织物保温性能测试实验方法
- 格式:pdf
- 大小:378.98 KB
- 文档页数:2
纺织服装导热与保温测试方法适用标准:GB11048-89纺织纤维的导热性可用热导率(导热系数)表示,已经测得几种纤维的热导率见下表:纤维种类热导率[λ= W/(m×℃)] 纤维种关热导率[λ= W/(m×℃)] 棉0.071-0.073 涤纶0.084羊毛0.052-0.055 腈纶0.051蚕丝0.050-0.055 丙纶0.221-0.302粘胶0.055-0.071 氯纶0.042锦纶0.209-0.337水的热导率为0.599,空气的热导率为0,026.能保证空气静止而不对流的情况下纤维集合体中空隙越多,热导率越小.但当空隙大到足以引起对流时热导率要变大.随着含潮率的提高纤维的热导率增大.导热小的材料保暖性好,保暖性测试可根据织物包覆容器中热水降低一定温度所需的时间来测定,也可以在定时条件下,按温度下降度数来计算.热导率是指;当材料厚度为1m,表面之间的温度差为1℃时,1s钟内,通过1m2材料传导的热量焦数计算公式:Q×Dλ = ----------Δt×H×A式中;λ---热导率[W/(m×℃)]Q ---传导的热量(J)D ---材料的厚度(M)Δt---温差(℃)H ---传导热量的时间(s)A ---材料的面积(m2)织物大多用传热系数K来衡量导热性能,它是以织物两面温差为1℃,1秒内通过1平方米的热量焦数,单位为瓦每平方米摄氏度[W/(m2×℃)],国际上多用K的倒数--热绝缘值(Iclo)来表示,单位为克罗(clo),它有利于正确表达各种纺织材料导热性的差异对于服装较有实用意义.测试器材与条件:用试样缝制成筒,紧套在金属罐外(可用易拉罐代替),罐中盛热水(80℃,500ml),罐的上下端均用泡沫塑料保温圈封盖(上盖有紧插温度计的孔),仅使园柱体传导散热,置于40℃恒温箱内,根据材质保温性的好坏(估计能以降至60℃上下为度),以此来确定好时间(但以小于30分钟为好).对比不同试样放置一定时间后的水温,按上式计算织物的导热系数,和克罗值.。
纺织品保暖性测试标准纺织品的保暖性是指其在低温环境下对人体的保温效果,是衡量纺织品保暖性能的重要指标。
为了确保纺织品在不同环境条件下的保暖性能符合要求,需要进行相应的测试和评价。
本文将介绍纺织品保暖性测试的标准和方法。
首先,纺织品保暖性测试的标准主要包括国际标准和国家标准。
国际上常用的纺织品保暖性测试标准包括ISO 11092:2014《纺织品-确定织物和服装的保温性能的方法,皮肤模拟温度下的相对保温性能》和ASTM F1291-16《纺织品的保暖性能测定方法》等。
而国内常用的标准包括GB/T 11048-2008《纺织品保暖性能测定湿热环境下人体模拟法》和GB/T 21778-2008《纺织品保暖性能测定干燥条件下人体模拟法》等。
这些标准详细规定了纺织品保暖性能测试的方法、仪器设备、测试条件和评定要求,确保了测试结果的准确性和可比性。
其次,纺织品保暖性测试的方法主要包括干燥条件下人体模拟法和湿热环境下人体模拟法。
干燥条件下人体模拟法是指将测试样品与人体模拟器放置在干燥的环境中,通过测量人体模拟器表面的温度变化来评定纺织品的保暖性能。
而湿热环境下人体模拟法是指将测试样品与人体模拟器放置在湿热的环境中,通过模拟人体在运动时产生的汗水蒸发来评定纺织品的保暖性能。
这两种方法能够全面评定纺织品在不同环境条件下的保暖性能,具有很高的实用性和准确性。
另外,纺织品保暖性测试中需要注意的是测试条件的控制。
在进行测试时,需要严格控制环境温度、湿度和风速等因素,以确保测试结果的准确性和可比性。
同时,还需要注意测试样品的准备和处理,避免外界因素对测试结果的影响。
只有在严格控制测试条件的前提下,才能得到准确可靠的测试结果。
综上所述,纺织品保暖性测试标准的制定和方法的选择对于评定纺织品的保暖性能至关重要。
只有严格遵循相关标准和方法,才能得到准确可靠的测试结果,为纺织品的设计和生产提供科学依据。
希望本文能够对纺织品保暖性测试感兴趣的读者有所帮助。
热防护服织物性能实验测试分析热防护服是各类防护服中应用最为广泛的品种之一, 可以保护人体免受各种热的伤害, 如对流热、传导热、辐射热等,它必须具有在高温下保护人体的功能,因此,它的热防护性能始终是人们关注的焦点。
用于热防护服的外层织物的热防护性能对于防护服的整体热防护性非常重要。
TPP 值是织物对热辐射和热对流综合作用的热防护能力, 它可以直接反映试样的热防护性能。
本文通过TPP 实验测试,就织物燃烧前后质量损失、厚度、面密度与TPP 值的关系进行了探讨。
一、实验部分1.1 材料选择13 种可用作热防护服外层的织物。
织物成分、比例、组织结构、厚度及面密度等参数见表1 。
1.2 测试方法TPP 实验已得到了ASTM 、ISO 及NFPA 的认可。
这种测试方法是将试样水平放置在特定的热源上面, 在规定距离内, 热源以2 种不同的传热形式———热对流和热辐射出现。
置于试样另一侧的铜片热流计可测量试样背面的温度。
要求火焰与试样直接接触,使到达织物表面的热流量达到84 kW m2,用试样后面的铜片热流计测量其温升曲线并与Stoll标准曲线比较得到二级烧伤所需时间t2 , 并与暴露热能量q 相乘得TPP 值, 其计算式为TPP =t 2 q (1)式中:q 为规定辐射热流量(84 kW m2);t 2 为引起二度烧伤所需要的时间,s 。
采用CSI-206 热防护性能测试仪, 按NFPA1976标准测试TPP 值。
试样尺寸为150 mm×150 mm。
对13 种面料进行测试,总热流量为(83 ±4)kW m2, 燃烧时间设为20 s(根据经验设定)。
测定燃烧前后织物的质量, 然后计算各试样的质量损失,计算公式为质量损失=(燃烧前质量-燃烧后质量) 燃烧前质量×100 % (2)。
二、实验结果与分析2.1 质量损失及织物参数与TPP 值的关系13 种试样的TPP 实验结果见表2 。
家用纺织品保暖性能测试与评价1范围本文件规定了家用纺织品保暖性能的测试和评价方法。
本文件适用于覆盖类平面状家用纺织品(如:被、被芯、毯、绗缝制品等)。
2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T6529纺织品调湿和试验用标准大气GB/T8170数值修约规则与极限数值的表示和判定ISO15831服装生理舒适性基于暖体假人的热阻测定方法(Clothing-Physiological effects-Measurement of thermal insulation by means of a thermal manikin)3术语和定义下列术语和定义适用于本文件。
3.1热阻thermal resistanceRct试样两面的温差与垂直通过试样的单位面积热流量之比。
注1:该热流量可能包括传导、对流、辐射中的一种或多种形式。
注2:热阻以平方米开尔文每瓦(m2·K/W)为单位。
[来源:GB/T11048-2018,2.1,有修改]3.2固有热阻intrinsic thermal resistance由试样材料本身的传热性能决定的热阻(3.1)。
3.3综合热阻comprehensive thermal resistance人体使用覆盖类平面状家用纺织品时,包含枕头、床垫在内的综合隔热性能。
3.4暖体假人thermal manikin用于测量在稳态条件下通过被类试样的热传递,模拟人体体型和产热的人体模型。
[来源:GB/T38426-2019,3.5,有修改]3.5最低舒适使用温度minimum comfortable use temperature舒适使用温度的下限值。
3.6被(芯)quilt有两层织物与中间填充物以适当的方式缝制成,用于保暖的床上用品。
服装理化性能的检验方法1 范围本标准规定了服装及服饰产品理化性能检验的取样方法、测试设备、测试方法等。
本标准适用于服装及服饰产品的理化性能技术指标的检验。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB 18401 国家纺织产品基本安全技术规范GB/T 2910 纺织品二组分纤维混纺产品定量化学分析方法GB/T 2911 纺织品三组分纤维混纺产品定量化学分析方法GB/T 2912.1 纺织品甲醛的测定第1部分:游离水解的甲醛(水萃取法)GB/T 3917.1 纺织品织物撕破性能第1部分:撕破强力的测定冲击摆锤法GB/T 3917.2 纺织品织物撕破性能第2部分:舌形试样撕破强力的测定GB/T 3917.3 纺织品织物撕破性能第3部分:梯形试样撕破强力的测定GB/T 3920 纺织品色牢度试验耐摩擦色牢度GB/T 3921.1 纺织品色牢度试验耐洗色牢度GB/T 3921.3 纺织品色牢度试验耐洗色牢度GB/T 3922 纺织品色牢度试验耐汗渍色牢度GB/T 5453 纺织品织物透气性的测定GB/T 5455 纺织品燃烧性能试验垂直法GB/T 5711 纺织品色牢度试验耐干洗色牢度GB/T 5713 纺织品色牢度试验耐水洗色牢度GB/T 6152 纺织品色牢度试验耐热压色牢度GB/T 7573 纺织品水萃取液pH值的测定GB/T 8427 纺织品耐光色牢度试验方法:氙弧GB/T 8629 纺织品试验用家庭洗涤和干燥程序GB/T 11048 纺织品保温性能试验方法GB/T 12704 织物透湿量测定方法透湿杯法GB/T 14644 纺织品燃烧性能45°方向燃烧速率测定GB/T 17592.1 纺织品禁用偶氮染料检测方法第1部分:气相色谱/质谱法GB/T 17593 纺织品重金属离子检测方法原子吸收分光光度法GB/T 18886 纺织品色牢度试验耐唾液色牢度FZ/T 01026 纺织品四组分纤维混纺产品定量化学分析方法FZ/T 01057 纺织纤维鉴别试验方法3 色牢度的测试3.1 取样在成品未覆粘合衬部位(包含所有色泽和花型)截取尺寸为40mm×100mm的试样若干,并与规定的贴衬织物制成试验用组合试样。
织物保温性能探究服装的热传递基本上可分为两种:显热传递,即人体温度和外界环境存在差异可产生的热量传递,它主要通过热传导、对流和辐射完成;潜热传递,即由于人体与外界环境之问的蒸汽浓度差而产生的湿热传递,它主要通过蒸发和排汗来完成。
随着服装的时装化,仅通过增加或降低织物厚度来维持人体适宜的温度,不但麻烦而且困难,也不美观。
因此,90年代以来,新型保温调温纤维和织物的开发研制骤然兴起。
各种新型的保温调温纺织品相继问世,例如远红外纤维、降温织物、在原丝液中添加特殊的陶瓷粉末或涂层法将陶瓷粉末涂布在织物上。
最近,一种新的方法——微胶囊技术,应用到了开发蓄热调温纺织品上。
一、蓄热调温纺织品的介绍1、蓄热调温纺织品是一种通过纺织品表面或纤维内含有的相变物质遇冷、热后发生固一液可逆相变而吸收、放出热量,从而具有温度调节功能的新型高技术纺织品。
这类纺织品能够根据外界环境温度的变化在一定的湿度范围内可自由调节纺织品内部温度,即当外界环境温度升高时,可以储存能量,使纺织品内部温度升高相对较低;当外界环境温度下降时,可以释放能量,使纺织品内部温度降低相对较少,做成服装后比平常纺织品更具有舒适性。
蓄热调温纺织品研制所使用的相变物质的相交温度通常在0~50℃。
利用相变物质的吸放热特性将其加工到纺织材料上可以获得意想不到的效果。
80年代中期,各国研究人员先后采用多种工艺路线研制开发蓄热调温纺织品,我国自90年代初开始蓄热调温纺织品的研究,现已取得了很大成绩。
20世纪80年代中期,美国NASA开始资助具有温度调节功能的纺织品的研究工作,计划用于宇航服中的工作手套,美国Triangle研究发展公司和农业部南方工作室先后开展了该方面的研究工作。
20世纪90年代初,美国Gateway公司(现更名为Outlast技术公司)得到了Tyiangle公司微胶囊技术制造蓄热调温纺织品和泡沫的专利授权,该公司经过研究改进,于1997年开始生产和销售含有蓄热调温微胶囊的纤维、织物和泡沫产品。
展义臻,朱平,张建波,郭肖青(青岛大学化工学院,山东青岛266071)摘要:论述了相变调温纺织品热性能的测试方法(热分析法、TRF测试法、暖体假人法、微气候仪法、步冷曲线法)以及表示指标(导热系数、相变温度与相变焓、循环性、保暖性、暖体假人热阻、ACR值).关键词:调温;相变材料;热性能;测试;指标中图分类号:TS197文献标识码:C文章编号:1004-0439(2006)10-0043-04相变调温纺织品的热性能测试方法与指标Thethermalperformancetestingmethodsandindicesofphase-changingtemperature-regulatingfabricsZHANYi-zhen,ZHUPing,ZHANGJian-bo,GUOXiao-qing(Chem.Eng.Coll.,QingdaoUniv.,Qingdao266071,China)Abstract:Thetestingmethodsofthephase-changingtemp.-regulatingtextilesweredescribed,suchasthermalanalysis,TRFtest,warmmanikintest,microclimatetestandstepcoolingcurvetest.Thetestindiceswerealsopresented,e.g.,thermalconductivity,phasechangingtemp.,phasechangingenthalpy,circulationprop-erty,thermalisolation,thermalresistanceonwarmmanikinsandACRvalues.Keywords:temperature-regulation;phase-changingmaterials;thermalproperties;tests;indices收稿日期:2006-04-08作者简介:展义臻(1981-),男,山东青岛人,在读硕士,研究方向为新纤维材料的制备及其功能化改性.相变调温纺织品是将相变材料与纤维和纺织品制造技术相结合的一种高技术产品,具有自动吸收、存储、分配和放出热量的功能,在外部环境温度剧烈变化时,营造舒适的衣内微气候.[1]相变材料PCMs(PhaseChangeMaterials)有一定狭窄明确的温度(相变点温度)范围.在相变过程中,它以潜热形式从周围环境吸收或向环境释放大量热量,而PCMs的温度保持恒定.[2]关于相变调温织物和服装的温度调节性能,至今还没有统一的测试方法与标准.通常用热分析法、Out-last公司的方法和暖体假人法测试,指标大都为传统的热性能指标.1相变纺织品测试方法1.1热分析法热分析研究物质在受热或冷却过程中其性质和状态的变化,并将这种变化作为温度或时间的函数研究其规律的一种技术,使用自动化动态跟踪测量.与静态法相比,具有连续、快速、简单等优点.相变材料测试主要采用差热分析法(DTA)、差示扫描量热法(DSC)和热重分析法(TGA).1.1.1差示扫描量热法(DSC)现阶段相变特征和行为的表征与测试主要采用DSC,与DTA相比,它在测定过程中,样品和参比物之间始终保持相同的温度.在程序升温过程中,记录样品温度和向样品输入的热流量与向参考样品输入的热流量的差值.DSC可以得到相变温度、相变热.通过温度变化对空白样品和含相变物质的试样进行比较,当样品发生相变时,就会有热效应发生,并促使样品印染助剂TEXTILEAUXILIARIESVol.23No.10Oct.2006第23卷第10期2006年10月印染助剂23卷与参比物在升温或降温过程中温度变化速率发生变化,反应在DSC谱图上就会有一个脉冲出现(图1).根据图谱就可得到相变的有关信息,从而分析相变过程.DSC是针对性的测量方法,用于测量相变材料吸热和放热的相转变点、熔点、结晶点和温度变化的范围,并可提供热转变中的能量损耗.[3]1.1.2热重分析法(TGA)热重分析法(TGA)用于测量微胶囊中相变材料的热应力,也是熔融纺丝必须的测试方法之一.常见的质量损失有2种:(1)100℃时水分蒸发损失;(2)280 ̄310℃时微胶囊壁破裂释放出碳氢化合物.如果在2种温度下微胶囊的质量没有明显差异,就说明了微胶囊壁的完整性(见图2).1.2温度调节因素(TRF)测试法温度调节因素法(TRF)是Outlast纤维纱线、织物性能的非生理检测方法.[4]这项新技术测量影响温度调节的各种因素,适用于在试验室模拟真实生活状况的生理测试.该系统使用连续的环境温度和能量,维持一种模拟皮肤的温度.测量皮肤温度随外界能量变化的波动状况,这种能量正是织物和纤维调节温度的决定因素.该程序的数字范围是0 ̄1.‘0’代表织物有能力适应连续的温度变化,‘1’意味着调节温度的能力很差.若该技术能够区分有无热能力的相似织物间的差别,将有助于织物的设计.TRF测试在专门的测试仪上进行,每一个织物测试2次,一次测量稳定状态的温度调节参数R值,另一次测量TRF.在R值试验中,通过热片的热流要保持连续,常为150W/m2.冷片温度也要连续,常为10℃;在TRF测试中,热片温度的变化范围集中在被测织物相变材料使用温度区域的中点附近.经15min2次能量循环后,不同的能量输入热板,记录热板第二次循环的温度,在第二次循环中,可得到热板的温度变化量(Tmax-Tmin,℃)和热量变化量(qmax-qmin,J).[5]TRF决定于温度变化和热量变化(见式1),式(1)中,R为温度调节参数,℃/J.无相变微胶囊合成纤维的TRF值是0.52或0.78,较小的峰值和谷值有好的温度调节.Outlast公司和其他研究机构在这种条件下作了生理测试,测试环境应与织物使用环境有很好的一致性和相似性.1.3暖体假人法暖体假人模拟真人群体的几何造型,符合真人群体统计数据的平均值;全身分为头、躯干、四肢等解剖段,至少6段;皮肤温度被加热到一恒定温度,其温度应与人体平均皮肤温度基本相近且皮肤表面安装温度传感器;能维持静止站立和动态步行2种姿势,步速为30 ̄60步/min.[6]在暖体假人法中,气候调节仓内至少放置3只环境温度传感器、2只环境湿度传感器、2只环境风速传感器,分别放置在距假人周围0.5m的非等高间隔位置处;温度传感器精度优于0.2℃;湿度传感器精度优于5%;风速传感器的精度优于0.05m/s.暖体假人试验可分为静态和动态试验.动态试验时设定步速和步长.暖体假人达到动态热平衡后,至少每分钟检测一次皮肤温度、环境温度和调控加热功率,这种状态必须保持30min以上.暖体假人符合人体解剖生理特点,能模拟人体表面温度分布,可进行与人体有关的热学研究,也是进行服装隔热值试验研究的理想测试设备,它可以接受任何试验条件,由于没有生理、心理因素的影响,试验结果稳定,误差较小,测量精确合理.1.4微气候仪法通常织物微气候仪模拟外界环境中检测模拟皮肤与试样间的微气候变化及热湿传递状况,即检测人体热量和汗气通过织物内空气层、织物及织物外空气层与环境进行能量、质量交换的全过程,并用温度和湿度梯度法测试出织物能量交换和质量交换的状态变化,反应织物对能量流和质量流的阻力.[7,8]原田织物微气候仪、姚穆-Yasuda多功能织物微气候仪、Wehner-Gibson织物微气候仪、崔慧杰动态织物微气候仪等温度/℃图1标准DSC曲线示意图吸热↑!T↓放热#相变温度温度/℃图2TGA曲线示意图失重百分数/(%)w2w3w1t1t2t3失重温度T1失重温度T2TRF=Tmax-Tmin(qmax-qmin)×R(1)4410期一直致力于解决热湿传递多功能测试,传感技术和计算机技术的应用使这种目标成为可能,并能简化操作程序,实现由稳态测试向动态测试的发展.[9]1.5步冷曲线法分别将含和不含相变材料的试样放入圆筒保温仪中,同时升温到一定温度(如46℃),并稳定一定时间(如15min)后同时移出,开动秒表,在一定时间间隔(如10s)下记录试样在不同时间所对应的温度.以时间为横坐标、温度为纵坐标,绘制步冷曲线.[10]从图3中可看到,在温度下降到相变点之前,2个试样均为显热放热,温度下降趋势大体相同.但温度下降到相变点之后,相变材料变为潜热放热,温度变化趋于缓和,温度下降的速度明显低于空白试样.比较二者的步冷曲线可以看出,含相变材料试样有调节温度和延缓温度变化的作用.2相变纺织品测试指标2.1导热系数按照傅利叶导热定律,服装在人体与环境之间的导热量与服装内外表面的温度差、时间及传热面积成正比,与服装的厚度成反比(见式2).因此,导热系数可理解为单位面积、单位时间内通过的热量.而热阻R=L/λ,其含义正好与导热系数相反.织物的热阻大或导热系数小,则织物的隔热性能好.因相变纤维需要灵敏地感应温度而激发相变,提供或吸收热能,同时又要低热阻的传导热量,所以它的热传导系数应偏小.[11,12]式(2)中,Q为服装的导热量,J;S为服装面积,m2;T为时间,s;λ为导热系数,W/m・℃;△t为服装内外表面温度差,℃;L为服装厚度,m.2.2相变温度与相变焓由相变纤维的功能可知,相变发生点和终止点温度以及整个相变过程的总焓是相变纤维的最主要性质(图4),起、止点温度反映材料的可使用性,相变焓反映其温度调节能力.PCMs应用中的关键是有合适可控的相变激发点,能保证应用时舒适与有效;较大的相变能可有效持久地调控温度.[13]2.3循环性相变的循环性表示PCMs的反复可使用性和有效性,Vigo等在织物表面涂层PEG,经过150次冷热交换循环后发现,织物的蓄放热性能仍很好.[14]此性能不仅是材料温度波动响应能力的体现,也是材料反复有效使用的关键.在可控温度调节室内进行相变服装的循环性测试,可用反复升降温方法对热焓变化的测定来确定循环性好坏(图5).2.4保暖性将试样覆盖在平板式织物保暖仪的试验板上,试验板、底板以及周围的保护板都用电热控制相同的温度,并通过通、断电保持恒温,使试验板的热量只能随试样的方向散发.通过测定试验板在一定时间保持恒温所需要的加热时间来计算织物的保暖指标(保暖率、传热系数和克罗值).[15]2.4.1保暖率Q保暖率Q是指无试样时的散热量Q0(W/℃)和有试样时的散热量Q1(W/℃)之差与无试样时的散热量Q0之比的百分率(式3).该值越大,试样的保暖性越好.2.4.2传热系数U传热系数U为纺织品表面温差为1℃时,通过单位面积的热流量(见式4).传热系数越小,保暖性越好.t/s图3步冷曲线示意图T/℃"相变点温度含PCMs试样T1T2t1t2t3t4"无PCMs试样Q=→!=!ST!tL(2)QLST!t温度/℃图4DSC曲线测相变温度和相变焓示意图热焓/mW"内推基线(试样基线)零线(空白样基线)相变温度相变焓循环次数/次图5相变材料循环性能热焓/J热焓/J相变材料循环性好相变材料循环性差Q=×100%Q0-Q1Q0(3)U=U0gU1/(U0-U1)(4)展义臻等:相变调温纺织品的热性能测试方法与指标45印染助剂23卷式(4)中,U为试样的传热系数,W/m2・℃;U0为无试样时试验板的传热系数,W/m2・℃;U1为有试样时试验板的传热系数,W/m2・℃.2.4.3CLO值CLO值是目前国际上最常用的测试服装保暖性能的指标,该指标1941年由Gagge和Burton提出.其定义是:室温21.1℃,相对湿度50%以下,气流为10cm/s(无风)条件下,试穿者静止不动,基础代谢为58.15W/m2感觉舒适并保持其体表温度在33.3℃时所穿服装的保暖量(隔热值)为1CLO;服装表面滞留空气层的热阻为0.78CLO;1CLO=0.155(℃・m2)/W.隔热值可按式(5)计算:式(5)中,U为试样的传热系数,W/m2・℃.2.5暖体假人热阻应用暖体假人测试服装热阻的基本原理是在模拟人体-服装-环境之间热交换的过程中,从暖体假人皮肤表面温度与环境温度之间的温差、体表单位面积的非蒸发散热率等物理参数之间的关系,导出服装热阻的量值,其基本方程如式(6)所示[6]:式(6)中,I为热阻,CLO;Ts为假人皮肤温度,℃;Ta为环境温度,℃;H为单位体表面积的非蒸发散热率,W/m2;0.155为热阻单位换算系数.2.6ACR值ACR值(AdaptiveComfortRating)是Outlast纤维的温度调节功能舒适性级别,用来衡量产品吸收、储存以及适时释放能量的能力.该等级反映了PCMs的密度、类型以及可供储存和释放热量的PCMs总量(即热敏变相材料的微胶囊).产品ACR等级越高就越舒适,传统纤维的ACR值接近于零,很难储存热量.Out-last产品的ACR等级高达5000,层叠后的ACR值可超过11000,使产品倍感舒适;例如Outlast席垫ACR达到5000、枕头则为1000.ACR的计算方法(按Outlast公司的专家解释):“在试验室内,每单位ACR按2.5J对其舒适度的测量”计算公式如式(7)所示:式(7)中,COutlast为Outlast材料的比热,即Outlast材料的吸热能力,J/m2;SOutlast为Outlast材料的面积,m2;λ为材料的接近系数,即相变材料在产品中接近人体的程度.3结论相变调温纺织品是继防水透湿织物后新的舒适性织物品种,在美国、欧洲和日本得到了飞速发展,中国科研工作者也从20世纪末开始了探索研究并取得了重大成果,现今,对相变调温纺织品的测试方法与指标确定十分迫切.现用的方法与指标都有局限性,如何结合各自的优点及在此基础上创新已成为纺织工作者迫切需要解决的问题,本文仅能提供一些借鉴.参考文献:[1]GhaliK,GhaddarN.Experimentalandnumericalinvestigationoftheeffectofphasechangematerialsonclothingduringperiodicventila-tion[J].TextileRes.J,2004,74(3):205-214.[2]FaridMM,KhudhairAM,RazackSA.Areviewonphasechangeen-ergystorage:materialsandapplications[J].EnergyConversionandMan-agement,2004(45):1597-1615.[3]蔡正千.热分析[M].北京:高等教育出版社:1993.118-132.[4]BendkowskaW,TysiakJ,GrabowskiL.Determiningtemperatureregu-latingfactorforapparelfabricscontainingphasechangematerial[J].InternationalJournalofClothingScienceandTechnology,2005,17(3-4):209-214.[5]R.Cox著,徐鹏译.Outlast热量调节纤维[J].国外纺织技术,2001,190(1):4-6.[6]GB/T18398-2001.服装热阻测试方法暖体假人法[S].[7]SpeckmanKL,AllanAE,SawkaMN.Perspectivesinmicroclimatecoolinginvolvingprotectiveclothinginhotenvironments[J].Interna-tionalJournalofIndustrialErgonomics,1988,3(2):121-147.[8]SariH,BergerX.Anewdynamicclothingmodel.Part2:Parametersoftheunderclothingmicroclimate[J].InternationalJournalofThermalSci-ences,2000,39(5):646-654.[9]周小红,王善元.织物热湿传递性能测试仪器的研究进展[J].现代纺织技术,2004,12(1):43-46.[10]IlangovanR,RaviG,SubramanianC,etal.Growthandcharacteriza-tionofpotassiumtantalateniobatesinglecrystalsbythestep-cool-ingtechnique[J].JournalofCrystalGrowth,2002(237-239):694-699.[11]ShiinaY,InagakiT.Studyontheefficiencyofeffectivethermalcon-ductivitiesonmeltingcharacteristicsoflatentheatstoragecapsules[J].InternationalJournalofHeatandMassTransfer,2005(48):373-383.[12]张华,刘维.防寒服保暖性能的测试和评价指标[J].中国个体防护装备,2003(2):21-23.[13]BoH,GustafssonEM,SetterwallF.Tetradecaneandhexadecanebi-narymixturesasphasechangematerials(PCMs)forcoolstorageindi-strictcoolingsystems[J].Energy,1999(24):1015-1028.[14]VigoTL,BrunoJS,GoynesWR.EnhancedwearandsurfaceCharac-teristicsofpolol-modifiedfibers[J].JournalofAppliedPolymerSci-ence:AppliedPolymerSymposium,1991(47):417-435.[15]余序芬.纺织材料试验技术[M].北京:中国纺织出版社.2004.304-312.1CLO=10.155U(5)I=Ts-Ta0.155H(6)ACR=COutlast×SOutlast×!2.5(7)46。
国际通用织物热阻湿阻测试实验方法热阻值是衡量材料及产品隔热性能的重要指标之一,也是评价由絮状材料及由絮状材料制成的产品的隔热性能的重要参数。
一般来说高蓬松的絮状纤维集合体材料或絮状材料,其强度低、易变形。
高蓬松的絮状纤维集合体材料是线形纤维或朵状羽绒等纤维材料随机排列形成的具有一定厚度的平面状纤维集合体,使用时需要有面料和夹里包裹。
高蓬松絮状材料中的纤维呈现离散状随机排列,纤维之间包含有相当比例的孔隙,蕴含着大量的静止空气,从而具有较高的保暖性。
同时由于纤维的随机排列造成了传热通道的错综复杂,使其与纤维紧密排列的普通织物的热传导机理产生了很大的差异。
对于普通织物而言,由于厚度较薄、上下表面间或纱线间的垂直孔隙明显,当上下表面存在温差时,垂直传输的热流是主体。
而对于高蓬松絮状纤维集合体材料,由于存在大量的复杂形态的细小缝隙和孔洞,蓬松度较高,厚度较厚,热量的传输通常是二维或三维的。
所以目前国内外测试普通织物的仪器和测试方法并不适合测试絮状材料及其产品的热阻值。
本文将考察目前存在的热阻测试方法和仪器及其缺点,总结国内外关于测试热阻的标准、操作方法和测试指标。
1、现有纺织品传热测试方法和仪器1.1 恒温法将织物放在恒温热板的一侧,恒温热板其他各面均有绝热保护,测定在不放试样和放试样时保持热板恒温所需的热量,由此来计算织物的保温率来说明织物的隔热保温性能。
试验时首先在不放试样的情况下测试维持试验板恒温所需的功率,然后再测试放上试样后维持试验板恒温所需的功率,通过公式(1)进行计算:Wr=(1-b/a )×100% (1)式中:Wr为保温率,%;a 为不放试样时试验板消耗的热功率,W;b 为放试样时试验板消耗的热功率, W。
目前国内外用来测试评价平面状材料保温隔热性能的单平板法就是采用了这种测试方法。
但是单平板法上方无保护罩,因此试样上表面的空气流动会引起一定量的对流散热量,测试结果成为对流散热和传导散热的综合值。
织物保温性能测试实验方法
一、实验目的与要求
利用FK-Ⅱ型织物保暖性测试仪测试织物保温性,掌握织物保温性的试验方法和指标的计算。
二、实验仪器与用具
FK-Ⅱ型织物保暖性测试仪,尺、划笔、剪刀等。
三、试样
620mm×250mm织物一块。
四、实验方法与程序
1. 接通电源,闭合仪器控制部分(见图51-2)开关屏1上“电源”开关,电源指示灯2亮。
2. 用仪器控制部分的控温表旋盘3将控温表4旋到(+室温)值。
3.闭合仪器控制部分的开关屏1上的“加热”开关,控温表白灯5亮。
4.旋动仪器控制部分的调压电位器6,使电压表7指标到250V,同时夹电流表8指示值为0.6A。
5.待仪器控制部分的控温表白灯5翻到绿灯后,闭合开关屏上的“排风”开关,图52-1仪器测试部分抽风机4开始运转抽风。
6.将按要求裁好的试样包覆在仪器测试部分的恒温筒1上,并用试样夹子6夹持,再关好有机玻璃门3。
7.将仪器控制部分上预置拨盘开关9拨到“30”,表示测试时间为30min。
8.闭合仪器控制部分开关屏1上的“计数”开关。
9.揿下开关屏1上的“T”按钮,使计时器运转(在控制箱右侧面有运转观察孔)。
10.待仪器控制部分的时间计数器10跳出一个数字时,手指立即按住“T”按钮。
随手揿下“0”按钮,使功率计数器11、时间计数器10上的数字清“0”,直到控温表绿灯B翻到白灯5亮时,手指立即放开“T”按钮。
此后仪器开始正常计数,直到测定时间30min到,蜂鸣器响,仪器自动记数,记录功计数器11上的显示值。
五、指示计算
保温率:(52-1)
式中:—保温率(%);
—功记数器在恒温筒未包覆试样时所测试的值;
—功记数器在恒温筒包覆试样所测到的值。
六、实验报告要求
1.记录:试样名称与规格,仪器型号,仪器工作参数,温湿度,原始数据。
2.计算:保温率(本仪器常数,即不包覆试样时恒温筒维持恒温30min功记数器上的显示值为2756)。