比较二次根式大小的8种方法
- 格式:docx
- 大小:179.41 KB
- 文档页数:6
比较二次根式大小的几种方法一、比较系数法:对于形如√a和√b的二次根式,如果a>b,那么√a>√b;如果a<b,那么√a<√b。
例如,比较√5和√7的大小。
由于5<7,所以√5<√7二、平方法:对于形如√a和√b的二次根式,如果a²>b²,那么√a>√b;如果a²<b²,那么√a<√b。
例如,比较√3和√8的大小。
由于3²=9,8²=64,所以√3<√8三、绝对值法:对于形如√a和√b的二次根式,如果,a,>,b,那么√a>√b;如果,a,<,b,那么√a<√b。
例如,比较√(-2)和√(-5)的大小。
由于,-2,=2,-5,=5,所以√(-5)<√(-2)。
四、化简法:对于形如√a的二次根式,如果a可以化简为形式p²×q(p和q为正整数),那么√a=√(p²×q)=p√q。
例如,化简√72、首先可以将72分解为2²×3²×2,然后利用根式的乘法法则和化简法则,得到√72=2×3√2=6√2五、近似法:如果无法直接通过上述方法比较二次根式的大小,可以使用近似法。
通过计算近似值,可以比较二次根式的大小。
例如,比较√3和√2的大小。
可以使用计算器或手算,得到√3≈1.732,√2≈1.414,所以√2<√3需要注意的是,以上方法比较的是二次根式的大小,而不是数值的大小。
当a和b的大小关系无法确定时,使用以上方法可以对二次根式的大小关系进行比较。
二次根式的化简与比较大小二次根式是数学中常见的一种形式,它可以表示为根号下一个数的形式。
在数学中,我们经常需要对二次根式进行化简和比较大小的操作。
本文将探讨二次根式的化简和比较大小的方法。
一、二次根式的化简化简二次根式是将其写成最简形式的过程。
最简形式是指分子和分母互质,且分母不含根号的形式。
1. 化简含有相同根号的二次根式当二次根式中含有相同根号时,可以将它们合并为一个根号下的数。
例如,化简√3 + √3。
由于√3 + √3 = 2√3,所以√3 + √3可以化简为2√3。
2. 化简含有不同根号的二次根式当二次根式中含有不同根号时,可以尝试将其化简为一个根号下的数。
例如,化简√2 + √8。
首先,我们可以将√8写成√(2 × 4),即√(2 × 2 × 2)。
然后,我们可以将√2 + √(2 × 2 × 2)化简为√2 + 2√2,即3√2。
二、二次根式的比较大小比较二次根式的大小时,可以使用以下方法:1. 平方比较法平方比较法是将二次根式的平方进行比较。
由于平方是非负数,所以比较二次根式的平方可以得到它们的大小关系。
例如,比较√5和√7的大小。
首先,我们可以计算它们的平方,即5和7。
由于5小于7,所以√5小于√7。
2. 通分比较法通分比较法是将二次根式的分母进行通分,然后比较分子的大小。
通分后,分母不再含有根号,可以直接比较分子的大小。
例如,比较√3/√2和√5/√2的大小。
首先,我们可以将分母通分为2,得到√3/2和√5/2。
由于√3小于√5,所以√3/2小于√5/2。
三、综合运用在实际问题中,我们常常需要综合运用化简和比较大小的方法来解决问题。
例如,我们需要比较√3 + √2和√5的大小。
首先,我们可以将√3 + √2化简为√6。
然后,我们可以比较√6和√5的大小。
由于6大于5,所以√6大于√5。
因此,√3 +√2大于√5。
又如,我们需要比较√3 - √2和√5的大小。
初中数学比较二次根式大小的八种方法本文介绍了八种比较含二次根式大小的方法,包括平方法、作商法、分子有理化法、分母有理化法、作差法、倒数法、特殊值法等。
其中,作商法是比较二次根式大小的常用方法之一,特别适用于由分母和分子两部分组成的二次根式。
此外,还有分子有理化法、分母有理化法、作差法、倒数法、特殊值法等方法,可以根据具体情况选择合适的方法进行比较。
例如,对于比较6+11与14+3的大小,可以使用平方法,计算它们的平方,然后比较大小。
对于比较a+1/a+2与a+2/a+3的大小,可以使用作商法,计算它们的商,然后比较与1的大小关系。
对于比较15-14与14-13的大小,可以使用分子有理化法,将它们的分子有理化后再比较大小。
对于比较11/(2-3)与3/(3-2)的大小,可以使用分母有理化法,将它们的分母有理化后再比较大小。
对于比较19-12/33与1/3的大小,可以使用作差法,将它们相减后再比较大小。
对于比较已知x=n+3-n+1,y=n+2-n的大小,可以使用倒数法,将它们的倒数比较大小。
对于比较x,x^2,x(0<x<1)的大小,可以使用特殊值法,找到一个特殊值,代入比较。
对于比较5-a与a-6的大小,可以使用定义法,将它们的定义式代入比较。
总之,比较含二次根式大小需要根据具体情况选择合适的方法,灵活运用各种方法可以得到简洁的解法。
文章格式错误严重,需要重新整理。
同时,文章中存在明显的错误和不完整的段落,需要删除。
以下是对原文的修改和改写:题目11:已知 n + 3 + n + 1.n + 2 + n,求证 x < y。
解:将式子化简得 n。
-2,因此 x。
-2.又因为 x + y。
0,所以 y。
-x。
综合两式得 x < y。
题目:已知 5 - a ≥ 1/2,求证 a - 6 < 0.解:将不等式两边同时减去 1/2,得 9/2 - a ≥ 0.因为 9/2.4,所以a ≤ 4.又因为 a - 6 < a - 5 ≤ -4 + 5 = 1,所以 a - 6 < 0.题目3:该段落不完整,删除。
巧用方法比较根式的大小二次根式是八年级上学期的重要内容,而比较根式的大小是必须掌握的根式问题。
在解答这类问题时,有些学生感觉有点困难。
如果不顾题目的特征而盲目地运用方法,那么题目运算量大,计算难度也大,并且非常容易出现错误。
其实,只要根据不同根式的特点采取相适应的方法,就能做到既简捷又准确。
现举例如下:一、比较形如a与c的形式的大小,把因式移入根号内,变为比较被开方数的大小这种方法是比较根式大小的基本方法。
例如:比较15和11的大小解:15=11=∵2475>1815∴15>11二、把两数平方后,先比较它们的平方的大小,再比较根式的大小这种方法是比较根式大小的一种常用的方法。
例如:比较+与的大小解:∵(+)2=7+2=7+()2 =10=7+7+>7+∴+>要特别注意:当两数都为正数时,它们的大小关系与平方后的大小关系是一致的,两数为负数时,则与平方后的大小关系相反。
如:比较-与-的大小解:(-)2=10-2=10-(-)2=5=10-(-)2<(-)2∴->-三、将两数求差,再将其差与0进行比较1、如果a-b>0,则a>b;2、如果a-b=0,则a=b;3、如果a-b<0,则a<b。
例如:比较与的大小解: -==<0∴<三、将两数相除,看商是否大于11、如果>1,则a>b;2、如果=1,则a=b;3、如果<1,则a<b。
例如:比较(+)10 与(8+2)5 的大小解:===()5 >15=1∴(+)10 >(8+2)5四、把分母或分子进行有理化后再进行比较例如:⑴比较与的大小解:∵==4+==6+∴<⑵比较-与-的大小解:∵(-)(+)=14-13=1-)(+)=13-12=1∴(-)(+)=(-)(+)又∵+>+∴-<-将⑴中分母进行有理化;⑵中两式相当于把分子进行有理化,这样很容易得出比较结果。
五、选取合适的中间数,比较各数与中间数的大小,从而得出比较结果例如:比较与0.53的大小解∵>10.53<1∴>0.53总之:比较根式的大小的方法有很多种,我们在学习中根据题目特征,巧用方法,就能使许多问题迎刃而解。
比较二次根式大小的巧妙方法一、移动因式法将根号外的正因式移入根号内,从而转化为比较被开方数的大小。
例1:比较的大小。
解:>∴>二、运用平方法两边同时平方,转化为比较幂的大小。
此法的依据是:两个正数的平方是正数,平方大的数就大;两个负数的平方也是正数,平方大的数反而小。
例2:比较与的大小.解:∵,>0,>0∴<三、分母有理化法此法是先将各自的分母有理化,再进行比较。
例3:比较与的大小。
解:∴>四、分子有理化法此法是先将各自的分子有理化,再比较大小。
例4:比较与的大小解:∵>∴>五、求差或求商法求差法的基本思路是:设为任意两个实数,先求出与的差,再根据“当<0时,<;当时,;当>0时,>”来比较与的大小。
求商法的基本思路是:设为任意两个实数,先求出与的商,再根据“①同号:当>1时,>;=1时,;<1时,<。
②异号:正数大于负数”来比较与的大小。
例5:比较的大小。
解:∵<∴<例6:比较的大小.解:∵>1∴>六、求倒数法先求两数的倒数,而后再进行比较。
例7:比较的大小。
解:∵>∴<七、设特定值法如果要比较的二次根式中含有字母,为了快速比较,解答时可在许可的条件下设定特殊值来进行比较.例9:比较与的大小。
解:设,则:=1,=∵<1,∴>九、局部缩放法如果要比较的二次根式一眼看不出有什么特点,又不准求近似值,可采取局部缩放法,以确定它们的取值范围,从而达到比较大小的目的.例10:比较的大小。
解:设,∵,7<<8,即7<<8,8<<9,即8<<9∴<,即<例11:比较与的大小。
解:∵>∴>十、“结论"推理通过二次根式的不断学习,不难得出这样的结论:“>(>>0)”,利用此结论也可以比较一些二次根式的大小(结论证明见文末)。
例12:比较1与的大小。
解:∵,由>(>>0)可知:>即>又∵>∴>,即1>总的来说,比较二次根式大小的方法不仅仅局限于以上十种,除此之外诸如移项、拆项法,类比推理法,数形结合法,数轴法,还有假设推理法等等,但不管使用哪种方法,都必须在掌握二次根式的基本性质和运算法则上进行,要根据问题的特征,二次根式的结构特点,多角度地探索思考,做到具体问题具体分析,针对不同问题采取不同的策略,另外还应多做这方面的训练,方能达到熟练而又快捷,运用自如的程度。
二次根式比大小八种方法1.平方法 例题:比较116+与314+的大小变式训练:1、比较1413+与1215+的大小2、比较1732-与2623-的大小2.作商法 例题:比较34-与32+的大小变式训练:比较511-与56+的大小3.分子有理化 例题:比较1415-与1314-的大小变式训练1、比较3031-与2930-的大小2、比较比较1719-与1315-的大小4.分母有理化例题:比较321-与231-的大小变式训练:1、比较261-与681-的大小2、比较132-与121-的大小5.做差法 例题:比较3119-与32的大小变式训练1、比较21-与31-的大小2、比较5.115与-的大小6.倒数法 例题:已知13+-+=n n x ,n n y -+=2,试比较x ,y 的大小。
变式训练1:比较2014-20152015-2016与的大小2、比较2002-20042003-2005与的大小7.放缩法例题:比较2-5727与+的大小变式训练:113268.定义法 例题:比较a -5与36-a 的大小常见二次根式化简求值的九种技巧1.估值法例题1:估计184132+⨯的运算结果应在( ) A . 5到6之间 B. 6到7之间 C. 7到8之间 D. 8到9之间例题2:若将三个数3-,7,11表示在数轴上,则其中被如图所示的墨汁覆盖的数是 。
2.公式法 例题3:计算)3225()65(-⨯+3.拆项法 例题4:计算)23)(36(23346++++ 0 1 2 3 44.换元法例题5:已知12+=n ,求:424242422222-++--++--+-++n n n n n n n n 的值。
变式: 化简3326302352+--+5.整体代入法例题6:已知2231-=x ,2231+=y ,求4-+x y y x 的值。
6.平方法例题7:计算110310310+-++例题8:计算y xy x x y y x +++2 (y x ≠)7.配方法例题9:若a, b 为实数,153553+-+-=a a b ,试求22-+-++b a a b b a a b 的值。
比较二次根式大小的8种方法要比较二次根式的大小,我们可以使用以下八种方法:方法一:使用绝对值对于任意两个正实数a和b,如果a>b,则√a>√b。
这是因为二次根式对应的数值是非负数,而且二次根式是单调递增的。
因此,我们可以比较二次根式的大小,先计算其数值,然后使用绝对值比较大小。
方法二:使用二次根式的平方对于任意正实数a和b,如果a>b,则a²>b²。
因此,我们可以比较二次根式的大小,先计算其平方,然后比较平方的大小。
注意这种方法只适用于非负的二次根式,对于负二次根式需要使用其他方法。
方法三:使用分数形式将二次根式转换为分数形式可以更直观地比较大小。
对于任意正实数a和b,如果a>b,则√a>√b。
通过将二次根式转换成相同的分母,我们可以直接比较分子的大小。
方法四:使用当量形式对于任意非负实数a和b,如果a>b,则√a>√b。
但对于负实数,我们需要使用当量形式来进行比较。
当a和b都是负数时,如果a>b,则√a<√b。
因此,在比较负二次根式大小时,我们需要将其写成当量形式。
方法五:使用图形方法可以通过绘制二次根式的图形来比较大小。
对于平方根函数√x来说,当x增大时,其图像也增大。
因此,我们可以绘制二次根式的图像,并观察两个二次根式的位置关系,从而比较其大小。
方法六:使用近似值如果我们只是需要大致比较二次根式的大小,而不需要精确值,可以使用近似值来进行比较。
通过计算二次根式的近似值(如保留小数点后两位),然后比较近似值的大小,可以得到二次根式大小的一个估计。
方法七:使用指数运算对于任意正实数a和b以及正整数n,如果a>b,则aⁿ>bⁿ。
因此,我们可以将二次根式的指数提取出来,然后比较指数运算的结果。
这种方法适用于有多项式表达式中的二次根式。
方法八:使用代数方法对于给定的二次根式,我们可以使用代数方法将其转化为有理数。
比较二次根式大小的几种方法比较含有二次根式的式子的大小,如果不允许查表和使用计算器,会感到棘手,因此在学习中掌握几种比较的方法是非常必要的。
一、移动法把根号外的非负因式移到根号内比较被开方数大小。
例1. 比较62和53的大小。
解:因为6226722=⨯= 5335752=⨯=所以6253<.二、平方法例2. 比较72和63的大小.解:因为()72492982=⨯= ()633631082=⨯=所以 7263<.三、作差法例3. 比较225-和52-的大小. 解:因为()()22552225523225---=--+=-又因为()()3218252022== 所以 322532250<-< 所以 22552-<-四、配方法 例4. 比较8215-和1263-的大小.解:82155215353-=-+=-12639227333-=-+=-因为53< 所以8251263-<-五、分子或分母有理化例5. 比较76-和65-的大小.解:因为76-()()=-++767676 =+17665-()()=-++656565=+165因为 7665+>+所以 7665-<-.例6. 比较176-和152-的大小. 解:将分母有理化因为17676-=+, 15252-=+ 因为 7654+>+ 所以 176152->-六、借助中间值比较法例7. 比较52+和371-的大小.解:因为53<所以525+< 因为376> 所以 3715-> 所以 52371+<-七、缩放法在解题时,有时则需要将某个式子适当地放大或缩小,进行比较。
例8. 比较()323-与32的大小.解:()32332333332-=+<+=. 所以 ()32332-<.例9. 比较18981+与20011-的大小.解:因为189811849143144+>+=+= 2001145144-<-=所以 1898120011+>-.。
专训2比较二次根式大小的八种方法比较二次根式的大小是数学中常见的问题。
在本文中,将介绍八种常见的方法来比较二次根式的大小。
这些方法包括化简、通过比较系数、平方、提取公因数、借助图像、使用近似值、利用性质、以及使用不等式。
通过掌握这些方法,可以更加灵活地处理二次根式的大小关系问题。
第一种方法是化简。
化简是将二次根式转化为最简形式,并比较它们的系数和根号中的数值来判断大小关系。
例如,对于√2和√3,可以将它们分别化简为1.414和1.732,然后进行比较。
在进行比较时,可以直接比较这些数的大小。
第二种方法是比较系数。
对于形如a√b和c√d的二次根式,可以通过比较a和c的大小来判断它们的大小关系。
如果a>c,则a√b>c√d;如果a=c,则需要比较b和d的大小;如果a<a,则a√b<c√d。
第三种方法是平方。
如果对于正实数a,有a²>b,则√a>√b。
这个性质可以推广到二次根式的比较中。
例如,对于√5和2,可以计算它们的平方分别为5和4,可以得出结论√5>2第四种方法是提取公因数。
如果两个二次根式的根号中的数值相同,可以将它们提取出来,然后比较系数的大小。
例如,对于√3和2√3,可以将它们都提取出√3,然后比较系数的大小,可以得出结论2>1,即2√3>√3第五种方法是借助图像。
可以将二次根式的值表示在数轴上,并比较它们在数轴上的位置来判断大小关系。
例如,可以将√2和√3在数轴上表示出来,并比较它们的位置关系。
第六种方法是使用近似值。
可以利用计算器或其他工具将二次根式近似为小数,然后直接比较这些小数的大小。
例如,可以近似计算出√2≈1.414和√3≈1.732,然后比较它们的大小。
第七种方法是利用性质。
可以利用二次根式的性质来进行推导和比较。
例如,可以利用开方的非负性质来判断二次根式的大小关系,即对于非负实数a,有√a>0。
第八种方法是使用不等式。
二次根式比大小的八种方法。
方法一:平方法
平方法是对要比较大小的两个数先平方,根据平方后数据的大小来确定原数的大小。
方法二:作商法
作商法是把要比较大小的两个数相除,根据除得的商来判断原来数值的大小,除得的商分大于1,等于1,或小于1。
方法三:分子有理化法
分子有理化法是专门针对二次根式比较大小来说的,通过对分子有理化来判断出大小,再确定原数值的大小。
方法四:分母有理化法
分母有理化是通过对二次根式乘以有理化因式后,将原来的二次根式化简成最简二次根式再比较大小。
方法五:作差法(最常用)
作差法就是将比较大小的两个数相减,根据所得的差来看两数的大小,也是平时比较大小最常用的方法。
方法六:倒数法
倒数法就是先求出原数倒数的大小,再根据倒数的大小来确定原来数值的大小。
方法七:特殊值法
特殊值法就是通过对比较大小的代数式子赋特殊值的方法来确定大小的方法。
方法八:定义法。
二次根式大小比较的几种方法二次根式的大小比较,除了掌握实数大小比较的法则外,还需掌握一定的技巧,下面介绍几种二次根式大小的比较方法与技巧。
一、 比差法要比较两个二次根式的大小,可以让这两个根式相减,视其差值的正负就可以判断它们的大小:若0>-b a ,则b a >;若0<-b a ,则b a <;若0=-b a ,则b a =。
例1, 比较35-和32-的大小 解:∵()()01293233235<-=-=+-- ∴3235+<-“比差法”是一种常用的比较方法,一般说如果两个二次根式出现某些同类二次根式,就要考虑采用这种方法。
二、 比商法如果a 、b 都是正实数,若1>b a ,则b a >;若1<ba ,则b a <;若1=b a ,则b a =。
例2, 比较的大小与2557解:∵2557=125282528>= ∴2557> 三、 化同法先将两个二次根式化为一个数的算术平方根,根据被开方数的大小,就可以判断两个根式的大小。
例3, 比较31527与的大小 解:∵6373= 60152=,而6063> ∴15273>这种方法适用于两个单个二次根式的比较或一个根式与一个有理数的比较。
四、 平方法就是先将两个根式各自平方,然后比较平方后的大小,再说明原数的大小,即,若0>a ,0>b ,且22b a >,则b a >;若0<a ,0<b ,且22b a >,则b a <。
例4, 比较的大小与87105++ 解:∵0105>+ 087>+ 而50215)105(2+=+56215)87(2+=+ 又5621550215+<+ ∴22)87()105(+<+ ∴87105+<+ 对于根式d c b a ±±与,若d c b a +=+,可用此法。
比较二次根式大小的8种方法比较大小是学习数学过程中经常会遇到的,通常用到的方法就是作差法,但是有时要对两个数进行大小的比较,仅仅用作差法是不行的,那怎么办呢?别担心,本节整理的8种比较大小的方法,如果你能全掌握,那就可以对比较大小的题目通吃”了,这8种方法不仅适用于二次根式大小的比较,对于其他数的大小比较也适用。
当然,本节是结合二次根式比较大小的题型来讲述这8种方法,既学会了二次根式大小的比较,又掌握了8种比较大小的方法,可谓收获良多。
接下来就让带大家一起来学习比较二次根式大小的8种方法:平方法、作商法、分子有理化、分母有理化、作差法、倒数法、特殊值法、定义法方法一:平方法……根号内的数相加为同一个数时。
平方法是对要比较大小的两个数先平方,根据平方后数据的大小来确定原数的大小。
方法一平方法L比较>用+/7与√14+√3的大小. 解:T(√⅛+ √TΓ)2 = 17 + 2 V66, (∕14÷√⅛)2 = 17÷2 √42,17÷2 √66>17 + 2 /42÷Λ(√6 + √TΓ)a>( √14÷√3)^/-√6+ √11 >√14+vX方法二:作商法向1靠拢,化同类项。
作商法是把要比较大小的两个数相除, 根据除得的商来判断原来数值的大小, 除 得的商分大于1 ,等于1,或小于1。
方法二作商法>Q UL + 2>0 ΛV ^±1 ⅛∕c +2 M+3 V z o ÷2 方法三:分子有理化法... 根号内的数差为同一个数时,将分子化 1 ,比分母。
分子有理化法是专门针对二次根式比较大小来说的, 通过对分子有理化来判断出 大小,再确定原数值的大小。
2.比较7?石+2 忘“与石后的大小解 √<ι + 1 . √Z Λ + 21 )(、d +3) « + 4 √Λ ÷3 皿+2 .« ÷3方法三分子有理化法3.比较J15—∖A1 与√ 14一√33的大小.解:√115 - ./14 =-/15-->∕14) ( y^15+ √^14) _λ∕l5÷ /41/5 +√l4t√14 --√13 = J吊-/Hb(√⅞¾+√⅞)=1√14÷ /13√14÷13*V√15+ √14>√14+ /13, √15+ √14>0^κΛ4十帀>°√i5+√i4*^√14+√i3,'^'2+√3>√3+√2∙” 1 、11 _ ............. ”一: k Szs三: aaassa—^BBaSaaSsa⅛⅛⅛2 — J3 \^3—庞方法四:分母有理化法方法分母有理化法丄比较的大小*解二詁乃聖厉"谆... 根号内的数相似,化同为目标。
比较二次根式大小的巧妙方法二次根式是数学中常见的一种数形式,可以写成形如根号下a的形式,其中a是一个非负实数。
在比较二次根式大小时,可以使用一些巧妙的方法来简化计算和判断。
下面将介绍几种比较二次根式大小的巧妙方法:1.平方比较法:对于非负实数a和b,如果a>b,则a的平方大于b的平方,即a^2>b^2、因此,对于任意非负实数a和b,如果a>b,那么根号下a的值大于根号下b的值。
这种方法适用于比较两个非负实数的根号值大小。
例如,要比较根号下3和根号下2的大小:首先,计算3的平方和2的平方,得到3^2=9和2^2=4、由于9>4,可以得出根号下3>根号下22.平方和比较法:对于非负实数a、b和非负整数n,如果a^2+b^2>(a+n)^2,则a^2+b^2大于(a+n)^2、因此,对于任意非负实数a和b,如果a^2+b^2>(a+n)^2,那么根号下a的值大于根号下(a+n)的值。
这种方法适用于比较一个非负实数和一个非负整数之和的平方和与平方的大小。
例如,要比较根号下7和根号下6+1的大小:首先,计算7和(6+1)^2,得到7和(6+1)^2=7和49、由于7<49,可以得出根号下7<根号下6+13.有理化分子法:对于非负实数a和b,可以使用有理化分子法将二次根式的分子有理化,然后比较分子的大小。
有理化分子的基本原理是将根号a的分子乘以根号a的共轭形式,即分子为a,分母为1、例如,有理化分子根号3的过程为:根号3*根号3=3、然后,可以比较有理化分子后的值的大小。
例如首先,有理化分子根号下3得到3,有理化分子根号下2得到2、因此,可以得出根号下3>根号下24.二次根式近似法:对于无法直接比较大小的二次根式,可以将其转化为十进制近似值,然后比较近似值的大小。
使用计算器或其他计算工具可以方便地进行这种近似计算。
例如,要比较根号下3和根号下2的大小:首先,使用计算器计算根号下3的近似值为1.732,根号下2的近似值为1.414、由于1.732>1.414,可以得出根号下3>根号下2总之,比较二次根式大小可以使用平方比较法、平方和比较法、有理化分子法和二次根式近似法等巧妙方法。
二次根式大小比较的常用方法1.利用平方根的性质:如果两个数的平方根相同,那么这两个数一定相等。
即对于任意正实数a和b,如果√a=√b,则a=b。
利用这个性质,我们可以对二次根式进行大小比较。
2.化简二次根式:利用二次根式的性质,我们可以将二次根式化简为最简形式。
例如,对于√2和√3,我们可以将它们化简为√6和√3,然后比较它们的大小。
通常情况下,我们将二次根式化简为含有最小素数因子的形式,这样可以更容易比较大小。
3.平方根的分子分母相等法:对于二次根式的大小比较,我们可以通过比较它们的分母。
如果分母相等,那么我们可以通过比较分子的大小来确定二次根式大小的关系。
例如,对于√5和√2,我们可以将它们分别表示为(√5)/(√1)和(√2)/(√1),由于分母相等,在分子的大小比较中,√5大于√2,因此√5大于√24.乘法法则:对于以二次根式为因子的乘法式,我们可以通过乘法法则来确定它们的大小关系。
根据乘法法则,如果一个数的平方大于另一个数的平方,那么这个数就大于另一个数。
例如,对于√3和√5来说,我们可以将它们相乘得到√15和√1,由于15大于1,所以√15大于√1、通过这个乘法法则,我们可以对多个二次根式的大小进行比较。
5.通过比较被开方数的大小:被开方数的大小也决定了二次根式的大小关系。
例如,对于√7和√5来说,我们可以通过比较7和5的大小来确定它们的大小关系。
由于7大于5,所以√7大于√5、这个方法适用于对没有公共因子的二次根式进行大小比较。
在实际运用中,我们可以根据需要选择合适的方法进行二次根式大小比较。
有时候需要结合多种方法来确定二次根式的大小关系。
熟练掌握这些方法,可以帮助我们更好地理解二次根式的性质和进行大小比较。
比较二次根式大小的8种方法
比较大小是学习数学过程中经常会遇到的,通常用到的方法就是作差法,但是有时要对两个数进行大小的比较,仅仅用作差法是不行的,那怎么办呢?
别担心,本节整理的8种比较大小的方法,如果你能全掌握,那就可以对比较大小的题目“通吃”了,这8种方法不仅适用于二次根式大小的比较,对于其他数的大小比较也适用。
当然,本节是结合二次根式比较大小的题型来讲述这8种方法,既学会了二次根式大小的比较,又掌握了8种比较大小的方法,可谓收获良多。
接下来就让带大家一起来学习比较二次根式大小的8种方法:
平方法、作商法、分子有理化、分母有理化、作差法、倒数法、特殊值法、定义法
方法一:平方法
……根号内的数相加为同一个数时。
平方法是对要比较大小的两个数先平方,根据平方后数据的大小来确定原数的大小。
方法二:作商法
……向1靠拢,化同类项。
作商法是把要比较大小的两个数相除,根据除得的商来判断原来数值的大小,除得的商分大于1,等于1,或小于1。
方法三:分子有理化法
……根号内的数差为同一个数时,将分子化1,比分母。
分子有理化法是专门针对二次根式比较大小来说的,通过对分子有理化来判断出大小,再确定原数值的大小。
方法四:分母有理化法
……根号内的数相似,化同为目标。
分母有理化是通过对二次根式乘以有理化因式后,将原来的二次根式化简成最简二次根式再比较大小。
方法五:作差法(最常用)
作差法就是将比较大小的两个数相减,根据所得的差来看两数的大小,也是平时比较大小最常用的方法。
方法六:倒数法
倒数法就是先求出原数倒数的大小,再根据倒数的大小来确定原来数值的大小。
方法七:特殊值法
特殊值法就是通过对比较大小的代数式子赋特殊值的方法来确定大小的方法。
方法八:定义法
以上就是比较二次根式大小的8种方法,其中第5种最常用!这8种方法你掌握了几种呢?
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。