同时发生的概率,所有事情发生的概率越大,那么我们预测到的规律就越准确.这里重复下以前我们提到的观点.回归的意思是用一条直线来概括所有点的分布规律,并不是来描述所有点的函数,因为不可能存在一条直线连接所有的散列点.所以我们计算出的值是有误差的,或者说我们回归出的这条直线是有误差的.我们回归出的这条线的目的是用来预测下一个点的位置.考虑一下,一件事情我们规律总结的不准,原因是什么?是不是因为我们观察的不够细或者说观察的维度不够多呢?当我们掷一个骰子,我们清楚的知道他掷出的高度,落地的角度,反弹的力度等等信息,那上帝视角的我们是一定可以知道他每次得到的点数的.我们观测不到所有的信息,所以我们认为每次投骰子得到的点数是不确定的,是符合一定概率的,未观测到的信息我们称为误差.一个事件已经观察到的维度发生的概率越大,那么对应的未观测到的维度发生的概率就会越小.可以说我们总结的规律就越准确.根据最大似然估计P(y) = P(x1,x2 . xn)= P(x1) * P(x2) . P(xn)当所有事情发生的概率为最大时,我们认为总结出的函数最符合这些事件的实际规律.所以我们把总结这些点的分布规律问题转变为了求得P(x1,x2 . xn)= P(x1) * P(x2) . P(xn)的发生概率最大.3-概率密度函数数学中并没有一种方法来直接求得什么情况下几个事件同时发生的概率最大.所以引用概率密度函数.首先引入一点概念:一个随机变量发生的概率符合高斯分布(也叫正太分布).此处为单纯的数学概念,记住即可.高斯分布的概率密度函数还是高斯分布.公式如下:公式中x为实际值,u为预测值.在多元线性回归中,x就是实际的y,u 就是θ * X.既然说我们要总结的事件是相互独立的,那么这里的每个事件肯定都是一个随机事件,也叫随机变量.所以我们要归纳的每个事件的发生概率都符合高斯分布.什么是概率密度函数呢?它指的就是一个事件发生的概率有多大,当事件x带入上面公式得到的值越大,证明其发生的概率也越大.需要注意,得到的并不是事件x发生的概率,而只是知道公式的值同发生的概率呈正比而已.如果将y= θT* X中的每个x带入这个公式,得到如下函数求得所有的时间发生概率最大就是求得所有的事件概率密度函数结果的乘积最大,则得到:求得最大时W的值,则总结出了所有事件符合的规律.求解过程如下(这里记住,我们求得的是什么情况下函数的值最大,并不是求得函数的解):公式中,m为样本的个数,π和σ为常数,不影响表达式的大小.所以去掉所有的常数项得到公式:因为得到的公式是一个常数减去这个公式,所以求得概率密度函数的最大值就是求得这个公式的最小值.这个公式是一个数的平方,在我国数学资料中把他叫做最小二乘公式.所以多元线性回归的本质就是最小二乘.J(w)′=2(Y?Xw)TXJ(w)^{#x27;}=2(Y-Xtextbf{w})^TXJ(w)′=2(Y?Xw )TXSystem.out.print("("+xy[0]+",");X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列。
耿老师总结的高考统计部分的两个主要公式
的具体如何利用之杨若古兰创作
第一公式:
(1)
(2)
(
3)
法
代入数据)
法
微简单些)
(4)
求
不做区分)
0 1 2 3
1 3 5 7
解:(1
(2
(3
法
法
(4)求
第二公式:独立性检验
两个分类变量的独立性检验:
留意:数据a
数据b
数据
c
d
且列出表格是最主要.解题步调如下
第一步:提出假设检验成绩
(普通假设两个变量不相干)
第二步:列出上述表格 第三步:计算检验的目标
总计
计
第四步:查表得出结论
上述结论都是概率性总结.切记事实结论.只是大概行描述.具体发生情况要和实际联系!!!!。
回归方程式
回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。
1、回归直线方程可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。
线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。
按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
2、回归方程是对变量之间统计关系进行定量描述的一种数学表达式。
线性回归模型,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。
3、最小二乘法又称最小平方法,是一种数学优化技术。
与最小二乘法不同的是,最大似然法需要已知这个概率分布函数,这在实践中是很困难的。
一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计相同。
回归方程公式回归方程又称回归模型,是统计学中用来研究变量之间关系的重要理论工具,可以用来解释一个变量如何影响另一个变量的变化的。
一般来说,回归方程包括一个或多个自变量,而这些自变量代表被影响的变量(即因变量)。
回归方程一般有两种形式,一种是线性回归方程,也可以称为一元线性回归方程,这种方程式具有形式:Y=ax+b,其中a和b分别代表斜率和截距,Y代表因变量,x代表自变量。
这种方程式代表了因变量Y与自变量x的线性关系,其中a代表因变量Y随自变量x单位增加而变化的幅度,b代表X取零时的因变量Y的值。
另一种是多元线性回归方程,它可以用以下形式表示:Y=a1x1+a2x2+…+anxn+b,其中Y代表因变量,x1, x2, , xn和b分别代表n个自变量和一个截距,a1, a2,, an分别代表n个自变量的回归系数。
回归方程的应用很广,可以用来解释实际中数据的变化,也可以用来预测未来数据的发展趋势。
它还可以用于挖掘数据中潜在的模式、规律和联系,从而提出有效的策略,协助企业更加清晰地理解市场状况,获得成功。
如果要使用回归方程来分析一定的数据,首先应该考虑的是如何对这些数据进行处理,将其转换为有意义的变量。
其次,需要验证这些变量之间的统计关系,以及回归方程的拟合度,以确保获得的结果是有效的。
最后,要注意回归方程的收敛性和非线性特性,以确保计算精度。
当运用回归方程进行分析时,有以下几点需要注意:首先,要确定数据集的变量,以及它们之间的关系,因为这是计算回归方程的基础;其次,要根据一元线性回归方程或多元线性回归方程,确定回归系数和截距;最后,要计算模型的拟合度,以确定模型的可靠性。
以上就是回归方程的具体内容,回归方程是一个重要的统计学理论工具,有了它,能够更好地分析变量之间的关系及模型的拟合程度,从而有助于我们更有效地完成工作。
残差求回归系数公式推导回归分析中,我们希望通过自变量来预测因变量的变化。
线性回归就是一种基于线性模型的预测方法。
在进行线性回归时,我们需要求出回归系数,以确定预测模型。
在简单线性回归中,回归系数可以使用最小二乘法求解。
但在多元线性回归中,最小二乘法的求解过程变得十分复杂,此时可使用残差求回归系数的方法。
假设我们有n个样本,每个样本有m个自变量和一个因变量。
我们的目标是找到一个预测模型来描述这些自变量与因变量之间的关系。
假设这个预测模型可以写成如下形式:Y = β0 + β1 * X1 + β2 * X2 + … + βm * Xm + ε其中,Y是因变量,X1 ~ Xm是自变量,β0 ~ βm是待求的回归系数,ε是误差项。
我们的任务是求解β0 ~ βm。
我们可以使用最小二乘法,将误差项的平方和最小化,得到如下方程组:∑(Yi - β0 - β1 * X1i - β2 * X2i - … - βm * Xmi)² = min对上式进行拆分,可以得到:(Y1 - β0 - β1 * X11 - β2 * X21 - … - βm * Xm1)² + (Y2 - β0 - β1* X12 - β2 * X22 - … - βm * Xm2)² + … + (Yn - β0 - β1 * X1n -β2 * X2n - … - βm * Xmn)² = min令上式对β0、β1、β2、…、βm的偏导数均为0,即可解得最优解。
但这种方法只对少量自变量有效,如果自变量的数量很多,那么解方程组的代价将变得非常大。
此时,我们可以使用残差求回归系数的方法。
残差是指实际观测值和预测值之间的差值,即ε = Y -Y_predicted。
在残差求回归系数的方法中,我们将方程转化成求解残差的最小平方和的问题,即:∑(Yi - Y_predictedi)² = min由于预测值可表示为:Y_predicted = β0 + β1 * X1 + β2 * X2 + … + βm * Xm我们希望通过最小化残差平方和来得到最优的β0 ~ βm,即:β0, β1, β2, … , βm = argmin∑(Yi - (β0 + β1 * X1i + β2 * X2i + … + βm * Xmi))²这里的argmin表示对于方程中的自变量进行最小化,而对于这种求解方法,其表达式可以表示为:β = (XTX)⁻¹XTY其中,X为m x n的自变量数据矩阵,Y为n x 1的因变量数据向量,XT为X的转置矩阵,(XTX)⁻¹为XTX的逆矩阵,β为m x 1的回归系数向量。
线性回归之最小二乘法推导及python实现线性回归、加权线性回归及岭回归的原理和公式推导- 线性回归- 加权线性回归机器学习相关的博文相信已经很多了,作为机器学习的一枚菜鸟,写这篇博文不在于标新立异,而在于分享学习,同时也是对自己研究生生涯的总结和归纳,好好地把研究生的尾巴收好。
想着比起出去毕业旅行,在实验室总结一下自己的所学,所想,所感应该更有意义吧。
(其实也想出去玩,但是老板要求再出一篇文章,那只好和毕业旅行拜拜了,所以趁机写个系列吧,反正后面的时间应该就是文章+博客的双重循环了,其实也是挺美的哈)学习机器学习的小心得:脑袋中一定要有矩阵、向量的概念,这一点非常重要,因为我们现在处理的数据是多维的数据,所以可能无法非常直观的来表述我们的数据,所以大脑中一定要有这样的概念。
然后就是Coding再Coding,这一点自己也没做好啦,惭愧。
线性回归回归的目的就是对给定的数据预测出正确的目标值,分类的目的是对给定的数据预测出正确的类标,要注意区分这两个概念,其实我在刚接触机器学习的时候经常把这两个概念弄混。
那么,对于线性回归,就是实现对给定数据目标值的预测过程。
那么对于给定的训练数据X=[x#x2192;1,x#x2192;2,#x2026;,x#x2192;m]T" role="presentation" style="position: relative;">X=[x? 1,x? 2, (x)m]TX=[x→1,x→2,…,x→m]TX = [vec{x}_1, vec{x}_2, dots, vec{x}_m]^{T},其中x#x2192;i={xi1,xi2,xi3,#x2026;,xin}T" role="presentation" style="position: relative;">x? i={xi1,xi2,xi3,…,xin}Tx→i={xi1,xi2,xi3,…,xin}Tvec{x}_i = {x_{i1}, x_{i2}, x_{i3}, dots, x_{in}}^{T}。
对应的,这些训练数据的目标值是y#x2192;={y1,y2,y3,#x2026;,ym}" role="presentation" style="position: relative;">y? ={y1,y2,y3,…,ym}y→={y1,y2,y3,…,ym}vec{y} = {y_1, y_2, y_3, dots, y_m}。
一般的,我们通过所给定的训练数据及对应的目标值来求解线性回归的参数#x03B8;#x2192;={#x03B8;1,#x03B8;2,#x03B8;3,#x2026;,#x03B8;n}T" role="presentation" style="position: relative;">θ? ={θ1,θ2,θ3,…,θn}Tθ→={θ1,θ2,θ3,…,θn}Tvec{theta} = {{theta}_1, {theta}_2, {theta}_3, dots, {theta}_n}^{T}。
具体的,我们通过定义损失函数Jx#x2192;i(#x03B8;#x2192;)" role="presentation" style="position: relative;">Jx? i(θ? )Jx→i(θ→)J_{vec{x}_i}(vec{theta})来实现对线性回归参数的求解,损失函数定义如下:(1)Jx#x2192;i(#x03B8;#x2192;)=12(x#x2192;iT#x03B8;#x2212;yi) 2" role="presentation" style="position: relative;">Jx?i(θ? )=12(x? Tiθ?yi)2(1)(1)Jx→i(θ→)=12(x→iTθ?yi)2 begin{equation}J_{vec{x}_i}(vec{theta}) = frac{1}{2}(vec{x}^T_itheta - y_i)^2 end{equation}记住,在机器学习里面,向量的默认是列向量形式,所以上述的T" role="presentation" style="position: relative;">TTT表示转置,因为我们写的时候写成了横向量的形式。
同样在做向量乘积运算时,也应该对左边的向量加上转置,这样向量乘积才会得到一个值。
那么要最小化这个损失函数,我们可以采用随机梯度下降(Stochastic Gradient Descent)或者批梯度下降(Batch Gradient Descent),那么对参数向量#x03B8;#x2192;" role="presentation" style="position: relative;">θ? θ→vec{theta}中的每一维参数求偏导,再根据学习率来进行参数地更新,具体如下:(2)#x2202;Jx#x2192;i(#x03B8;#x2192;)#x2202;#x03B8;j=2#x00D7; 12#x00D7;(x#x2192;iT#x03B8;#x2212;yi)#x00D7;xij=(x#x2192;iT#x03 B8;#x2212;yi)#x00D7;xij" role="presentation" style="position: relative;">?Jx? i(θ? )?θj=2×12×(x? Tiθ?yi)×xij=(x? Tiθ?yi)×xij(2)(2)?Jx→i(θ→)?θj=2×12×(x→iTθ?yi)×xij=(x →iTθ?yi)×xijbegin{equation}begin{split}frac{partial J_{vec{x}_i}(vec{theta})}{partial {theta}_j}&=2times frac{1}{2}times(vec{x}^T_itheta - y_i) times {x_{ij}} &=(vec{x}^T_itheta - y_i) times {x_{ij}}end{split}end{equation}那么,对于参数#x03B8;j" role="presentation" style="position: relative;">θjθj{theta}_j的更新,批梯度下降算法如下所示:Repeat until convergence{#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#x03B8;j=#x03 B8;j#x2212;#x03B7;1m#x2211;i=1m((x#x2192;iT#x03B8;#x2212;yi)#x0 0D7;xij)" role="presentation" style="position: relative;"> θj=θj?η1m∑mi=1((x? Tiθ?yi)×xij) θj=θj?η1m∑i=1m((x→iTθ?yi)×xij)~~~~~~~~~~theta_j = {theta}_j - etafrac{1}{m}sum_{i = 1}^{m}((vec{x}^T_itheta - y_i) times {x_{ij}}) (for every #x03B8;j" role="presentation" style="position: relative;">θjθjtheta_j)其中,#x03B7;" role="presentation" style="position: relative;">ηηeta表示学习率。
而对于随机梯度下降,算法如下所示:for i = 1 to m{#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;" role="presentation" style="position: relative;"> ~~~~~~for j = 1 to n{ #xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;#x03B8;j=#x03B8;j#x2212;#x03B7;((x#x2192;iT#x03B8;#x2212;yi)#x0 0D7;xij)" role="presentation" style="position: relative;"> θj=θj?η((x? Tiθ?yi)×xij) θj=θj?η((x→iTθ?yi)×xij)~~~~~~~~~~~~theta_j = {the ta}_j - eta((vec{x}^T_itheta - y_i) times {x_{ij}})#xA0;#xA0;#xA0;#xA0;#xA0;#xA0;" role="presentation" style="position: relative;"> ~~~~~~}关于上述两种梯度下降法的区别这里就不详细说明了,这不是本小节讨论的重点,大家可以查阅相关的博客或者书籍。
(机器学习可是系统工程啊,要懂得方方面面,菜鸟到专家可得一步一个脚印呢)上述是基于梯度来求解回归系数的,下面给出基于矩阵求解回归系数的办法,这里不需要多次迭代求解,对于训练数据量少时较为实用。
首先,给出矩阵形式的损失函数:J(#x03B8;#x2192;)=12(X#x03B8;#x2192;#x2212;y#x2192;)T(X#x03B 8;#x2192;#x2212;y#x2192;)=12(#x03B8;#x2192;TXTX#x03B8;#x2192;#x 2212;#x03B8;#x2192;TXTy#x2192;#x2212;y#x2192;TX#x03B8;#x2192;+y #x2192;Ty#x2192;)=12tr(#x03B8;#x2192;TXTX#x03B8;#x2192;#x2212;# x03B8;#x2192;TXTy#x2192;#x2212;y#x2192;TX#x03B8;#x2192;+y#x2192 ;Ty#x2192;)=12(tr(#x03B8;#x2192;TXTX#x03B8;#x2192;)#x2212;2tr(y #x2192;TX#x03B8;#x2192;)+y#x2192;Ty#x2192;)" role="presentation" style="text-align: center; position: relative;">J(θ? )=12(Xθ? ?y? )T(Xθ? ?y? )=12(θ? TXTXθ? ?θ?TXTy? ?y? TXθ? +y? Ty? )=12tr(θ? TXTXθ? ?θ? TXTy? ?y? TXθ? +y? Ty? )=12(tr(θ? TXTXθ? )?2tr(y? TXθ? )+y? Ty? )J(θ→)=12(Xθ→?y→)T(Xθ→?y→)=12(θ→TXTXθ→?θ→TXTy →?y→TXθ→+y→Ty→)=12tr(θ→TXT Xθ→?θ→TXTy→?y→TXθ→+y→Ty→)=12(tr(θ→TXTXθ→)?2tr(y→TXθ→)+y→Ty→)begin{split}J(vec{theta}) &= frac{1}{2}(Xvec{theta} - vec{y})^T(Xvec{theta} - vec{y})&=frac{1}{2}(vec{theta}^TX^TXvec{theta} - vec{theta}^TX^Tvec{y} - vec{y}^TXvec{theta} + vec{y}^Tvec{y}) &=frac{1}{2}tr(vec{theta}^TX^TXvec{theta} - vec{theta}^TX^Tvec{y} - vec{y}^TXvec{theta} + vec{y}^Tvec{y}) &=frac{1}{2}(tr(vec{theta}^TX^TXvec{theta}) - 2tr(vec{y}^TXvec{theta}) + vec{y}^Tvec{y})end{split}其中,tr" role="presentation" style="position: relative;">trtrtr表示矩阵的Trace operator,暂时不知道如何翻译。