压缩机的启动方式及原理电路图接线图
- 格式:doc
- 大小:318.50 KB
- 文档页数:7
压缩机的启动方式及原理电路图接线图压缩机过电流及过热保护;压缩机绕组测量;压缩机常见故障维修-判断;重锤式启动方法,重锤式电容启动方法,重锤式电容启动-电容运行方法,PTC热敏电阻起动方式,PTC热敏电阻-电容启动方式, PTC热敏电阻电容起动-电容运行方法压缩机电磁重锤式起动方式当电压通过电磁重锤式启动器L---M线圈到压缩机运行绕组M端,此时由于无压缩机转矩,造成压缩机运行绕组电流很大,这个电流足以使锤式启动器电磁铁吸合,进而使L--S端接通电压送给启动绕组端,当转速达到80%时运行电流下降到重锤线圈的释放电流值以后重锤自由落下L-S断开,启动绕组开路,压缩机启动完成,运行绕组电流进入正常状态。
一般整个启动过程完成约需0.3-2秒完成。
压缩机PTC热敏电阻起动接线方式PTC热敏电阻是一种具有正温度系数的半导体元件,但PTC热敏电阻温度升高时,电阻也升高,反之PTC热敏电阻温度降低时,电阻也变小。
根据这个原理把PTC元件应用在电动机起动上,在接通电源后经约0.3秒后,启动绕组以近似开路状态,所通过电流很小。
压缩机启动完成。
压缩机过电流及过热保护过热保护器在这里起非常重要的作用,绝不能不用或用不相符电流值的元件代替。
过热保护器紧贴在压缩机外壳表面,当运行电流过大过,热保护器内的电阻丝发热,烘烤碟形双金属片,使它反向拱起,保护触点断开,压缩机断电停止运转。
如果压缩机内温度升高,必定使机壳温度升高,在正常额定运行电流通过阻丝的低发热量下,加上壳体温升达到90℃以上时,双金属片也会拱起,保护触点断开,压缩机断电停止运转。
因此该保护器具有两种保护功能。
压缩机,C公共绕组, S是启动绕组端, M为运行绕组。
绕组测量S-M 电阻最大S-C 电阻偏小M-C 电阻最小S-C加上M-C的电阻值等于S-M的电阻值压缩机常见故障维修-判断:过热保护器频繁“开”“断”电磁重锤式起动器,内部电磁铁卡死,造成起动时L-S不能接通热保器5-10秒断开保护。
压缩机的启动方式及原理电路图接线图压缩机电磁重锤式起动方式当电压通过电磁重锤式启动器L-M线圈到压缩机运行绕组M端,此时由于无压缩机转矩,造成压缩机运行绕组电流很大,这个电流足以使锤式启动器电磁铁吸合,进而使L-S端接通电压送给启动绕组端,当转速达到80%时运行电流下降到重锤线圈的释放电流值以后重锤自由落下L-S断开,启动绕组开路,压缩机启动完成,运行绕组电流进入正常状态。
一般整个启动过程完成约需0.3-2秒完成。
压缩机PTC热敏电阻起动接线方式PTC热敏电阻是一种具有正温度系数的半导体元件,但PTC热敏电阻温度升高时,电阻也升高,反之PTC 热敏电阻温度降低时,电阻也变小。
根据这个原理把PTC元件应用在电动机起动上,在接通电源后经约0.3秒后,启动绕组以近似开路状态,所通过电流很小,压缩机启动完成。
压缩机过电流及过热保护过热保护器在这里起非常重要的作用,绝不能不用或用不相符电流值的元件代替。
过热保护器紧贴在压缩机外壳表面,当运行电流过大过,热保护器内的电阻丝发热,烘烤碟形双金属片,使它反向拱起,保护触点断开,压缩机断电停止运转。
如果压缩机内温度升高,必定使机壳温度升高,在正常额定运行电流通过阻丝的低发热量下,加上壳体温升达到90℃以上时,双金属片也会拱起,保护触点断开,压缩机断电停止运转。
因此该保护器具有两种保护功能。
绕组测量。
压缩机C公共绕组、S是启动绕组端、M为运行绕组。
S-M电阻最大,S-C电阻偏小,M-C电阻最小,S-C加上M-C的电阻值等于S-M的电阻值压缩机常见故障维修-判断:过热保护器频繁“开”“断”电磁重锤式起动器,内部电磁铁卡死,造成起动时L-S不能接通,热保器5-10秒断开保护。
L-S触点接触不良,启动绕组得不到启动电压,热保器5-10秒断开保护。
PTC起动器内部变质或破碎,启动绕组得不到启动电压不能起动。
过热保护器老化,或电阻丝开路。
有的用眼能看到电阻丝已被电流烧的融化时,这时压缩机本身坏的可能性就非常大了。
空调压缩机接线方法与接线图空调坏了如果评断弊端不出是哪里的问题,那可是十分头痛的事情。
今天制冷百科来为大家分享怎样热交换判断饮水机压缩机的好坏,制冷空调压缩机接线图以及空调压缩机的接线方法,希望能够帮到大家!一、压缩机好坏测量1、在压缩机的上面有3根接线柱、分别是S、M、C。
其中S是启动绕组、M是运行绕组、C是公共端2、用万用表测量其阻值、其中SC和MC之间的阻值加起来等于MS 之间的阻值就是正常了,比如SC之间的阻值是5欧、MC之间的阻值是3.5欧、那么MS之间的阻值就是8.5欧(允许有一点偏差,但不会很大)。
如果有效值偏移过大,或者3者之间没有阻值、那么这个压缩机肯定是贪心的!3、有的时候、用万用表测量是正常的、但压缩机内部结构出来短路是测量不出来的。
最简单的办法就是、用万用表量一下呢复振器通上电,如果通上电了不启动的话、你可以更换一个启动电容(50UF)的、如果还不能启动的话、那么就是压缩机坏了!二、空调方式压缩机接线图以及空调压缩机的接线方法不同销售商的压缩机其接线柱不尽相同方位虽然不同,但在每个接线柱旁都英文字母标有字母;对于单相压缩机而言,C表示公共端,R表示主绕组端,S表示付绕组端。
各绕组接线一定要按图示必然方式,否则压缩机不能正常工作,甚至烧毁。
单相轴承压缩机接线端子标识和压缩机原理接线图单相压缩机公共接线后端C、主绕组端R、付绕组端S的判定方法:根据单相压缩机的主副绕组线径、匝数不一样其直流电阻值也不一样的原理(主绕组C~R阻值较小,副绕组C~S阻值略大,R~S阻值是吕齐县副绕组阻值之和),用万用表电阻档,假设任一盖板端子为C端,将万用表一只表笔与假设公共端接触,另一支表笔分别与另外两个端子接触,测量阻值若分别为:3.5Ω、4.2Ω。
则假设正确,那么,电阻值较小绕组的另一端居多绕组端R,电阻值略大的另一端共振频率为付绕组端S。
用同样技术手段的方法最多假设三次就可以找出公共端C、主绕组端R和付绕组端S。
压缩机的结构和工作原理结构:压缩机是制冷系统的心脏,它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝→膨胀→蒸发( 吸热) 的制冷循环。
压缩机一般由壳体、电动机、缸体、活塞、控制设备( 启动器和热保护器) 及冷却系统组成。
启动器基本上有两种,即重锤式和PTC 式。
其中后者较为先进。
冷却方式有油冷和自然冷却两种。
一般家用冰箱和空调器的压缩机是以单相交流电作为电源,它们的结构原理基本相同。
冰箱压缩机功率较小,通常在250W 以下。
而空调器压缩机功率通常在230-900W 之间。
两者使用的致冷剂有所不同。
2. 生产制造方法压缩机是以流水线方式生产的。
在机械加工车间( 包括铸造) 制造出缸体、活塞( 转轴) 、阀片、连杆、曲轴、端盖等零部件;在电机车间组装出转子、定子;在冲压车间制造出壳体等。
然后在总装车间进行装配、焊接、清洗烘干,最后经检验合格包装出厂。
大多数压缩机制造厂不生产启动器和热保护器,而是根据需要从市场采购。
3. 种类目前家用冰箱和空调器压缩机都是容积式,其中又可分为往复式和旋转式。
往复式压缩机使用的是活塞、曲柄、连杆机构或活塞、曲柄、滑管机构,旋转式使用的是转轴曲轴机构。
按应用范围又可分为低背压式、中背压式、高背压式。
低背压式( 蒸发温度-35 ~-15 ℃) ,一般用于家用电冰箱、食品冷冻箱等。
中背压式( 蒸发温度-20 ~0 ℃) ,一般用于冷饮柜、牛奶冷藏箱等。
高背压式( 蒸发温度-5 ~15 ℃) ,一般用于房间空气调节器、除湿机、热泵等。
4. 规格、质量压缩机的规格是按输入功率来划分的。
一般每种规格间相差50W 左右。
另外,也有按气缸容积划分的。
压缩机主要性能指标有:输入、输出功率,性能系数,制冷量,启动电流、运转电流、额定电压、频率,气缸容积,噪音等。
衡量一种压缩机的性能,主要从重量、效率和噪音三个方面的比较。
压缩机电机启动方式简析在各种压缩机中,根据起动时所需起动转矩之大小,以及对起动电流的限制,采用不同的方式。
1、电阻分相起动方式(RSIR)其起动电路由主绕组、辅绕组和电流继电器组成。
电流继电器中含有线圈和弹性臂(或重锤)。
起动时,通过线圈的电流很大,弹性臂闭合辅助绕组工作,电动机旋转。
随着电动机转速的提高,主绕组中的电流迅速下降,弹性臂打开,辅助绕组停止工作。
RSIR起动方式的起动扭矩较小,起动电流大,因而效率较低,只用于带毛细管的小功率制冷机中。
2、电容起动方式(CSIR) 起动时,辅助绕组的电路接通,一股电流经起动继电器顶部的触点、起动电容器、辅助绕组和电动机保护装置,另一股电流经主绕组和电动机保护装置。
起动后,继电器顶部的触点断开,辅助绕组不再工作。
电容起动方式的起动转矩比电阻分相起动方式的起动转矩大,且起动电流小,结构比较简单,在300W以下的小型制冷装置上广泛应用。
3、电容运转方式(PSC)电容运转方式电动机在起动或运转中,把同一个电容器连接到辅助绕组的电路上。
这种运转方式的电路中无起动继电器,电容器主要按电动机额定工况配置。
电容运转式电动机的起动转矩较小,但随着转速的增加,转矩增加。
电容运转式电动机的功率较高,其负荷主要由主绕组承受,辅助绕组只承受小部分,因而其过载负荷容量小。
加大电容量后,辅助绕组承担的负荷增大,过负荷容量有些增加。
但电容器容量不能太大,否则在空载和轻载时能效比降低。
PSC主要用于起动负荷转矩小的压缩机上。
4、电容起动电容运转的方式(CSR) CSR电路有两种:(1)带PTC继电器;(2)装有电压继电器。
起动时,一股电流经起动电容器PTC继电器辅助绕组和电动机保护装置(此时运行电容器与起动电容器并联);另一股电流经主绕组和电动机保护装置。
起动后,由于PTC继电器的作用,起动电容器不再工作。
两个电容器在起动时同时起作用,增大了起动转矩。
正常运转时只有运行电容器工作,电动机能以高功率因数运转,提高了效率,但电路较复杂,成本高。
空气压缩机(英文:空气压缩机)的工作原理和结构图分析是空气源设备的主体。
它是将原动机(通常是电动机)的机械能转换为气动能的装置。
它是用于压缩空气的压力产生装置。
这是一台使用空气压缩原理使压缩空气超过大气压的机器。
根据压缩空气的不同方式,空气压缩机通常分为两种类型,一种是容积型,另一种是动力型。
根据其不同的结构,可分为以下几种类型:1.空压机的工作原理:连接启动装置后,电动机进入正常运行状态。
压缩机的曲轴由三角皮带轮驱动,然后活塞通过连杆和十字头在气缸内作往复直线运动。
当活塞开始从外止点向内止点移动时,气缸内部的活塞的外部处于低压状态,并且气体通过短期阀进入气缸。
当活塞从内部死点移动到外部死点时,进气门关闭,气缸中的气体被压缩以增加压力。
当压力超过排气门外部的气压时,排气门打开并开始排放压缩气体。
当活塞到达外部死点时,排气完成。
在被第一级气缸压缩并由中间冷却器冷却之后,气体进入第二级气缸,然后在压缩后进入储气罐。
1.活塞式空气压缩机的原理是,在驱动机启动后,压缩机的曲轴由三角皮带驱动,活塞通过曲柄机构在气缸内转换为往复运动。
当活塞从盖向轴移动时,气缸的容积增加,气缸中的压力低于大气压,外部空气通过过滤器和吸气阀进入气缸;到达下止点后,活塞从轴移至盖侧,关闭吸气阀,逐渐减小气缸容积,压缩气缸中的空气,并增加压力。
当压力达到一定值时,排气阀打开,压缩空气通过管道进入储气罐。
压缩机反复工作,不断地将压缩空气输送到储气罐,从而逐渐增加水箱的压力以获得所需的压缩空气。
2.螺杆式单级压缩空气压缩机的工作原理是:一对平行且有齿的公,母转子(或螺杆)在气缸内旋转,这使转子齿之间的空气产生周期性的体积变化,并且空气沿着转子轴线从吸入侧传递到输出侧,从而实现了螺杆空气压缩机的吸入,压缩和排气的全过程。
空气压缩机的进气口和出气口分别位于壳体的两端。
阴转子的槽和阳转子的齿由主电动机驱动并旋转。
压缩机由电动机直接驱动,电动机使曲轴旋转并驱动连杆以使活塞来回移动,从而改变气缸容积。
单相电机电容接线图220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。
运转速率大致保持定值。
主要应用于电风扇,空调风扇电动机,洗衣机等电机。
第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。
起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。
第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。
而运行电容串接到起动绕组参与运行工作。
这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。
如图3。
带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。
电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。
正反转控制:图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。
一般洗衣机用得到这种电机。
这种正反转控制方法简单,不用复杂的转换开关。
图1,图2,图3,正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。
对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。
一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。
图1 电容运转型接线电路图2 电容起动型接线电路图3 电容启动运转型接线电路(双值电容器)图4 开关控制正反转接线。
活塞式制冷压缩机的工作原理及结构活塞式制冷压缩机的工作原理及结构第一节活塞式制冷压缩机工作原理1、活塞压缩机的分类按使用的制冷剂来分,有氨压缩机和氟利昂压缩机两种。
按压缩级数来分,有单级压缩和双级压缩两种。
按汽缸中心线的位置分,有直立式、V型、W型和S(扇)型。
按压缩机的总体结构来分,有开启式、半封闭式、全封闭式三种2、活塞式压缩机的工作过程1)理想工作过程在分析活塞式压缩机的工作过程中,可以先把实际过程简化成理想过程。
简化时假定:a.压缩机没有余隙容积;b.吸、排气过程没有容积损失;c.压缩过程是理想的绝热过程;d.无泄漏损失。
这样,压缩机的理想工作过程可用图2-1所示的P―V图来表示。
纵坐标表示压力P,横坐标表示活塞在汽缸中移动时形成的容积V。
在图中,4→1表示吸气过程,活塞从上止点开始向右移动,排气阀(片)关闭,吸气阀(片)打开,在压力P1下吸入制冷剂气;1→2表示压缩过程,活塞从下止点向左移动,制冷剂从压力P1绝热压缩到P2,此过程吸、排气阀均关闭;2→3表示排气过程,活塞左行至2位置时排气阀打开,活塞继续左行,在压力P2下把制冷剂排出汽缸。
由于假设没有余隙容积,活塞运行到3点时制冷剂全部排出。
当活塞再次向右移动时进行下一次的吸气过程。
2)实际工作过程压缩机的实际工作过程与理想工作过程有很大不同。
实际过程存在余隙容积;吸排气阀有阻力,工作时存在压力损失;汽缸壁与制冷剂之间有热交换,非绝热过程;有漏损失。
a.余隙容积的影响(容积系数λV)余隙:活塞运动到上止点位置时,活塞顶与阀座之间保持一定的间隙,称为余隙,余隙所形成的容积称为余隙容积。
造成余隙的主要原因是:防止曲柄连杆机构受热延伸时不至于使活塞撞击阀座而引起机器损坏;排气阀的通道占据一定的空间;运动部件的磨损使零件配合间隙变大;活塞环与阀盖之间的环型空间。
余隙容积的存在,在排气过程结束时不能将汽缸内的气体全部排净,有一部分高压气体残留在余隙容积内,这样在下一次吸气开始前,这一部分气体首先膨胀减压,在压力降低到低于吸气压力才能开始吸气。
压缩机的启动方式及原理电路图接线图
压缩机过电流及过热保护;压缩机绕组测量;压缩机常见故障维修-判断;重锤式启动方法,重锤式电容启动方法,重锤式电容启动-电容运行方法,PTC热敏电阻起动方式,PTC热敏电阻-电容启动方式, PTC热敏电阻电容起动-电容运行方法
压缩机电磁重锤式起动方式
当电压通过电磁重锤式启动器L---M线圈到压缩机运行绕组M端,此时由于无压缩机转矩,造成压缩机运行绕组电流很大,这个电流足以使锤式启动器电磁铁吸合,进而使L--S端接通电压送给启动绕组端,当转速达到80%时运行电流下降到重锤线圈的释放电流值以后重锤自由落下L-S断开,启动绕组开路,压缩机启动完成,运行绕组电流进入正常状态。
一般整个启动过程完成约需秒完成。
压缩机PTC热敏电阻起动接线方式
PTC热敏电阻是一种具有正温度系数的半导体元件,但PTC热敏电阻温度升高时,电阻也升高,反之PTC热敏电阻温度降低时,电阻也变小。
根据这个原理把PTC元件应用在电动机起动上,在接通电源后经约秒后,启动绕组以近似开路状态,所通过电流很小。
压缩机启动完成。
压缩机过电流及过热保护
过热保护器在这里起非常重要的作用,绝不能不用或用不相符电流值的元
件代替。
过热保护器紧贴在压缩机外壳表面,当运行电流过大过,热保护器内的电阻丝发热,烘烤碟形双金属片,使它反向拱起,保护触点断开,压缩机断电停止运转。
如果压缩机内温度升高,必定使机壳温度升高,在正常额定运行电流通过阻丝的低发热量下,加上壳体温升达到90℃以上时,双金属片也会拱起,保护触点断开,压缩机断电停止运转。
因此该保护器具有两种保护功能。
压缩机,C公共绕组, S是启动绕组端, M为运行绕组。
绕组测量
S-M 电阻最大
S-C 电阻偏小
M-C 电阻最小
S-C加上M-C的电阻值等于S-M的电阻值
压缩机常见故障维修-判断:过热保护器频繁“开”“断”
电磁重锤式起动器,内部电磁铁卡死,造成起动时L-S不能接通热保器
5-10秒断开保护。
L-S触点接触不良,启动绕组得不到启动电压,热保器5-10秒断开保护。
PTC起动器内部变质或破碎,启动绕组得不到启动电压不能起动。
过热保护器老化,或电阻丝开路。
有的用眼能看到电阻丝已被电流烧的融化时,这时压缩机本身坏的可能性就非常大了。
压缩机内部不良,线圈绕组短路,机械故障。
电源电压过低或过高运行电流都增大。
电源电压过低压缩机还有可能不起动。
当压缩机机壳温度是在环境温度下,如果上电时间仅在1-3秒过热保护器就跳开,这时压缩机本身坏的可能性就很大了。
气路故障,在常温下,正常开机经过4个小时以上运转,发现冷冻室温度降不下来,简单判断用湿手摸蒸发器不沾手或沾手不牢固,散热器温度不高,一般是压缩机排气性能不好。
重锤式启动方法
重锤式电容启动方法
重锤式电容启动-电容运行方法
PTC热敏电阻起动方式
PTC热敏电阻-电容启动方式
PTC热敏电阻电容起动-电容运行方法
这种电路PTC起动器为2脚引出
注意:重锤式电容启动/电容运行方法与一般重锤起动器是有区别的。
PTC热敏电阻起动器图片
重锤式启动器图片。