波导光学讲稿1-1 (1)
- 格式:ppt
- 大小:4.03 MB
- 文档页数:50
波动光学第一节 光的干涉一、光波的相干叠加1、光波叠加原理:每一点的光矢量等于各列波单独传播时在该点的光矢量的矢量和。
2、光波与机械波相干性比较:(1)相同点:相干条件、光强分布。
(2)不同点:发光机制不同。
3、从普通光获得相干光的方法:(1)分波阵面法:将同一波面上不同部分作为相干光源。
(2)分振幅法:将透明薄膜两个面的反射(透射)光作为相干光源。
4、光程与光程差:(1)光程:即等效真空程:Δ=几何路程×介质折射率。
(2)光程差:即等效真空程之差。
5、光程差引起的相位差:Δφ=φ2-φ1+λ∆∏2,Δ为光程差,λ为真空中波长。
(1)Δφ=2k ∏时,为明纹。
(2)Δφ=(2k+1)∏时,为暗纹。
6、常见情况:(1)真空中加入厚d 的介质,增加(n-1)d 光程。
(2)光由光疏介质射到光密介质界面上反射时附加λ/2光程。
(3)薄透镜不引起附加光程。
二、分波面两束光的干涉1、杨氏双缝实验:(1)Δ=±k λ时,(k=0,1,2,3……)为明纹。
Δ=±(2k-1)2λ时,(k=1,2,3……)为暗纹。
(2)x=λdD k ±时,为明纹。
x=2)12(λd D k -±时,为暗纹。
(k=0,1,2,……) (3)条纹形态:平行于缝的等亮度、等间距、明暗相间条纹。
(4)条纹亮度:Imax=4I1,Imin=0.(5)条纹宽度:λdD x =∆. 2、其他分波阵面干涉:菲涅耳双棱镜、菲涅耳双面镜。
三、分振幅干涉1、薄膜干涉:2sin 222122λ+-=i n n e Δ反(2λ项:涉及反射,考虑有无半波损失) 透Δi n n e 22122sin 2-=(无2λ项) 讨论:(1)反Δ/透Δ=k λ时,(k=1,2,3……)为明纹,(2k+1)2λ时,(k=0,1,2……)为暗纹。
(2)等倾干涉:e 一定,Δ随入射角i 变化。
(3)等厚干涉:i 一定,Δ随薄膜厚度e 变化。
第二章 从Maxwell 方程组到光波导理论【问题】光是如何在介质或波导中传播的?满足什么规律?§2.1 Maxwell 方程组光是一种特殊波段的电磁波,满足Maxwell 方程组2.1.1 Maxwell 方程组Maxwell 方程组微分形式电流连续方程物质方程【问题】Maxwell 方程组形式复杂(E ,D ,B ,H 都是r ,t 的函数,Maxwell 方程组为四元一阶偏微分方程组),求解难度大,如何简化?非磁性介质0=MH B 0μ= 电各向异性介质均匀、各向同性、线性介质E D r εε0=空间上得到简化,并使方程中只含有E ,H (D ,B 与E ,H 满足线性关系,Maxwell 方程组简化为二元一阶偏微分方程组)定态波假设(分离变量)傅立叶变换(复色、单色、准单色光源) 频域中的Maxwell 方程组时间上得到简化,场量的振幅只与r 有关【问题】实际情况中介质性质可能出现跃变,应该如何处理?不同位置的场量是否存在联系?2.1.2 电磁场边界条件Maxwell 方程组积分形式边界条件非导电介质(良好介质)表面的边界条件边值定解,解的唯一性界面附近的场量存在联系.E ,H 切向连续;D ,B 法向连续【问题】如何将二元一阶偏微分方程组化简为一元偏微分方程2.1.3 Helmholtz方程良好介质中,Helmholtz方程(线性、均匀、各向同性)时域及频域表达式【*问题】实际情况中介质性质可能连续变化,应该如何处理?非均匀介质中的Helmholtz方程缓变介质中的Helmholtz方程的简化形式,弱导条件总结,Helmholtz方程是光波导理论的出发点;二元一阶偏微分方程组化简为两个一元二阶偏微分方程(波动方程)【*问题】E,H都是矢量,即两个一元偏微分方程都等价于三个三元标量偏微分方程组,如何进一步化简?【问题】波动方程求解难度仍然较大。
是否能进一步简化?如何建立模型?需要满足什么条件?从Helmholtz方程可以看出,光波解的最简单形式为简谐波。
导波光学复习资料导波光学复习资料光学是研究光的传播和相互作用的学科,而导波光学则是光学的一个重要分支,主要研究光在导波结构中的传播和调控。
导波光学在光通信、光传感、光计算等领域中具有重要应用价值。
本文将从导波光学的基本原理、光波的导波特性以及导波光学器件的设计与应用等方面进行复习,帮助读者更好地理解和掌握导波光学的知识。
一、导波光学的基本原理导波光学是建立在电磁波的导波特性基础上的,它利用导波结构的特殊性质,将光束限制在一个特定的区域内传播。
导波光学的基本原理包括两个方面:波导的模式和波导的耦合。
1. 波导的模式波导的模式是指光在波导中传播时的特征模式。
常见的波导模式有基本模式、高阶模式和混合模式等。
基本模式是波导中传播损耗最小的模式,通常是设计和应用中的首选。
2. 波导的耦合波导的耦合是指将光束从一个波导传输到另一个波导的过程。
常见的耦合方式有直接耦合、光栅耦合和光纤耦合等。
不同的耦合方式适用于不同的导波结构和应用场景。
二、光波的导波特性了解光波的导波特性对于理解和设计导波光学器件至关重要。
光波的导波特性主要包括波导的传输特性和波导的耦合特性。
1. 波导的传输特性波导的传输特性是指光在波导中传播时的衰减和相位变化等特性。
波导的传输特性与波导的结构参数、材料特性以及光波的波长等因素密切相关。
了解波导的传输特性可以帮助我们优化波导的设计,提高光的传输效率。
2. 波导的耦合特性波导的耦合特性是指光束从一个波导传输到另一个波导时的损耗和效率等特性。
波导的耦合特性与波导之间的距离、耦合方式以及波导的模式等因素有关。
通过合理设计波导的耦合结构,可以实现高效的光耦合,提高光学器件的性能。
三、导波光学器件的设计与应用导波光学器件是利用导波结构的特殊性质实现对光的调控和处理的器件。
常见的导波光学器件包括波导耦合器、光调制器、光开关等。
1. 波导耦合器波导耦合器是将光束从一个波导传输到另一个波导的器件。
常见的波导耦合器有直接耦合器、光栅耦合器和光纤耦合器等。