单基因疾病的分子诊断(教材)
- 格式:ppt
- 大小:2.52 MB
- 文档页数:9
《分子诊断学》课程教学大纲课程名称:分子诊断学(Molecular Diagnose)主讲教师:杨晶(教授),申鹤云(副教授)课程编号:学时:24学分:1.5预修课程:生物化学、细胞生物学、微生物学课程简介:分子诊断学是建立在分子生物学和免疫学基础上的医学诊断技术,在充分借鉴现代基因组学与蛋白质组学的研究成果基础上,通过建立各种适用的检测技术将疾病相关基因、蛋白与临床诊断紧密结合,为疾病预防,疾病预警和疗效评价服务,其核心是基因诊断和以单抗为基础的免疫学诊断。
分子诊断技术以其显著优势和巨大潜力,成为保障人类健康的最重要的生物技术之一。
本课程主要介绍分子诊断的常用技术及在科研和临床上的应用,包括ELISA 技术、免疫胶体金层析技术、化学发光技术、时间分辨技术、分子杂交技术、荧光定量PCR技术以及各种芯片技术等,掌握临床常见感染性疾病、单基因疾病和多基因疾病分子诊断策略和方法。
教材:临床分子诊断学郑芳陈昌杰华中科技大学出版社2014.7第一章绪论(2 学时)shen一、主要内容:(一) 分子诊断学的定义及其研究范畴(二) 分子诊断学的发展简史(三) 分子诊断学在医学中的应用二、学习重点和难点:重点:掌握分子诊断学的定义,了解分子诊断学经历了 3 个阶段的发展历史。
难点:一些新型分子诊断技术在医学中的应用。
第二章免疫学诊断技术(6 学时)shen一、主要内容:(一) 抗原抗体反应(二) 免疫浊度测定(三) 放射免疫分析技术(四) 酶免疫分析技术(五) 荧光抗体分析技术(六) 时间分辨免疫荧光技术(七) 荧光偏振免疫分析技术(八) 化学发光免疫分析技术(九) 金标免疫分析技术(十) 标记免疫分析的质量控制二、学习重点和难点:重点:放射免疫分析、酶免疫分析技术、荧光抗体分析技术和免疫浊度检测等技术原理,各种反应模式的原理及应用。
难点:一些新型示踪物的示踪原理(要求一定的物理学和化学知识)。
第三章分子生物学诊断技术(基因诊断技术)(6 学时)一、主要内容:(一)PCR 及衍生技术 1. PCR 技术的基本原理 2. PCR 衍生技术 3. 荧光定量PCR 技术 4. PCR 方法的标准化(二)核酸分子杂交技术 1. 核酸杂交的基本原理 2. 核酸探针 3. 核酸分子杂交技术二、学习重点和难点:重点:FQ-PCR、原位PCR、PCR-RFLP、PCR-ELISA、PCR-SSCP、Southern blot、 Northern blot、原位杂交等技术的原理及其在临床检测中的实际应用。
遗传性疾病的分子诊断遗传性疾病是由基因突变引起的一类疾病,其发病机制与遗传相关。
遗传性疾病的分子诊断通过检测遗传物质中的突变和变异来确定患者是否携带相关病因基因。
本文将详细介绍遗传性疾病的分子诊断方法以及其在临床实践中的应用。
一、遗传性疾病的分子诊断方法1. 单基因疾病的分子诊断方法单基因疾病是由单个突变或变异基因引起的疾病,其分子诊断主要依赖于基因突变检测技术,主要包括:- Sanger测序法:通过测序目标基因的外显子序列,检测突变位点的碱基变异情况。
这种方法适用于预测性基因检测和无需快速确定诊断的疾病。
- Next Generation Sequencing(NGS):NGS技术以其高通量,高灵敏度和高效率的特点成为了单基因疾病分子诊断的首选方法。
通过对目标基因组进行测序,可以检测出各种类型的突变和基因重排等变异。
- 多重荧光PCR:该方法可同时检测多个位点的基因突变,而无需进行目标基因测序。
它在预测性基因检测和快速确定诊断中具有较高的应用价值。
2. 多基因疾病的分子诊断方法多基因疾病是由多个基因突变或变异共同引起的疾病,与单基因疾病相比,其分子诊断方法更加复杂。
目前常用的多基因疾病分子诊断方法包括:- 基因芯片:通过在芯片上固定多个已知突变位点的探针,对目标基因组进行杂交检测。
基因芯片可以高通量地同时检测多个基因的突变和变异。
- 基因组重测序:通过对患者基因组进行大规模测序以获取全基因组信息,然后进行生物信息学分析,筛选出与疾病相关的突变和变异。
基因组重测序技术有助于发现新的疾病相关基因。
二、遗传性疾病分子诊断的临床应用1. 疾病的早期诊断遗传性疾病的分子诊断可帮助医生在患者出现症状之前,通过检测患者遗传物质的突变和变异,确定是否携带相关生成基因。
早期诊断有助于提供更早的治疗干预,降低疾病的发展风险。
2. 遗传咨询和家族规划分子诊断结果还可用于遗传咨询和家族规划。
对于已知患有遗传性疾病家族的人群,分子诊断可提供遗传风险评估,并为他们提供遗传咨询和家族规划建议,以减少遗传性疾病在后代中的传播。
第一章绪论分子生物学的定义:分子生物学(molecular biology)是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐述核酸与蛋白质、蛋白质与蛋白质之间相互作用的关系及其基因表达调控机制的一门学科。
广义分子生物学:包括对核酸、蛋白质等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。
狭义分子生物学:偏重于核酸的分子生物学。
主要研究基因或DNA结构与功能、遗传信息的表达及其调控机制等,也涉及到这些过程中相关蛋白质和酶的结构与功能的研究。
分子生物学研究的内容:按照狭义分子生物学的定义,可将现代分子生物学的研究内容概括为:1.基因与基因组的结构与功能。
2.遗传信息的传递。
3.基因表达调控机制。
4.基因工程。
5.结构分子生物。
现代分子生物学的发展:DNA重组技术:工具酶的发现、DNA的体外连接、载体的构建。
核酸分析技术:核酸杂交技术、DNA序列分析技术、PCR技术。
基因组研究:人类基因组计划、模式生物基因组。
基因表达调控:操纵子调控机制、真核基因调控方式、小分子RNA的研究。
细胞信号转导研究:G蛋白偶联信号转导、各种受体分子的研究。
技术应用成果:癌基因的发现、转基因技术、基因诊断和治疗、生物药物生产。
分子生物学发展趋势:功能基因组学←蛋白质组学→生物信息学。
医学分子生物学定义:定义:主要研究人体生物大分子的结构、功能、相互作用及其同疾病发生、发展的关系。
研究内容:主要研究人体发育、分化和衰老、细胞增殖调控、三大功能调控系统(神经、内分泌和免疫)的分子生物学基础;基因结构异常或调控异常与疾病发生、发展的关系;基因诊断、治疗和预防;生物制药。
在基础医学中的应用:在分子水平上对人的生理功能和病理机制进行研究;出现新的边缘学科——分子生理学、分子药理学、分子病理学、分子遗传学、分子免疫学、分子病原学、分子肿瘤学、分子遗传学、分子神经科学等;各学科在分子水平上进行整合的趋势;形成“反向遗传学”研究途径。