结构动力学基础课后习题答案--张亚辉-大连理工大学出版社(新)
- 格式:doc
- 大小:2.47 MB
- 文档页数:21
完美WORD 格式1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
ABAOW (a) B AO W F(b)OW (c)AAOW(d)BAOW (e)BF BF ABO W(a) B AO W F(b) F AF B AO W(c)F AF O A O W(d)F B F AAOW (e)BF B F A AWC B(c)D (a) A WC E B(b)AW CD B解:1-3 试画出以下各题中AB 梁的受力图。
解:ABW (e)CF B F AAB F(d)CF BF A(a) F D F BF ED A WCE B(b)AWC D B F D F BF A(c)AWC BF BF AAW CB(a)WABC D(c)ABF q D(b)CC A BFWDA ’ D ’B ’(d)ABFq(e)F BF AF qABC F B1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:CA BFWD(d)F BF AF DAB Fq(e)F BxF ByF AAB F (a) DCWAF (b) DB(c) FABD D ’ABF(d)CDW ABC D(e)WABC (f)AB F (a)D CWF AxF AyF DA F (b)BF BF A(c)FABDF BF D A FCA F AF AB1-5 试画出以下各题中指定物体的受力图。
(a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。
解:(a)(b)ABW(a)(c)BC W1 W2FAFDABCE F(d)AF ABF ATF ABF BAF BTWABPP(b)WA BCC’DOG (e)(c)(d)(e)F CAPCF BB PCF ’ CF AABPPF BF NBC W 1W 2 F AF Cx F CyF AxF AyB W 1F A F Ax F AyF Bx F By B C W 2 F Cx F CyF ’Bx F ’By F A BC F C F BDC E F F E F ’C F F FDAB C E F F EF FF BB C D G F B F C WAB CC ’ DO GF Oy F OxF C ’A B O W F BF OyF Ox2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535 N ,不计杆重,试求两杆所受的力。
《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。
因此命名为振型叠加法。
8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。
机械工程材料 课后习题答案大连理工版1-1、可否通过增加零件尺寸来提高其弹性模量。
解:不能,弹性模量的大小主要取决于材料的本性,除随温度升高而逐渐降低外,其他强化材料的手段如热处理、冷热加工、合金化等对弹性模量的影响很小。
所以不能通过增大尺寸来提高弹性模量。
1-2、工程上的伸长率与选取的样品长度有关,为什么?解:伸长率等于,当试样(d)不变时,增加,则伸长率δ下降,只有当/为常数时,不同材料的伸长率才有可比性。
所以伸长率与样品长度有关。
1-3、和两者有什么关系?在什么情况下两者相等?解:为应力强度因子,为平面应变断裂韧度,为的一个临界值,当增加到一定值时,裂纹便失稳扩展,材料发生断裂,此时,两者相等。
1-4、如何用材料的应力-应变曲线判断材料的韧性?解:所谓材料的韧性是指材料从变形到断裂整个过程所吸收的能量,即拉伸曲线(应力-应变曲线)与横坐标所包围的面积。
2-1、从原子结构上说明晶体与非晶体的区别。
解:原子在三维空间呈现规则排列的固体称为晶体,而原子在空间呈无序排列的固体称为非晶体。
晶体长程有序,非晶体短程有序。
2-2、立方晶系中指数相同的晶面和晶向有什么关系?解:相互垂直。
2-4、合金一定是单相的吗?固溶体一定是单相的吗?解:合金不一定是单相的,也可以由多相组成,固溶体一定是单相的。
3-1、说明在液体结晶的过程中晶胚和晶核的关系。
解:在业态经书中存在许多有序排列飞小原子团,这些小原子团或大或小,时聚时散,称为晶胚。
在以上,由于液相自由能低,晶胚不会长大,而当液态金属冷却到以下后,经过孕育期,达到一定尺寸的晶胚将开始长大,这些能够连续长大的晶胚称为晶核。
3-2、固态非晶合金的晶化过程是否属于同素异构转变?为什么?解:不属于。
同素异构是物质在固态下的晶格类型随温度变化而发生变化,而不是晶化过程。
3-3、根据匀晶转变相图分析产生枝晶偏析的原因。
解:①枝晶偏析:在一个枝晶范围内或一个晶粒范围内,成分不均匀的现象叫做枝晶偏析。
第三章 多自由度系统3.1试求图3-10所示系统在平衡位置附近作微振动的振动方程。
图3-10解:〔1〕系统自由度、广义坐标图示系统自由度N=2,选x1、x2和x3为广义坐标; 〔2〕系统运动微分方程根据牛顿第二定律,建立系统运动微分方程如下:;)(;)()(;)(34233332625323122222121111x K x x K x m x K x K x x K x x K xm x x K x K xm ---=------=---= 整理如下;0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K xm x K x K K K K x K xm x K x K K xm 写成矩阵形式;000)(0)(0)(00000321433365322221321321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+++--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x K K K K K K K K K K K K x x x m m m 〔1〕 〔3〕系统特征方程设)sin(,)sin(,)sin(332211ϕωϕωϕω+=+=+=t A x t A x t A x 代入系统运动微分方程〔1〕得系统特征方程;000)(0)(0)(321234333226532222121⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+++---+A A A m K K K K m K K K K K K m K K ωωω〔2〕 〔4〕系统频率方程系统特征方程〔2〕有非零解的充要条件是其系数行列式等于零, 即;0)(0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K展开得系统频率方程;0))(())(()))(())(()((21212323432223432265322121=-+--+--+-+++-+ωωωωωm K K K m K K K m K K m K K K K m K K进一步计算得;0;0)()())()(()))(())((())()()(()()()()())(()())(())(())()(())(())(()))(()()())((())(())(()))(())(()((02244662123432265324321236532214321231233224316532214332216321231232123232243226321421434322124321243165322165324323653221653243212121232343222343421221265322165322121212323432223432265322121==++++-+-+++++++++++-++-+++++++++++-=++-++--++++++-++++++++-++++-+++++=-+--+--+++-+++-++++=-+--+--+-+++-+a a a a K K K K K K K K K K K K K K m K K K K K K K K K K m m m K m K m m K K K K m m K K m m K K m m m m m K K K K m K K K K m m m m m K K m m K K K K K K m m m K K K K m K K K K K K m K K K K K K K K K K K K K K m K K K m K K K m K K m m K K m K K K K m K K K K K K m K K K m K K K m K K m K K K K m K K ωωωωωωωωωωωωωωωωωωωωωωωωωω (3)其中;3216m m m a -= ;)()()(316532214332214m m K K K K m m K K m m K K a +++++++=;))(())((36532214321231233222m K K K K K K K K K K m m m K m K a ++++-++-+=);()())()((21234322653243210K K K K K K K K K K K K K K a +-+-+++++=求解方程〔3〕得系统固有频率;)3,2,1(),,,,,,,,,(654321321==i K K K K K K m m m f i i ω 〔4〕 〔5〕系统固有振型 将系统固有频率代入系统特征方程〔2〕得系统固有振型, 即各阶振型之比:)3(3)3(1)3(3)3(2)3(1)3(2)2(3)2(1)2(3)2(2)2(1)2(2)1(3)1(1)1(3)1(2)1(1)1(21,1;1,1,1,1A A A A A A A A A A A A ======γγγγγγ 〔5〕 〔6〕系统振动方程)sin()sin()sin()sin()sin()sin(33)3(1)3(3)3(1)3(2)3(122)2(1)2(3)2(1)2(2)2(111)1(1)1(3)1(1)1(2)1(133)3(3)3(2)3(122)2(3)2(2)2(111)1(3)1(2)1(1321ϕωγγϕωγγϕωγγϕωϕωϕω+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧t A A A tA A A tA A A t A A A t A A A t A A A x x x 〔6〕在方程〔6〕中含有6个待定常数:)1(1A 、)2(1A 、)3(1A 、1ϕ、2ϕ和3ϕ。
第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复力作用下的振动称为自由振动。
3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。
6、图示组合结构,不计杆件的质量,其动力自由度为5个。
7、忽略直杆的轴向变形,图示结构的动力自由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。
二、计算题:10、图示梁自重不计,求自振频率ω。
l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
l /2l /212、求图示体系的自振频率ω。
l l 0.5l 0.513、求图示体系的自振频率ω。
EI = 常数。
l l 0.514、求图示结构的自振频率ω。
l l15、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
16、求图示体系的自振频率ω。
杆长均为l 。
17、求图示结构的自振频率和振型。
l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B 2m 2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。
EI EI W20、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EI EI WEI 221、求图示体系的自振频率ω。
各杆EI = 常数。
a a a22、图示两种支承情况的梁,不计梁的自重。
求图a 与图b的自振频率之比。
l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。