建筑外文翻译---高层结构与钢结构
- 格式:doc
- 大小:58.00 KB
- 文档页数:17
外文原文Tall BuildingsAlthough there have been many advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig. 1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame; Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frames with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses, a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building (1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for bothstrength and stiffness, to resist wind load can be achieved only if all column elements can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York.Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with. Diagonal members intersecting at the center line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Center in Chicago, using as much steel as is normally needed for a traditional story building.Fig. 1. Graphical relationship between design quantities of steel and building heights for a typical building frame. Curves A and B correspond to the boundary conditions indicated in the two building diagrams. 1 psf = 0. 048kPa.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The i10-story Sears Roebuck Headquarters Building in Chicago has nine tubes, bundled at tile base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft (442 m), is the world's tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind or earthquake) and the control of drift (lateral building movement) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the facade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin facade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes, minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized.The structural system has been used on the 54-story One Mellon Bank Center in Pittsburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive challenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building, exterior columns were spaced at 5.5-ft (1.68-m) centers, and interior columns were used as needed to support the 8-in.-thick (20-cm) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig.2), known as the tube-in-tube system, made it possible to design the world's present tallest (714 ft or 218m) lightweight concrete Building in Houston)for structure of only 35 s oriel building the unit 52 —story One Shell Plaza of a traditional shear wallSystems compiling both concrete and steel have also been developed ,an example of which is the composite system developed by Skidmore ,Owings & Merrill in which an exterior closely spaced framed tube in concrete envelops an interior steel framing ,thereby combining the advantages of both reinforced concrete and structuralsteel systems.The 52—story One Shell Square Building in New Orleans is based on this system.NEW WORDS AND PHRASES1.spectacular 壮观的,惊人的,引人注意的2.sway 摇动,摇摆,歪,使倾斜3.residential 居住的,住宅的,作住家用的4.commercial 商业的,商业上的,商务的5.innovation 革新,创新,新方法,新事物6.boundary 分界线,边界7.eliminate 排除,消除,除去8.apartment 公寓住宅,单元住宅9.column 柱,支柱,圆柱,柱状物10.demonstrate 示范,证明,演示,11.project 凸出,投射,计划,工程12.stress 应力,压力13.truss 构架,桁架14.bundle 捆,束,包15.terminate 使终止,使结尾,结束16.facade (房屋的)/E 面,立面,表面17.perimeter 周,周围,周界,周长18.encroach 侵犯,侵占,蚕食19. high • rise building 高层建筑20.reinforced concrete 钢筋混凝土21 . spandrel beam 窗下墙的墙托梁22. shear wall 剪力墙中文译文高层建筑大体上建筑施工工艺学方面已经有许多进步, 在超高层的设计和施工上已经取得了惊人的成就。
毕业论文外文翻译-高层建筑结构High-Rise Building StructureAbstract:High-rise buildings have become common in modern cities across the world. Structural considerations play a crucial role in the planning and design of these buildings. The structural system of a high-rise building must be able to support its own weight as well as any additional loads imposed by occupancy and natural forces such as wind and earthquakes. This paper provides an overview of the structural systems commonly used in high-rise buildings, including reinforced concrete, steel, and hybrid systems. It also discusses the advantages and disadvantages of each system and the factors that affect their selection based on the specific requirements of a building.Introduction:In modern cities, high-rise buildings have become an increasingly popular option for meeting the growing need for office and residential space. High-rise buildings have several advantages, including the efficient use of land, the ability to accommodate large numbers of people, and the provision of spectacular views. To achieve these benefits, it is important to develop a safe and efficient structural system for high-rise buildings.Structural Considerations for High-Rise Buildings:Structural considerations are critical for high-rise buildings. Such structures must be able to support their own weight, as well as resist loads imposed by occupancy and natural forces such as wind and earthquakes. The structural system must also be able to maintain stability throughout the building's lifespan, while providing adequate safety for its occupants.Common Structural Systems for High-Rise Buildings:Reinforced Concrete System:One of the most commonly used structural systems for high-rise buildings is reinforced concrete. This system is desirable because of its strength, durability, and fire resistance. Concrete is also easily moldable, which allows for various shapes and sizes to be used in the building design.Steel System:The steel structural system is another popular choice for high-rise buildings. Steel structures have a high strength-to-weight ratio, which makes them a good choice for taller and lighter buildings. They are also easily adaptable and have high ductility, making them more resistant to earthquake damage.Hybrid System:Hybrid structural systems, which combine the advantages of reinforced concrete and steel, have become increasingly popular in recent years. These systems include concrete encased steel frames, concrete-filled steel tubes, and steel reinforced concrete.Factors Affecting Selection:The selection of a structural system for a high-rise building depends on several factors, including the building height, location, climate, design requirements, and budget. For example, in areas with high wind loads, a steel or hybrid system may be preferable due to its high strength and ductility. In areas with high seismic activity, a reinforced concrete system may be more appropriate because of its superior resistance to earthquake damage.Advantages and Disadvantages of Structural Systems:Each structural system has its advantages and disadvantages. The reinforced concrete system is strong, durable, and fire resistant, but is also heavy and requires a longer construction period. The steel system is adaptable and has a high strength-to-weight ratio, but is also susceptible to corrosion and may require regular maintenance. The hybrid system combines the benefits of both systems but may be more expensive than either system alone.Conclusion:Structural considerations are critical for the planning and design of high-rise buildings. Reinforced concrete, steel, and hybrid systems are the most commonly used structural systems for high-rise buildings. The selection of a system depends on several factors, including the building height, location, climate, design requirements, and budget. Each system has its advantages and disadvantages, and careful consideration of these factors is necessary to develop a safe and efficient structural system for high-rise buildings.。
PASAR结构专业英汉对照一、规范或图集《建筑结构可靠度设计统一标准》:Unified standard for reliability design of building structures《建筑结构荷载规范》:Load code for the design of building structures《钢结构设计规范》:Code for design of steel structures《建筑抗震设计规范》:Code for seismic design of buildings《混凝土结构设计规范》:Code for design of concrete structures《建筑地基基础设计规范》:Code for design of building foundation《门式刚架轻型房屋钢结构技术规程》:Technical specification for steel structure of light-weight Buildings with gabled frames《钢筋混凝土筒仓设计规范》:Code for design of reinforced concrete silos《砌体结构设计规范》:Code for design of masonry structures《高层建筑混凝土结构技术规程》:Technical specification for concrete structures of tall building《高层民用建筑钢结构技术规程》:Technical specification for steel structure of tall buildings《混凝土结构加固设计规范》:Design code for strengthening concrete structure 《钢结构加固技术规范》:Technical specification for strengthening steel structures 《工业建筑防腐蚀设计规范》:Code for Anticorrosion Design of IndustrialConstructionsPermanent load:恒载Live load: 活载Snow load:雪荷载Snow region : 雪压分布区Reference snow pressure:基本雪压Wind load:风荷载Wind region:风压分布区Reference wind pressure:基本风压Terrain roughness:地面粗糙度Crane load:吊车荷载Seismicity 6 points:地震烈度6点(不能简单认为中国规范6度)二、常用语1、混凝土结构Concrete structure :混凝土结构(包括素砼结构、钢筋砼结构、预应力砼结构)Plain concrete structure:素混凝土结构Reinforced Concrete structure :钢筋混凝土结构Prestressed Concrete structure :预应力混凝土结构Cast-in-situ Concrete structure :现浇混凝土结构Structural joint:结构缝(分割混凝土结构间隔的总称)Expansion joint:伸缩缝Deep beam:深梁Steel bar :普通钢筋Reinforcing bar :钢筋(通常指受力钢筋)Reinforcing rod:钢筋(在钢筋混凝土中使用的各种钢筋)Hoop reinforcement:箍筋(螺旋形箍筋除外)Stirrup:箍筋spacing of stirrups:箍筋间距spiral reinforcements:螺旋筋fabric reinforcements:钢筋网Transverse reinforcement:横向钢筋(垂直纵向受力钢筋的箍筋或间接钢筋)Hot rolled deformed bars :热轧带肋钢筋Hot rolled plain round bars :热轧光圆钢筋Anchorage length:锚固长度Concrete cover:混凝土保护层Topping:面层(也可指砂浆)Bar diameter:钢筋直径Foundation:基础Concrete wall:混凝土墙(泛指用混凝土做的墙体)Frame beams:框架梁Frame columns:框架柱Columns of bent:排架柱Columns supporting structural transfer member:框支柱Shear walls and coupling beams:剪力墙和连梁Cantilever beam:悬臂梁Slab:板(泛指混凝土板及其他板)Slab on ground:地面上的混凝土板Suspended slabs:楼面板Ratio of reinforcement:配筋率Embedded parts:预埋件Lap length:搭接长度Rejointing :勾缝,填缝Fist pour:第一期浇灌Second pour:第二期浇灌Fine aggregate concrete:细石混凝土Concrete with strength level is no lower than C30:混凝土强度等级不低于C30(《建筑地基基础设计规范》描述)The concrete strength grade shall not be less than C30: 混凝土强度等级不低于C30(《混凝土结构设计规范》描述)The stressed steel bars adopt the HRB400,Stirrups adopt HRB300:受力钢筋采用HRB400,箍筋采用HRB300Anchorage of steel reinforcement:钢筋的锚固The impermeability grade of concrete:混凝土抗渗等级2、地基基础Earth work:地基工程Ground(foundation soils):地基Retaining wall:挡(土)墙Gravity Retaining wall:重力式挡墙Pedestals:设备底座Characteristic value of subsoil bearing capacity:地基承载力特征值Ground treatment(ground improvement):地基处理Strip footing under column:柱下条形基础Pile foundation:桩基础End-bearing pile :端承桩50 thick concrete blinding:50厚混凝土基础垫层Concrete blinding C15 : C15混凝土垫层C15 plain concrete:C15 素混凝土Residual soil:原积土Design grade of foundation:基础设计等级Grade A:甲级Anti-floating checking:抗浮验算Rock, gravelly soil, sandy soil, silty soil, cohesive soil, artificial fill:岩石,碎石土,砂土,粉土,黏性土,人工填土Plain fill:素填土Compacted fill:压实填土Miscellaneous fill:杂填土Compacted coefficient:压实系数Embedded depth of foundation:基础埋置深度3、钢结构Steel work:钢结构工程Steel structure:钢结构Pure frames:(无支撑)纯框架Braced frames:有支撑框架Wind column:抗风柱Wind beam:抗风梁或抗风系杆Brackets:牛腿Connector(Connecting pieces):连接件Supports(bearings):支座Hinged bearing:铰支座,铰支承Composite steel and concrete beam:钢与混凝土组合梁Beam:梁Column:柱Leaning column:摇摆柱(框架内两端为铰接不能抵抗侧向荷载的柱)Purlin :檩条Girt:围梁,也可指墙面檩条Manhole:人孔Eot crane: 电动桥式起重机Underslung crane:悬挂吊车Crane rail:吊车轨道Crane stop :吊车车挡Crane girders(Crane beam &Crane runway):吊车梁Planed and tightly fitted:刨平顶紧Cantrex rail clip:吊车轨道固定夹10 PL. Stiffener: 10厚加劲板PL 10: 10厚钢板6 Gap: 6mm缝隙Column web:柱腹板Web plate:腹板Column flange:柱翼缘板Flange plate:翼缘板Web stiffener:腹板加劲板(Column )cap plate: (柱)顶板(Column) base plate: (柱)底板M20 bolt: M20螺栓4 Holes φ20:4个φ20孔High strength bolt(H.D bolt):高强螺栓Commercial bolt:普通螺栓4M20 anchor bolts: 4M20 地脚螺栓4M16 Chemical anchors: 4M16化学螺栓Bolt property grade:螺栓的性能等级(8.8级或10.9级)Stud:栓钉Stair tread:楼梯踏步Handrail:扶手栏杆Platform:平台(一般的操作或检修平台)50 Grouting:50厚灌浆层(还指钢平台上铺的混凝土板)32 Grating :32厚钢格栅Corrugated steel plate(Checkered plate):花纹钢板Vertical brace:竖直支撑(垂直剪刀撑)Horizontal brace:水平支撑Ties:系杆Sag rod:直拉条Angle brace:隅撑The lace on built-up members:组合构件的缀条Shear resistant key(Shear key):抗剪件Cable tray support:电缆槽支架Pipe support:管道支架Stiffener both sides:两边布置加劲板Splice:拼接(钢构件设置的拼接)Plate 10:10厚钢板(PL 10)Filler plate:填板Check nut (locknut):防松螺母(可指地脚螺栓柱脚钢板上的第二颗螺母)Truss:桁架Truss member:桁架杆件Web member:腹杆Chord :弦杆,也可指拱的跨度End post:(桁架)端部受压杆Weld:焊接Weld tube :焊接管Weld:焊缝Butt weld:对接焊缝Fillet weld:角焊缝Groove:坡口The quality level of welds shall not be lower than class 2:焊缝质量等级不低于2级Full penetration:全熔透Topping coat:外涂层,面漆Finishing coat:面漆Primer:底漆Priming:上底漆Blast cleaning:喷砂清洗,喷砂除锈Dry film :干膜Slip coefficient at friction interface:摩擦面的抗滑移系数Fire protection coating:防火涂料Beam-to-beam connection:梁梁连接节点Beam-to-column connection:梁柱连接节点Rigid connection:刚接Hinged connection:铰接H-section:H型截面box-section:箱型截面The inserted column base:插入式柱脚The encased column base:埋人式柱脚The encasing column base:外包式柱脚Span:跨度Bay:开间Bay spacing:柱距Slope:坡度Roof slope 5°: 屋面坡度5度Eaves:屋檐Eaves gutter(gutter):天沟Canopy:雨棚,挑棚Detailing requirements:构造要求4、改造工程Strengthening work:加固工程Existing:现有的,列如:Existing foundation:现有基础Existing structure member:原构件Strengthening of existing structures:对已有结构加固Structure member strengthening with reinforced concrete:增大截面加固法Structure member strengthening with externally bonded steel frame:外粘型钢加固法Structure member strengthening with externally bonded reinforced materials:复合截面加固法unloading:卸载Hacking:凿毛Bonded rebars:植筋4M16 Chemical anchors: 4M16化学螺栓Structrual adhesives:结构胶Fibre reinforced polymer (FRP):纤维复合材Polymer nirtar:聚合物砂浆polymer mortar:复合砂浆Corrosion inhibitor:阻锈剂Reshoring:临时支撑(原始的支撑拆除后,用于模板或整体结构的临时支撑)the interface of new and existing shall be hacking , and cleaning, then cast in concrete.:新旧砼交接处,应先凿毛、并清洗干净,再浇筑砼。
外文原文Tall BuildingsAlthough there have been many advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig. 1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame; Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frames with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses, a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building (1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness, to resist wind load can be achieved only if all column elements can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York.Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with. Diagonal members intersecting at the center line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Center in Chicago, using as much steel as is normally needed for a traditional story building.Fig. 1. Graphical relationship between design quantities of steel and building heights for a typical building frame. Curves A and B correspond to the boundary conditions indicated in the two building diagrams. 1 psf = 0. 048kPa.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The i10-story Sears Roebuck Headquarters Building in Chicago has nine tubes, bundled at tile base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft (442 m), is the world's tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind or earthquake) and the control of drift (lateral building movement) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the facade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin facade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes, minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized.The structural system has been used on the 54-story One Mellon Bank Center in Pittsburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive challenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building, exterior columns were spaced at 5.5-ft (1.68-m) centers, and interior columns were used as needed to support the 8-in.-thick (20-cm) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig.2), known as the tube-in-tube system, made it possible to design the world's present tallest (714 ft or 218m) lightweight concrete Building in Houston)for structure of only 35 s oriel building the unit 52—story One Shell Plaza of a traditional shear wallSystems compiling both concrete and steel have also been developed,an example of which is the composite system developed by Skidmore,Owings & Merrill in which an exterior closely spaced framed tube in concrete envelops an interior steel framing,thereby combining the advantages of both reinforced concrete and structuralsteel systems.The 52—story One Shell Square Building in New Orleans is based on this system.NEW WORDS AND PHRASES1.spectacular 壮观的,惊人的,引人注意的2.sway 摇动,摇摆,歪,使倾斜3.residential 居住的,住宅的,作住家用的4.commercial 商业的,商业上的,商务的5.innovation 革新,创新,新方法,新事物6.boundary 分界线,边界7.eliminate 排除,消除,除去8.apartment 公寓住宅,单元住宅9.column 柱,支柱,圆柱,柱状物10.demonstrate 示范,证明,演示,11.project 凸出,投射,计划,工程12.stress 应力,压力13.truss 构架,桁架14.bundle 捆,束,包15.terminate 使终止,使结尾,结束16.facade (房屋的)/E面,立面,表面17.perimeter 周,周围,周界,周长18.encroach 侵犯,侵占,蚕食19.high·rise building 高层建筑20.reinforced concrete 钢筋混凝土21.spandrel beam 窗下墙的墙托梁22.shear wall 剪力墙中文译文高层建筑大体上建筑施工工艺学方面已经有许多进步, 在超高层的设计和施工上已经取得了惊人的成就。
中文3220字附录:毕业设计外文翻译院(系)建筑工程学院专业土木工程班级姓名学号导师2011年4月15日英文:High-Rise Buildings and StructuralDesignAbstract:It is difficult to define a high-rise building . One may say that a low-rise building ranges from 1 to 2 stories . A medium-rise building probably ranges between 3 or 4 stories up to 10 or 20 stories or more . Although the basic principles of vertical and horizontal subsystem design remain the same for low- , medium- , or high-rise buildings , when a building gets high the vertical subsystems become a controlling problem for two reasons . Higher vertical loads will require larger columns , walls , and shafts . But , more significantly , the overturning moment and the shear deflections produced by lateral forces are much larger and must be carefully provided for .Key Words:High-Rise Buildings Structural Design Framework Shear Seismic SystemIntroductionThe vertical subsystems in a high-rise building transmit accumulated gravity load from story to story , thus requiring larger column or wall sections to support such loading . In addition these same vertical subsystems must transmit lateral loads , such as wind or seismic loads , to the foundations. However , in contrast to vertical load , lateral load effects on buildings are not linear and increase rapidly with increase in height . For example under wind load , the overturning moment at the base of buildings varies approximately as the square of a buildings may vary as the fourth power of buildings height , other things being equal.Earthquake produces an even more pronounced effect.When the structure for a low-or medium-rise building is designed for dead and live load , it is almost an inherent property that the columns , walls , and stair or elevator shafts can carry most of the horizontal forces . The problem is primarily shear resistance . Moderate addition bracing for rigid frames in“short”buildings can easily be provided by filling certain panels ( or even all panels ) without increasing the sizes of the columns and girders otherwise required for vertical loads.Unfortunately , this is not is for high-rise buildings because the problem is primarily resistance to moment and deflection rather than shear alone . Special structural arrangements will often have to be made and additional structural material is always required for the columns , girders , walls , and slabs in order to made a high-rise buildings sufficiently resistant to much higher lateral deformations .As previously mentioned , the quantity of structural material required per square foot of floor of a high-rise buildings is in excess of that required for low-rise buildings . The vertical components carrying the gravity load , such as walls , columns , and shafts , will need to be strengthened over the full height of the buildings . But quantity of material required for resisting lateral forces is even more significant .With reinforced concrete , the quantity of material also increases as the number of stories increases . But here it should be noted that the increase in the weight of material added for gravity load is much more sizable than steel , whereas for wind load the increase for lateral force resistance is not that much more since the weight of a concrete buildings helps to resist overturn . On the other hand , the problem of design for earthquake forces . Additional mass in the upper floors will give rise to a greater overall lateral force under the of seismic effects .In the case of either concrete or steel design , there are certain basic principles for providing additional resistance to lateral to lateral forces and deflections in high-rise buildings without too much sacrifire ineconomy .1、Increase the effective width of the moment-resisting subsystems . This is very useful because increasing the width will cut down the overturn force directly and will reduce deflection by the third power of the width increase , other things remaining cinstant . However , this does require that vertical components of the widened subsystem be suitably connected to actually gain this benefit.2、Design subsystems such that the components are made to interact in the most efficient manner . For example , use truss systems with chords and diagonals efficiently stressed , place reinforcing for walls at critical locations , and optimize stiffness ratios for rigid frames .3、Increase the material in the most effective resisting components . For example , materials added in the lower floors to the flanges of columns and connecting girders will directly decrease the overall deflection and increase the moment resistance without contributing mass in the upper floors where the earthquake problem is aggravated .4、Arrange to have the greater part of vertical loads be carried directly on the primary moment-resisting components . This will help stabilize the buildings against tensile overturning forces by precompressing the major overturn-resisting components .5、The local shear in each story can be best resisted by strategic placement if solid walls or the use of diagonal members in a vertical subsystem . Resisting these shears solely by vertical members in bending is usually less economical , since achieving sufficient bending resistance in the columns and connecting girders will require more material and construction energy than using walls or diagonal members .6、Sufficient horizontal diaphragm action should be provided floor . This will help to bring the various resisting elements to work together instead of separately .7、Create mega-frames by joining large vertical and horizontal components such as two or more elevator shafts at multistory intervalswith a heavy floor subsystems , or by use of very deep girder trusses .Remember that all high-rise buildings are essentially vertical cantilevers which are supported at the ground . When the above principles are judiciously applied , structurally desirable schemes can be obtained by walls , cores , rigid frames, tubular construction , and other vertical subsystems to achieve horizontal strength and rigidity . Some of these applications will now be described in subsequent sections in the following .Shear-Wall SystemsWhen shear walls are compatible with other functional requirements , they can be economically utilized to resist lateral forces in high-rise buildings . For example , apartment buildings naturally require many separation walls . When some of these are designed to be solid , they can act as shear walls to resist lateral forces and to carry the vertical load as well . For buildings up to some 20storise , the use of shear walls is common . If given sufficient length ,such walls can economically resist lateral forces up to 30 to 40 stories or more .However , shear walls can resist lateral load only the plane of the walls ( i.e.not in a diretion perpendicular to them ) . Therefore ,it is always necessary to provide shear walls in two perpendicular directions can be at least in sufficient orientation so that lateral force in any direction can be resisted . In addition , that wall layout should reflect consideration of any torsional effect .In design progress , two or more shear walls can be connected to from L-shaped or channel-shaped subsystems . Indeed , internal shear walls can be connected to from a rectangular shaft that will resist lateral forces very efficiently . If all external shear walls are continuously connected , then the whole buildings acts as a tube , and is excellent Shear-Wall Systems resisting lateral loads and torsion .Whereas concrete shear walls are generally of solid type withopenings when necessary , steel shear walls are usually made of trusses . These trusses can have single diagonals , “X”diagonals , or“K”arrangements . A trussed wall will have its members act essentially in direct tension or compression under the action of view , and they offer some opportunity and deflection-limitation point of view , and they offer some opportunity for penetration between members . Of course , the inclined members of trusses must be suitable placed so as not to interfere with requirements for windows and for circulation service penetrations though these walls .As stated above , the walls of elevator , staircase ,and utility shafts form natural tubes and are commonly employed to resist both vertical and lateral forces . Since these shafts are normally rectangular or circular in cross-section , they can offer an efficient means for resisting moments and shear in all directions due to tube structural action . But a problem in the design of these shafts is provided sufficient strength around door openings and other penetrations through these elements . For reinforced concrete construction , special steel reinforcements are placed around such opening .In steel construction , heavier and more rigid connections are required to resist racking at the openings .In many high-rise buildings , a combination of walls and shafts can offer excellent resistance to lateral forces when they are suitably located ant connected to one another . It is also desirable that the stiffness offered these subsystems be more-or-less symmertrical in all directions .Rigid-Frame SystemsIn the design of architectural buildings , rigid-frame systems for resisting vertical and lateral loads have long been accepted as an important and standard means for designing building . They are employed for low-and medium means for designing buildings . They are employed for low- and medium up to high-rise building perhaps 70 or 100 stories high . When compared to shear-wall systems , these rigid frames bothwithin and at the outside of a buildings . They also make use of the stiffness in beams and columns that are required for the buildings in any case , but the columns are made stronger when rigidly connected to resist the lateral as well as vertical forces though frame bending .Frequently , rigid frames will not be as stiff as shear-wall construction , and therefore may produce excessive deflections for the more slender high-rise buildings designs . But because of this flexibility , they are often considered as being more ductile and thus less susceptible to catastrophic earthquake failure when compared with ( some ) shear-wall designs . For example , if over stressing occurs at certain portions of a steel rigid frame ( i.e.,near the joint ) , ductility will allow the structure as a whole to deflect a little more , but it will by no means collapse even under a much larger force than expected on the structure . For this reason , rigid-frame construction is considered by some to be a “best”seismic-resisting type for high-rise steel buildings . On the other hand ,it is also unlikely that a well-designed share-wall system would collapse.In the case of concrete rigid frames ,there is a divergence of opinion . It true that if a concrete rigid frame is designed in the conventional manner , without special care to produce higher ductility , it will not be able to withstand a catastrophic earthquake that can produce forces several times lerger than the code design earthquake forces .Therefore , some believe that it may not have additional capacity possessed by steel rigid frames . But modern research and experience has indicated that concrete frames can be designed to be ductile , when sufficient stirrups and joinery reinforcement are designed in to the frame . Modern buildings codes have specifications for the so-called ductile concrete frames . However , at present , these codes often require excessive reinforcement at certain points in the frame so as to cause congestion and result in construction difficulties 。
高层建筑与钢结构外文翻译文献(文档含中英文对照即英文原文和中文翻译)Talling building and Steel constructionAlthough there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction ofultrahigh-rise buildings.The early development of high-rise buildings began with structural steel fraing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. Inaddition,excessive sway may cause discomfort to the occupants of the building because theirperception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame.Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New YorkColumn-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads inhigh-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in .-thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing thecentral service area. The system (Fig .2), known as the tube-in-tube system , made it possible to design the world’s present tall est (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Siemens-Martin (openj-hearth) processes made it possible to produce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which began with the Coalbrookdale Bridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addition to the construction of steam boilers and iron ship hulls , spurred the development of techniques for fabricating, designing, and jioning. The advantages of iron over masonry lay in the much smaller amounts of material required. The truss form, based on the resistance of the triangle to deformation, long used in timber, was translated effectively into iron, with cast iron being used for compression members-i.e, those bearing the weight of direct loading-and wrought iron being used for tension members-i.e, those bearing the pull of suspended loading.The technique for passing iron, heated to the plastic state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, 17.7 feet (5.4m) long , were fabricated as roof girders for a Paris railroad station.Two years later Joseph Paxton of England built the Crystal Palace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palace was provided by diagonal iron rods. Two feature are particularly important in the history of metal construction; first, the use of latticed girder, which are small trusses, a form first developed in timber bridges and other structures and translated into metal by Paxton ; and second, the joining of wrought-iron tension members and cast-iron compression members by means of rivets inserted while hot.In 1853 the first metal floor beams were rolled for the Cooper Union Building in New York. In the light of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails.The development of the Bessemer and Siemens-Martin processes in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notably by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the U.S.A notable example was the Eads Bridge, also known as the St. Louis Bridge, in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (152.5m). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft (3.66m) in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcement of standards and codification of permissible design stresses. The lack of adequate theoretical knowledge, and even of an adequate basis for theoretical studies, limited the value of stress analysis during the early years of the 20th century,as iccasionally failures,such as that of a cantilever bridge in Quebec in 1907,revealed.But failures were rare in the metal-skeleton office buildings;the simplicity of their design proved highly practical even in the absence of sophisticated analysis techniques. Throughout the first third of the century, ordinary carbon steel, without any special alloy strengthening or hardening, was universally used.The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of 1889.for which Alexandre-Gustave Eiffel, a leading Frenchbridge engineer, erected an openwork metal tower 300m (984 ft) high. Not only was theheight-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so, a small crew completed the work in a few months.The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicago engineer , had designed the Home Insurance Building, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on the cast iron columns. Soild masonry court and party walls provided lateral support against wind loading. Within a decade the same type of construction had been used in more than 30 office buildings in Chicago and New York. Steel played a larger and larger role in these , with riveted connections for beams and columns, sometimes strengthened for wind bracing by overlaying gusset plates at the junction of vertical and horizontal members. Light masonry curtain walls, supported at each floor level, replaced the old heavy masonry curtain walls, supported at each floor level , replaced the old heavy masonry.Though the new construction form was to remain centred almost entirely in America for several decade, its impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( 0.508m) in depth and Z and T shapes of lesser proportions were readily available, to combine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced through hot-rolling weighed less than 100 pounds (45 kilograms) per foot; decade by decade this figure rose until in the 1960s it exceeded 700 pounds (320 kilograms) per foot.Coincident with the introduction of structural steel came the introduction of the Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent building heights soaring. In New York the 286-ft (87.2-m) Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City Investing Company Building in Wall Street, the 612-ft (187-m) Singer Building (1908), the 700-ft (214-m) Metropolitan Tower (1909) and, in 1913, the 780-ft (232-m) Woolworth Building.The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the technical side, the problem of lateralsupport was studied. A diagonal bracing system, such as that used in the Eiffel Tower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was found in greater reliance on the bending resistance of certain individual beams and columns strategically designed into the skeletn frame, together with a high degree of rigidity sought at the junction of the beams and columns. With today’s modern interior lighting systems, however, diagonal bracing against wind loads has returned; one notable example is the John Hancock Center in Chicago, where the external X-braces form a dramatic part of the structure’s façade.World War I brought an interruption to the boom in what had come to be called skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Emp ire State Building in the 1931. The Empire State’s 102 stories(1,250ft. [381m]) were to keep it established as the hightest building in the world for the next 40 years. Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot across the bay at Bayonne, N.J., supplied the girders by lighter and truck on a schedule operated with millitary precision; nine derricks powerde by electric hoists lifted the girders to position; an industrial-railway setup moved steel and other material on each floor. Initial connections were made by bolting , closely followed by riveting, followed by masonry and finishing. The entire job was completed in one year and 45 days.The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important advance.Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to construction was limited until after World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections.Since the close of World War II, research in Europe, the U.S., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more refined and systematic analysis. This in turn has led to the adoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer by short-cutting tedious paperwork, made further advances and savings possible.高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。
高层结构与钢结构土木工程毕业设计外文翻译High-rise Structure and Steel StructureAbstract:High-rise structures, with their advantages of saving space, optimizing land use, and improving urban landscape, have become a focus of architectural design. Steel structures for high-rise buildings have gradually replaced reinforced concrete structures due to their superior performance. This paper introduces the development and advantages of high-rise buildings and steel structures, discusses the design principles and construction technologies of steel structures for high-rise buildings, and presents examples of steel structure high-rise buildings both domestically and abroad. Through analysis and comparison, the advantages of steel structures for high-rise buildings are summarized, and suggestions for the future development of steel structures in high-rise buildings are proposed.Keywords: high-rise structure; steel structure; design principles; construction technologyIntroductionIn China's urbanization process, the construction of high-rise buildings has become a major trend. High-rise buildings, with their advantages of saving space, optimizing land use, and improving urban landscape, have become a focus of architectural design. Steel structures for high-rise buildings have gradually replaced reinforced concrete structures due to their superior performance. In this paper, the development and advantages of high-rise buildings and steel structures for high-rise buildings are introduced. The design principles and construction technologies of steel structures for high-rise buildings are discussed, and examples of steel structure high-rise buildings both domestically and abroad are presented. Through analysis and comparison, the advantages of steel structures for high-rise buildings are summarized, and suggestions for the future development of steel structures in high-rise buildings are proposed.Development and advantages of high-rise buildingsHigh-rise buildings are defined as buildings with more than nine floors, or buildings with a height of more than 30 meters. With the development of society, the demand for high-rise buildings has increased significantly. High-rise buildings have many advantages:1. Save land and resources. Due to the high density of the population in cities, land resources are limited. High-rise buildings save land resources while meeting the needs of people's living and working.2. Improve the urban landscape. High-rise buildings have a strong visual impact and can improve the image and style of a city.3. Enhance the effectiveness of urban transportation. High-rise buildings located near urban transportation hubs can solve the problem of commuting for a large number of people.4. Provide a sense of security. People above the ground floor have a better sense of security than those on a lower floor. High-rise buildings can serve as disaster shelters in case of natural disasters such as earthquakes, typhoons, and floods.Development and advantages of steel structures for high-rise buildingsSteel structures have become the mainstream structure for high-rise buildings due to their superior performance:1. High strength and good seismic performance. The strength and elastic modulus of steel are high, and steel structures can withstand large deformations under earthquake loads.2. Light weight and good durability. Steel structures have a low self-weight and are not susceptible to corrosion or aging.3. Construction speed and environmental protection. Steel structures are prefabricated in a factory and assembled on-site, which greatly reduces construction time and damage to the environment.Design principles of steel structures for high-rise buildingsThe design of steel structures for high-rise buildings should follow the following principles:1. Optimize the structural system. The structural system should be selected according to the characteristics of the building, and the structural layout should be optimized to reduce the structural weight and improve the stability and integrity of the structure.2. Consider the load conditions. The maximum load conditions of the building should be analyzed, and the structural elements should be designed to withstand the maximum load.3. Ensure the safety of the structure. The design should ensure the safety of the structure during construction, use, and maintenance.4. Ensure the comfort of the building. The spatial layout and structural form should be designed to ensure the comfort of the building.Construction technology of steel structures for high-rise buildingsThe construction technology of steel structures for high-rise buildings includes:1. Prefabrication technology. Steel structures are prefabricated in a factory and assembled on-site, greatly reducing construction time and improving construction efficiency.2. Modular construction technology. The modular construction technology can improve the accuracy of fabrication and reduce the difficulty of installation.3. External stress technology. The external stress technology can improve the load-carrying capacity of steel structures and reduce the deformation of the structure.Examples of steel structure high-rise buildings both domestically and abroadThere are many examples of steel structure high-rise buildings both domestically and abroad. The following are three typical examples:1. Shanghai Tower. The Shanghai Tower is a 632-meter-high steel structure building located in Lujiazui, Shanghai. It is the tallest building in China and the second-tallest building in the world.2. The Shard. The Shard is a 310-meter-high steel structure building located in London, England. It is the tallest building in the UK.3. One Bryant Park. One Bryant Park is a 366-meter-high steel structure building located in New York, USA. It is the first LEED Platinum-certified building in the US.Advantages and suggestions for the future development of steel structures for high-rise buildingsSteel structures for high-rise buildings have many advantages, including high strength, good seismic performance, light weight, good durability, construction speed, and environmental protection. However, there are still some problems that need to be solved in the future development of steel structures for high-rise buildings:1. Improve design and calculation methods for steel structures.2. Improve the connection technology of steel structures.3. Develop new types of structural systems for steel structures.4. Improve the comprehensive performance of steel structures.ConclusionHigh-rise buildings are a major trend in China's urbanization process. Steel structures for high-rise buildings have gradually replaced reinforced concrete structures due to their superior performance. The design principles and construction technologies of steel structures for high-rise buildings have been discussed, and examples of steel structure high-rise buildings both domestically and abroad have been presented. Through analysis and comparison, the advantages of steel structures for high-rise buildings have been summarized, and suggestions for the future development of steel structures in high-rise buildings have been proposed.。
毕业设计外文资料翻译原文题目:Talling building and Steel construction译文题目:高层建筑与钢结构院系名称:土木建筑学院专业班级:土木工程0806班学生姓名:学号:指导教师:教师职称:副教授附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文高层建筑与钢结构摘要:近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。
最初的高层建筑设计是从钢结构的设计开始的。
钢筋混凝土和受力外包钢筒系统运用起来是比较经济的系统,被有效地运用于大批的民用建筑和商业建筑中。
50层到100层的建筑被定义为超高层建筑。
而这种建筑在美国得到广泛的应用是由于新的结构系统的发展和创新。
关键词:高层建筑,结构设计,钢结构,发展创新,结构体系这样的高度需要增大柱和梁的尺寸,这样以来可以使建筑物更加坚固以至于在允许的限度范围内承受风荷载而不产生弯曲和倾斜。
过分的倾斜会导致建筑的隔离构件、顶棚以及其他建筑细部产生循环破坏。
除此之外,过大的摇动也会使建筑的使用者们因感觉到这样的的晃动而产生不舒服的感觉。
无论是钢筋混凝土结构系统还是钢结构系统都充分利用了整个建筑的刚度潜力,因此不能指望利用多余的刚度来限制侧向位移。
在钢结构系统设计中,经济预算是根据每平方英寸地板面积上的钢材的数量确定的。
钢结构中的体系:钢结构的高层建筑的发展是几种结构体系创新的结果。
这些创新的结构已经被广泛地应用于办公大楼和公寓建筑中。
刚性带式桁架的框架结构:为了联系框架结构的外柱和内部带式桁架,可以在建筑物的中间和顶部设置刚性带式桁架。
1974年在米望基建造的威斯康森银行大楼就是一个很好的例子。
框架筒结构:如果所有的构件都用某种方式互相联系在一起,整个建筑就像是从地面发射出的一个空心筒体或是一个刚性盒子一样。
这个时候此高层建筑的整个结构抵抗风荷载的所有强度和刚度将达到最大的效率。
这种特殊的结构体系首次被芝加哥的43层钢筋混凝土的德威特红棕色的公寓大楼所采用。
外文翻译---高层建筑及结构设计High-rise XXX to define。
Generally。
a low-rise building is considered to be een 1 to 2 stories。
while a medium-rise building ranges from 3 or 4 stories up to 10 or 20 stories or more。
While the basic principles of vertical and horizontal subsystem design remain the same for low-。
medium-。
or high-rise buildings。
the vertical subsystems XXX high-XXX requiring larger columns。
walls。
XXX。
XXX.The design of high-rise buildings must take into account the unique XXX by their height and the need to withstand lateral forces such as wind and earthquakes。
One important aspect of high-rise design is the framework shear system。
XXX。
braced frames。
or XXX the appropriate system depends on the specific building characteristics and the seismicity of the n in which it is located.Another key n in high-rise design is the seismic system。
英文译文T alling building and Steel constructionAlthough there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Gr eater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.In a steel structure,forexample,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beamframe.Structuralengineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the FirstWisconsinBankBuilding(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story WorldTradeCenter building in New YorkColumn-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story SearsRoebuckHeadquartersBuilding in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of thislatest structural concept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the fa?ade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin fa?ade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story OneMellonBankCenter in Pittburgh.Systems in concrete.While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig .2),known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems co m bining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story OneShellSquareBuilding in New Orleans is based on this system.Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Siemens-Martin (openj-hearth) processes made it possible to produce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which began with the CoalbrookdaleBridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addition to the construction of steam boilers and iron ship hulls , spurred the development of techniques for fabricating, designing, and jioning. The advantages of iron over masonry lay in the much smaller amounts of material required. The truss form, based on the resistance of the triangle to deformation, long used in timber, was translated effectively into iron, with cast iron being used for compression members-i.e, those bearing the weight of direct loading-and wrought iron being usedfor tension members-i.e, those bearing the pull of suspended loading.The technique for passing iron, heated to the plastic state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, 17.7 feet (5.4m) long , were fabricated as roof girders for a Paris railroad station.Two years later Joseph Paxt on of England built the CrystalPalace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palace was provided by diagonal iron rods. Two feature are particularly important in the history of metal construction; first, the use of latticed girder, which are small trusses, a form first developed in timber bridges and other structures and translated into metal by Paxton ; and second, the joining of wrought-iron tension members and cast-iron compression members by means of rivets inserted while hot.In 1853 the first metal floor beams were rolled for the CooperUnionBuilding in New York. In the light of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails.The development of the Bessemer and Siemens-Martin processes in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notably by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the U.S.A notable example was the EadsBridge, also known as the St. LouisBridge, in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (152.5m). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft (3.66m) in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcement of standards and codification of permissible design stresses. The lack of adequate theoretical knowledge, and even of an adequate basis for theoretical studies,limited the value of stress analysis during the early years of the 20th century,asiccasionallyfailures,such as that of a cantilever bridge in Quebec in 1907,revealed.But failures were rare in the metal-skeleton office buildings;the simplicity of their design proved highly practical even in the absence of sophisticated analysis techniques. Throughout the first third of the century, ordinary carbon steel, without any special alloy strengthening or hardening, was universally used.The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of 1889.for which Alexandre-Gustave Eiffel, a leading French bridge engineer, erected an openwork metal tower 300m (984 ft) high. Not only was the height-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so, a small crew completed the work in a few months.The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicagoengineer , had designed the HomeInsuranceBuilding, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on the cast iron columns. Soild masonry court and party walls provided lateral support against wind loading. Within a decade the same type of construction had been used in more than 30 office buildings in Chicago and New York. Steel played a larger and larger role in these , with riveted connections for beams and columns, sometimes strengthened for wind bracing by overlaying gusset plates at the junction of vertical and horizontal members. Light masonry curtain walls, supported at each floor level, replaced the old heavy masonry curtain walls, supported at each floor level , replaced the old heavy masonry.Though the new construction form was to remain centred almost entirely in America for several decade, its impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( 0.508m) in depth and Z and T shapes of lesser proportions were readily available, tocombine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced through hot-rolling weighed less than 100 pounds (45 kilograms) per foot; decade by decade this figure rose until in the 1960s it exceeded 700 pounds (320 kilograms) per foot.Coincident with the introduction of structural steel came the introduction of t he Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent building heights soaring. In New York the 286-ft (87.2-m) Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City Investing Company Building in Wall Street, the 612-ft (187-m) Singer Building (1908), the 700-ft (214-m) Metropolitan Tower (1909) and, in 1913, the 780-ft (232-m) Woolworth Building.The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the technical side, the problem of lateral support was studied. A diagonal bracing system, such as that used in the EiffelTower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was found in greater reliance on the bending resistance of certain individual beams and columns strategically designed into the skeletn frame, together with a high degree of rigidity sought at the junction of the beams and columns. With today’s modern interior lighting systems, however, diagonal bracing against wind loads has returned; one notable example is the John Hancock Center in Chicago, where the external X-braces form a dramatic part of the structure’s fa?ade.World War I brought an interruption to the boom in what had come to be called skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Empire State Building in the 1931. The EmpireState’s 102 stories (1,250ft. [381m]) were to keep it established as the hightest building in the world for the next 40 years. Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot across the bay at Bayonne, N.J., supplied the girders by lighter and truck on aschedule operated with millitary precision; nine derricks powerde by electric hoists lifted the girders to position; an industrial-railway setup moved steel and other material on each floor. Initial connections were made by bolting , closely followed by riveting, followed by masonry and finishing. The entire job was completed in one year and 45 days.The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important advance.Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to construction was limited until after World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections.Since the close of World War II, research in Europe, the U.S., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more refined and systematic analysis. This in turn has led to the adoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer by short-cutting tedious paperwork, made further advances and savings possible.高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。
建筑和钢结构术语大全laced of battened compression member 格构式钢柱lacing and batten elements 缀材缀件lacing bar 缀条lamellar tearing 层状撕裂lap connectlon 叠接搭接lapped length of steel bar 钢筋搭接长度large pannel concrete structure 混凝土大板结构large-form cocrete structure 大模板结构lateral bending 侧向弯曲lateral displacement stiffness of storey 楼层侧移刚度lateral displacement stiffness of structure·结构侧移刚度lateral force resistant wallstructure 抗侧力墙体结构leg size of fillet weld 角焊缝焊脚尺寸length of shear plane 剪面长度lift—slab structure 升板结构light weight aggregate concrete 轻骨料混凝土limit of acceptance 验收界限limitimg value for local dimension of masonry structure砌体结构局部尺寸限值limiting value for sectional dimension 截面尺寸限值limiting value for supporting length 支承长度限值limiting value for total height of masonry structure砌体结构总高度限值linear expansion coeffcient 线膨胀系数lintel 过梁load bearing wall 承重墙load-carrying capacity per bolt 单个普通螺栓承载能力load—carrying capacity per high—strength holt 单个高强螺桂承载能力load—carrying capacity per rivet 单个铆钉承载能力log 原木log timberstructure 原木结构long term rigidity of member 构件长期刚度longitude horizontal bracing 纵向水平支撑longitudinal steel bar 纵向钢筋longitudinal stiffener 纵向加劲肋longitudinal weld 纵向焊缝losses of prestress ‘预应力损失lump material 块体Mmain axis 强轴main beam·主梁major axis 强轴manual welding 手工焊接manufacture control 生产控制map cracking 龟裂masonry 砌体masonry lintel 砖过梁masonry member 无筋砌体构件masonry units 块体masonry—concrete structure 砖混结构¨masonry—timber structure 砖木结构mechanical properties of materials·材料力学性能melt—thru 烧穿method of sampling 抽样方法minimum strength class ofmasonry 砌体材料最低强度等级minor axls·弱轴mix ratio of mortar 砂浆配合比mixing water 拌合水modified coefficient for allowable ratio of height to sectionalthickness of masonry wall 砌体墙容许高厚比修正系数modified coefficient of flexural strength for timber curved mem弧形木构件抗弯强度修正系数modulus of elasticity of concrete 混凝土弹性模量modulus of elasticity parellel to grain 顺纹弹性模量moisture content 含水率moment modified factor 弯矩调幅系数monitor frame 天窗架mortar 砂浆multi—defence system of earthquake—resistant building·多道设防抗震建筑multi—tube supported suspended structure 多筒悬挂结构nailed joint 钉连接,net height 净高lnet span 净跨度net water/cementratio 净水灰比non-destructive inspection of weld 焊缝无损检验non-destructive test 非破损检验non-load—bearingwall 非承重墙non—uniform cross—section beam 变截面粱non—uniformly distributed strain coefficient of longitudinal tensile reinforcement 纵向受拉钢筋应变不均匀系数normal concrete 普通混凝土normal section 正截面notch and tooth joint 齿连接number of sampling 抽样数量Oobligue section 斜截面oblique—angle fillet weld 斜角角焊缝one—way reinforcedor prestressedconcrete slab‘‘单向板open web roof truss 空腹屋架,ordinary concrete 普通混凝土ordinary steel bar 普通钢筋orthogonal fillet weld 直角角焊缝outstanding width of flange 翼缘板外伸宽度outstanding width of stiffener 加劲肋外伸宽度over-all stability reduction coefficient of steel beam钢梁整体稳定系数overlap 焊瘤overturning or slip resistance analysis 抗倾覆、滑移验算padding plate 垫板partial penetrated butt weld 不焊透对接焊缝partition 非承重墙penetrated butt weld 透焊对接焊缝percentage of reinforcement 配筋率perforated brick 多孔砖pilastered wall 带壁柱墙pit·凹坑pith 髓心oplain concrete structure 素混凝土结构plane hypothesis 平截面假定plane structure 平面结构plane trussed lattice grids 平面桁架系网架plank 板材plastic adaption coefficient of cross—section 截面塑性发展系数plastic design of steel structure 钢结构塑性设计plastic hinge·塑性铰plastlcity coefficient of reinforced concrete member in tensile zone 受拉区混凝土塑性影响系数plate—like space frame 干板型网架plate—like space truss 平板型网架plug weld 塞焊缝plywood 胶合板plywood structure 胶合板结构pockmark 麻面polygonal top-chord roof truss 多边形屋架post—tensioned prestressed concrete structure 后张法预应力混凝土结构precast reinforced concrete member 预制混凝土构件prefabricated concrete structure 装配式混凝土结构presetting time 初凝时间prestressed concrete structure 预应力混凝土结构prestressed steel structure 预应力钢结构prestressed tendon 预应力筋<pre—tensioned prestressed concrete structure·先张法预应力混凝土结构primary control 初步控制production control 生产控制properties of fresh concrete 可塑混凝土性能properties of hardened concrete 硬化混凝土性能property of building structural materials 建筑结构材料性能purlin 檩条。
高层建筑结构外文翻译文献高层建筑结构外文翻译文献(文档含中英文对照即英文原文和中文翻译)外文:The Structure Form of High-Rise Buildings ABSTRACT:High-rise building is to point to exceed a certain height and layers multistory buildings. In the United States, 24.6 m or 7 layer above as high-rise buildings; In Japan, 31m or 8 layer and above as high-rise buildings; In Britain, to have equal to or greater than 24.3 m architecture as high-rise buildings. Since 2005 provisions in China more than 10 layers of residential buildings and more than 24 meters tall other civil building for high-rise buildings.KEYWARD:High-Rise Buildings;Shear-Wall Systems;Rigid-Frame Systems 1. High-rise building profilesAlthough the basic principles of vertical and horizontal subsystem design remain the same for low- , medium- , or high-rise buildings, when a building gets high the vertical subsystems become a controlling problem for two reasons. Higher vertical loads will require larger columns, walls, and shafts. But, more significantly, the overturning moment and the shear deflections produced by lateral forces are much larger and must be carefully provided for.The vertical subsystems in a high-rise building transmit accumulated gravity load from story to story, thus requiring larger column or wall sections to support such loading. In addition these same vertical subsystems must transmit lateral loads, such as wind or seismic loads, to the foundations. However, in contrast to vertical load, lateral load effects on buildings are not linear and increase rapidly with increase in height. For example under wind load , the overturning moment at the base of buildings varies approximately as the square of a buildings may vary as the fourth power of buildings height , other things being equal. Earthquake produces an even more pronounced effect.When the structure for a low-or medium-rise building is designed for dead and live load, it is almost an inherent property that the columns, walls, and stair or elevator shafts can carry most of the horizontal forces. The problem is primarily one of shear resistance. Moderate addition bracing for rigid frames in “short” buildings can easily be provided by filling certain panels (or even all panels) without increasing the sizes of thecolumns and girders otherwise required for vertical loads.Unfortunately, this is not is for high-rise buildings because the problem is primarily resistance to moment and deflection rather than shear alone. Special structural arrangements will often have to be made and additional structural material is always required for the columns, girders, walls, and slabs in order to made a high-rise buildings sufficiently resistant to much higher lateral deformations.As previously mentioned, the quantity of structural material required per square foot of floor of a high-rise buildings is in excess of that required for low-rise buildings. The vertical components carrying the gravity load, such as walls, columns, and shafts, will need to be strengthened over the full height of the buildings. But quantity of material required for resisting lateral forces is even more significant.With reinforced concrete, the quantity of material also increases as the number of stories increases. But here it should be noted that the increase in the weight of material added for gravity load is much more sizable than steel, whereas for wind load the increase for lateral force resistance is not that much more since the weight of a concrete buildings helps to resist overturn. On the other hand, the problem of design for earthquake forces. Additional mass in the upper floors will give rise to a greater overall lateral force under the of seismic effects.In the case of either concrete or steel design, there are certain basic principles for providing additional resistance to lateral to lateral forces and deflections in high-rise buildings without too much sacrifire in economy.(1) Increase the effective width of the moment-resisting subsystems. This is very useful because increasing the width will cut down the overturn force directly and will reduce deflection by the third power of the width increase, other things remaining cinstant. However, this does require that vertical components of the widened subsystem be suitably connected to actually gain this benefit.(2) Design subsystems such that the components are made to interact in the most efficient manner. For example, use truss systems with chords and diagonals efficiently stressed, place reinforcing for walls at critical locations, and optimize stiffness ratios for rigid frames.(3) Increase the material in the most effective resisting components. For example, materials added in the lower floors to the flanges of columns and connecting girders will directly decrease the overall deflection and increase the moment resistance without contributing mass in the upper floors where the earthquake problem is aggravated.(4) Arrange to have the greater part of vertical loads be carried directly on the primary moment-resisting components. This will help stabilize the buildings against tensile overturning forces by precompressing the major overturn-resisting components.(5) The local shear in each story can be best resisted by strategic placement if solid walls or the use of diagonal members in a vertical subsystem. Resisting these shears solely by vertical members in bending is usually less economical, since achieving sufficient bending resistance in the columns and connecting girders will require more material and construction energy than using walls or diagonal members.(6) Sufficient horizontal diaphragm action should be provided floor. This will help to bring the various resisting elements to work together instead of separately.(7) Create mega-frames by joining large vertical and horizontal components such as two or more elevator shafts at multistory intervals with a heavy floor subsystems, or by use of very deep girder trusses.Remember that all high-rise buildings are essentially vertical cantilevers which are supported at the ground. When the above principles are judiciously applied, structurally desirable schemes can be obtained by walls, cores, rigid frames, tubular construction, and other vertical subsystems to achieve horizontal strength and rigidity.2. Shear-Wall SystemsShear wall structure is reinforced concrete wallboard to replace with beam-column frame structure of, can undertake all kinds of loads, and can cause the internal force of the structure effectively control the horizontal forces with reinforced concrete wallboard, the vertical and horizontal force to bear the structure called the shear wall structure. This structure was in high-rise building aplenty, so, homebuyers can need not be blinded by its terms. Shear wall structure refers to the vertical of reinforced concrete wallboard, horizontal direction is still reinforced concrete slab of carrying the wall, so big a system, that constitutes the shear wall structure. Why call shear wall structure,actually, the higher the wind load building to its push is bigger, so the wind direction of pushing that level, such as promoting the house, below was a binding, the above the wind blows should produce certain swing floating, swing floating restrictions on the very small, vertical wallboard to resist, the wind over, wants it has a force on top, make floor do not produce swing or shift float degrees small, in particular the bounds of structure, such as: the wind from one side, then there is a considerable force board with it braved along the vertical wallboard, the height of the force, is equivalent to a pair of equivalent shearing, like a with scissors cut floor of force building and the farther down, accordingly, the shear strength of such wallboard that shear wall panels, also explains the wallboard vertical bearing of vertical force also not only should bear the horizontal wind loading, including the horizontal seismic forces to one of its push wind.When shear walls are compatible with other functional requirements, they can be economically utilized to resist lateral forces in high-rise buildings. For example, apartment buildings naturally require many separation walls. When some of these are designed to be solid, they can act as shear walls to resist lateral forces and to carry the vertical load as well. For buildings up to some 20storise, the use of shear walls is common. If given sufficient length, such walls can economically resist lateral forces up to 30 to 40 stories or more.However, shear walls can resist lateral load only the plane of the walls ( i.e.not in a diretion perpendicular to them) . Therefore, it is always necessary to provide shear walls in two perpendicular directions can be at least in sufficient orientation so that lateral force in any direction can be resisted. In addition, that wall layout should reflect consideration of any torsional effect.In design progress, two or more shear walls can be connected to from L-shaped or channel-shaped subsystems. Indeed, internal shear walls can be connected to from a rectangular shaft that will resist lateral forces very efficiently. If all external shear walls are continuously connected , then the whole buildings acts as tube , and connected , then the whole buildings acts as a tube , and is excellent Shear-Wall Systems resisting lateral loads and torsion.Whereas concrete shear walls are generally of solid type with openings whennecessary, steel shear walls are usually made of trusses. These trusses can have single diagonals, “X” diagonals, or “K” arrangements. A trussed wall will have its members act essentially in direct tension or compression under the action of view, and they offer some opportunity and deflection-limitation point of view, and they offer some opportunity for penetration between members. Of course, the inclined members of trusses must be suitable placed so as not to interfere with requirements for windows and for circulation service penetrations though these walls.As stated above, the walls of elevator, staircase, and utility shafts form natural tubes and are commonly employed to resist both vertical and lateral forces. Since these shafts are normally rectangular or circular in cross-section, they can offer an efficient means for resisting moments and shear in all directions due to tube structural action. But a problem in the design of these shafts is provided sufficient strength around door openings and other penetrations through these elements. For reinforced concrete construction, special steel reinforcements are placed around such opening .In steel construction, heavier and more rigid connections are required to resist racking at the openings.In many high-rise buildings, a combination of walls and shafts can offer excellent resistance to lateral forces when they are suitably located ant connected to one another. It is also desirable that the stiffness offered these subsystems be more-or-less symmertrical in all directions.3. Rigid-Frame SystemsFrame structure is to point to by beam and column to just answer or hinged connection the structure of bearing system into constitute beam and column, namely the framework for common resistance appeared in the process of horizontal load and vertical load. Using structure housing wall not bearing, only play palisade and space effect, generally with the aerated concrete prefabricated, expansion perlite, hollow bricks or porous brick, pumice, vermiculite, taoli etc lightweight plank to wait materials bearing or assembly and into.Frame structure shortcoming for: frame node stress concentration significantly; Frame structure of the lateral stiffness small, flexible structure frame, in strongearthquake effect, horizontal displacement structures result is larger, easy cause serious non-structural broken sex; The steel and cement contents of the total number of larger, more component, hoisting number, joint workload big, procedures, waste human, construction by the seasons, environmental impact is bigger; Not suitable for build high-rise building, the frame is composed of by beam-column system structure, its pole bearing capacity and rigidity are low, especially the horizontal (even consider cast-in-situ floor with beam to work together to improve the floor level, but is also limited stiffness), it the mechanical characteristics similar to vertical cantilever beam, the overall level of shear displacement on the big with small, but relatively under floors are concerned, interlayer deformation under the small, how to improve the framework design resist lateral stiffness and control good structure for important factors, lateral move for reinforced concrete frame, when the height of the great, layer quite long, structure of each layer of not only column bottom of axial force are big, and beam and column generated by the horizontal load the bending moment and integral side move also increased significantly, leading to the section size and reinforcement of architectural layout increases, and the treatment of space, may cause difficulties, the influence of rational use of architectural space in materials consumption and cost, unreasonable, also tend to be generally applied in construction, so no more than 15 layer houses.In the design of architectural buildings, rigid-frame systems for resisting vertical and lateral loads have long been accepted as an important and standard means for designing building. They are employed for low-and medium means for designing buildings. They are employed for low- and medium up to high-rise building perhaps 70 or 100 stories high. When compared to shear-wall systems, these rigid frames both within and at the outside of a buildings. They also make use of the stiffness in beams and columns that are required for the buildings in any case , but the columns are made stronger when rigidly connected to resist the lateral as well as vertical forces though frame bending.Frequently, rigid frames will not be as stiff as shear-wall construction, and therefore may produce excessive deflections for the more slender high-rise buildingsdesigns. But because of this flexibility, they are often considered as being more ductile and thus less susceptible to catastrophic earthquake failure when compared with shear-wall designs. For example , if over stressing occurs at certain portions of a steel rigid frame ( i.e.,near the joint ) , ductility will allow the structure as a whole to deflect a little more , but it will by no means collapse even under a much larger force than expected on the structure. For this reason, rigid-frame construction is considered by some to be a “best”seismic-resisting type for high-rise steel buildings. On the other hand, it is also unlikely that a well-designed share-wall system would collapse.In the case of concrete rigid frames, there is a divergence of opinion. It true that if a concrete rigid frame is designed in the conventional manner, without special care to produce higher ductility, it will not be able to withstand a catastrophic earthquake that can produce forces several times longer than the code design earthquake forces. Therefore, some believe that it may not have additional capacity possessed by steel rigid frames . But modern research and experience has indicated that concrete frames can be designed to be ductile, when sufficient stirrups and joinery reinforcement are designed in to the frame. Modern buildings codes have specifications for the so-called ductile concrete frames. However, at present, these codes often require excessive reinforcement at certain points in the frame so as to cause congestion and result in construction difficulties. Even so, concrete frame design can be both effective and economical.Of course, it is also possible to combine rigid-frame construction with shear-wall systems in one buildings, For example, the buildings geometry may be such that rigid frames can be used in one direction while shear walls may be used in the other direction.4. The frame shear wall structureFrame-shear wall structure also called box shear structure, this kind of structure is decorated in the framework of a certain number of shear wall, constitute the use of flexible free space and satisfy different building functional requirement, also have enough shear wall, there is considerable stiffness, box shear structure stress features, is the framework and shear wall structure two different resist lateral force of the structureof the new forces, so its frame forms different from pure frame structure of framework, shear wall structure of the box shear is different from the shear wall structure of shear wall. Because, in the lower floors, shear wall displacement is lesser, it took frame type curve by bending deformation, shear wall inherit most horizontal force, the upper floors, by contrast, shear wall displacement is more and more big, the outside of the trend, and there is a framework of adduction, frame shear wall trend according to shear curve pull deformation, frame of the loading except burden level force produced outside, still extra burden the shear pull back of additional levels of force, shear wall not only the horizontal force produced bear loads, but also because to frame an additional level force and bear minus shear, so, the upper floor even produced the loading framework of shear small, floor also appears considerable shear.5. SummaryAbove states is the high-rise construction ordinariest structural style. In the design process, should the economy practical choose the reasonable form as far as possible.译文:高层建筑结构形式摘要:高层建筑是指超过一定高度和层数的多层建筑。
结构专业常⽤英语词汇结构专业常⽤英语词汇1. ⼀般术语房屋建筑⼯程building engineering ⼟⽊⼯程civil engineering 建构筑物construction works 结构structure基础foundation地基ground; foundation soils ⽊结构timber structure 砌体结构masonry structure 钢结构steel structure 混凝⼟结构concrete structure 特种结构special engineering structure房屋建筑building⼯业建筑industrial building 民⽤建筑civil building⽔⼯建筑物marine structure 剪⼒墙结构shear wall structure 混合结构mixed structure 板柱结构slab-column system 框架结构frame structure 壳结构shell structure 拱结构arch strucuture桁架结构truss⽹架结构space grid structure 悬索结构cable-suspended structure 框架-剪⼒墙结构frame-shear wallstructure筒体结构tube structure ⾼耸结构high-rise structure 斜拉桥cable stayed bridge 悬索桥suspension bridge 桁架桥trussed bridge 拱桥arch bridge 引桥approach span 桥墩pier 隧道tunnel 混凝⼟坝concrete dam 渠道channel2. 结构构件构件member 部件component; assembly parts 梁beam截⾯section 板slab; plate 柱column 墙wall 壳shell 桁架truss框架frame刚架rigid frame排架bent frame简⽀梁 simply supported beam 悬臂梁cantilever beam 连续梁continuous beam 叠合梁superposed beam 伸缩缝expansion and contraction joint 截⽔沟(天沟)catch ditch;intercepting channel 排⽔沟 drainage ditch 护坡slope protection;revetment 挡⼟墙retaining wall ⽌⽔sealing; seal;节点joint 桩pile沉降缝settlement joint 防震缝aseismic joint施⼯缝construction joint基础梁foundation beam桩承台pile cap; bearing platform底板 bottom slab⽔池顶板basin top slab现浇墙板cast-in-place wall panel预制墙板pre-cast wall panel钢筋混凝⼟框架reinforced concreteframe钢筋混凝⼟柱reinforced concretecolumn先张法预应⼒混凝⼟管桩pretensioned spunconcrete piles钢筋混凝⼟现浇板cast-in-placereinforced concreteslab斜梁 stringer平台梁 beams of platform⼥⼉墙 parapet⼈孔盖板 manhole cover集⽔坑catchment pit溢流槽 flood relief channel 爬梯 ladder⽜腿 bracket仪表槽盒⽀架instrument trench support电缆⽀架cable trench support ⽀撑brace⽀架support3. 结构材料预埋件embedded plate钢板steel plate钢圆环 steel ring plate⾬⽔篦⼦板 rain water grating 钢筋reinforcing bar I 级 grade I热轧光圆钢筋hot rolled plainsteel bars热轧带肋钢筋hot rolled ribbedsteel bars插筋anchor rebar钢筋锚固长度bond length of rebars钢筋搭接bar splicing箍筋stirrup纵向钢筋longitudinal bar弯起钢筋bent-up bar钢筋间距rod spacing;bar spacing搭接长度overlapping length胀锚螺栓 expansion bolts螺母nut锚栓anchor bolt地脚螺栓foundation boltM30六⾓螺帽M30 six angle screw cap外露100,丝扣80outcrop 100mm,thread 80mm 垫⽚ washer C40混凝⼟C40 concrete: class 40早强剂early-strength admixture细⽯混凝⼟fine aggregate concrete防冻附加剂antifreeze admixture配合⽐mixture ratio抗渗等级P8 seepage class:抗压强度compression strength混凝⼟保护层厚度minimum concrete cover普通硅酸盐⽔泥ordinary portland cement 砂sand卵⽯pebble碎⽯crushed stone砾⽯gravel⾻料aggregate⽔泥cement粘⼟砖clay brick 垫层cushion4. 地基基础扩展基础spread foundation地基ground,foundation soils 刚性基础rigid foundation 独⽴基础single footing 联合基础combined footing 条形基础strip founcation 壳体基础shell foundation 箱形基础box foundation 筏形基础raft foundation 桩基础pile foundation沉井基础open caisson foundation ⼤直径桩基础cylinder pile foundation ⼟岩组合地基soil-rock composite ground地基允许变形值allowable subsoil deformation地基处理ground treatment 复合地基composite foundation 强夯dynamic compaction ⽀档结构retaining structure 基坑⼯程excavation engineering ⾼应变动⼒检测high strain dynamic testing of piles 单桩竖向抗压静载试验vertical compression bearing capacity static test for single pile 单桩⽔平静载试验lateral bearing capacitystatic test for single pile 单桩竖向抗拔静载试验vertical up-lifting bearing capacitystatic test for single pile 单桩竖向抗压极限承载⼒vertical ultimatecompress bearing capacity of a singlepile 桩侧摩阻⼒skin friction resistance 桩顶⽔平位移lateral displacement 桩端阻⼒end bearing resistance 单桩静载试验static test of single pile 单桩⽔平极限承载⼒ultimate lateral bearing capacity for a single pile 单桩竖向抗拔极限承载⼒ultimate vertical up-lifting bearing capacityfor a single pile 素填⼟ Plain Fill 粉⼟ Silt 粉质粘⼟ Silty Clay 淤泥质粉质粘⼟Sludgy Silty Clay 粉砂Silty Sand ⾼压缩性 high compressibility 中粗砂medium sand 中等压缩性 medium compressibility 中细砂fine sand 低压缩性 low compressibility 可塑~硬塑状态 plastic-hard plastic 泥质粉砂岩 Muddy Silty stone 流塑状态 flow plastic 粉砂质泥岩 Silty mudstone 局部软塑状态 partly soft plastic 泥岩 Mudstone 饱和saturated 强风化 high weathered 松散incompact 中等风化 medium weathered 轻微裂缝 slight defective pile 断桩 breakage of pile 桩⾝完整 pile of body integrity 缩颈 pile diameter reduction 缺陷 defect 压缩系数coefficient of compressibility 渗流seepage flow 内聚⼒(粘聚⼒) cohesion5. 钢结构钢结构 steel structure底漆 paint primer涂层 coating中间漆intermediate painting 油漆,涂料 paint⾯漆 finish coat流坠 hanging透底 disclosure皱⽪ wrinkle漏涂 miss painting返锈 rust again漆膜厚度 film thickness结构构件 structural member垂直⽀撑vertical bracing桁架 truss⼩⽴柱 postWA325钢格栅板 WA325 grating斜梁 stringer踏步板 treads钢梯 steel stairway踏步钢格板 grating for stair tread斜梯栏杆 guard rails不锈钢栏杆 stainless steel handrail预制场地 prefabrication area 平台栏杆 GR of platform原材料 raw material半成品 semi-finished goods除锈 remove rust, cleaning 切割 cutting喷砂 sand blasting打磨坡⼝ grinding型钢 section steel热轧⼯字钢hot-rolled I-beam steel热轧钢板 hot-rolled plates热轧不等边⾓钢hot-rolled unequal-legangle steel热轧等边⾓钢hot-rolled equal-legangle steel热轧H型钢hot-rolled H steel热轧槽钢hot-rolled channel steel ⽆缝钢管 seamless steel pipes扁钢 strap steel 不锈钢板 stainless steel plate垂直度 verticality分⽚组装be assembled by sections现场成框 framed at site焊缝 weld seam V型坡⼝V-type bevel焊缝⾼度 weld height焊枪 welding gun焊缝长度 weld length焊机 welding machine⽓焊 gas welding 焊炬 welding torch电焊 electric welding ⾃动和半⾃动电弧焊automatic andsemi-automatic welding ⼿⼯焊 hand welding对焊 butt welding 焊条weld rod, electrode ⾓焊缝 fillet 间断焊接 gap welding 咬边 undercut 针孔 pinhole 夹渣 slag裂纹 crack烧穿 burning out 漏焊 losing welding 弧坑 concavity 未焊透lack of fusion 打磨 grind⽕焰切割 torch cutting 喷砂除锈The sand blasting 机械钻孔drill by machine预拉⼒ prestressed ⾼强度⼤六⾓头螺栓Set of big hexagonalhigh-strength bolt 抗滑移系数Slide coefficient of faying surface 扭矩系数torsional moment coefficient终拧扭矩final torsional moment6. 荷载、强度、可靠度剪⼒shear 剪切变形shear deformation压⼒pressure 延伸率percentage of elongation 剪切模量shear modulus 拉⼒tension 应⼒stress 应变strain应⼒集中concentration of stress 应⼒松弛stress relaxation 应⼒图stress diagram 应⼒状态state of stress位移 displacement 弹性变形 elastic deformation 变形 deformation 塑性变形 plastic deformation 应变 strain 剪应变 shear strain 线应变 linear strain 主应变 principal strain 轴向⼒ normal force 主应⼒ principal stress 正应⼒ normal stress 预应⼒prestress应⼒应变曲线stress-strain curve 裂缝crack抗压强度compressive strength 抗弯强度bending strength 抗扭强度torsional strength 抗拉强度tensile strength 屈服yield屈服点yield point屈服荷载yield load 屈服极限limit of yielding 屈服强度yield strength 屈服强度下限lower limit of yield 荷载load横截⾯section, cross 承载⼒bearing capacity 承重结构bearing structure 弹性模量elastic modulus 塑性plasticity延性ductileity受弯构件member in bending轴向拉⼒axial tension受拉区tensile region可靠性reliability受压区compressive region粘结⼒cohesive force配筋率reinforcement ratio偏⼼受拉eccentric tension配箍率stirrup ratio偏⼼受压eccentric compression泊松⽐Poisson’s ratio偏⼼距eccentric distance跨度span疲劳强度fatigue strength跨⾼⽐span-to-depth ratio偏⼼荷载eccentric load设计限值 limiting design value截⾯宽度 breadth of section截⾯⾼度 height of section截⾯厚度 thickness of section截⾯直径 diameter of section截⾯⾯积 area of section截⾯周长 perimeter of section截⾯模量(抵抗矩) section modulus截⾯惯性矩 second moment of area截⾯极惯性矩polar second moment of area 截⾯回转半径 radius of gyration长细⽐slenderness ratio偏⼼矩 eccentricity偏⼼率 relative ecdentricity振动 vibration⾃振频率 natural frequency加速度 acceleration振周期natural period of vibration 频率 frequency振幅 amplitude of vibration⾃由度 degree of freedom振型 mode of vibration阻尼 damp共振 resonance强迫振动 forced vibration设计荷载design load挠度deflection设计强度design strength构造construction脆性破坏brittle failure延性破坏ductile failure可靠性 reliability适⽤性 serviceability安全性 safety耐久性 durability设计基准期 design reference period可靠概率 probability of survival可靠指标 reliability index失效概率 probability of failure概率设计法 probabilistic method极限状态设计法 limit states method容许应⼒设计法 permissible stressesmethod正常使⽤极限状态serviceability limitstates承载能⼒极限状态 ultimate limit states极限状态 limit states分项系数 partial safety factor体分布⼒ force per unit volume 作⽤ action⼒矩 moment of force线分布⼒ force per unit length永久作⽤ permanent action⾯分布⼒ force per unit area可变作⽤ variable action偶然作⽤ accidental action静态作⽤ static action固定作⽤ fixed adtion动态作⽤ dynamic action⾃重 self weight温度作⽤ temperature action施⼯荷载 site load地震作⽤ earthquake action⼟压⼒ earth pressure⽔压⼒ water pressure风荷载 wind load雪荷载 snow load风振 wind vibration吊车荷载crane load屋⾯活荷载floor live load浮⼒ buoyance浪压⼒(波浪⼒) wave pressure泥沙压⼒ silt pressute冰压⼒ ice pressure冻胀⼒ frost heave force静⽔压强 hydro-static pressure静⽔总压⼒total hydro-static pressure 动⽔压强 hydro-dynamic pressure压⼒⽔头 pressure head作⽤代表值 representative valueof an action作⽤准永久值quasi-permanent valueof an action作⽤标准值 characteristic valueof an action作⽤组合值combination value ofactions作⽤设计值 design value of anaction作⽤效应 effects of actions作⽤组合值系数coeffcient forcombination value ofactions作⽤效应系数coefficient of effectsof actions作⽤效应基本组合 fundamentalcombination foraction effects短期效应组合combination for short-term action effects作⽤效应偶然组合 accidentalcombination foraction effects长期效应组合combination for long-term action effects轴线axes标⾼elevation; datum mark坐标coordinate基准点,标⾼datum mark中⼼标⾼center elevation绝对标⾼absolute elevation相对标⾼relative elevation平⾯控制plane control⾼程控制elevation control⽔准点bench mark经纬仪transit坐标控制点coordinate control points ⽔准仪surveyor level测杆surveying rod 钢卷尺steel tape测距仪range finder7. ⼟建施⼯挖掘 excavate履带式推⼟机crawler dozer挖⼟机 excavator履带式起重机crawler crane反铲挖⼟机 back digger压路机 road roller挖沟机 trench digger翻⽃车 tipping skip铲运机 scraper⾃卸卡车 dumping truck洒⽔车 sprinkler回填 back fill⼟⽅⼯程 earth work蛙式打夯机 frog rammer钢筋切断机 bar cutter钢筋弯曲机 angle--bender基坑foundation pit双排竖管脚⼿架independent scaffold脚⼿架scaffold管⼦脚⼿架pipe scaffold 单排竖管脚⼿架putlog scaffold 满堂脚⼿架full framing ⽴杆 the standing pole 扫地杆 ground bars 横杆 ledger脚⼿板 scaffold board 防护栏 protective barrier,guard rail隔离剂 isolating agent扣件coupler旋转扣件swivel coupler ⼗字扣件double coupler 套筒扣件sleeve coupler 钢筋加⼯ rebar fabrication 铁丝 iron wire 钢筋连接rebar connection 绑扎lashing 搭接lap焊接 welding搭接接头 lap joint 焊接接头 welded joint 搭接焊lap welding 砂浆垫块mortar block制模,模板⼯程formwork 组合钢模板 combined steel formwork 模板form模板配板 formwork configuration 模板⽀设 formwork erection 安装偏差 installation deviation 模板接缝the formwork joint泵送混凝⼟pumping of concrete 混凝⼟中⼼搅拌站 centralized concretemixing plant 浇灌混凝⼟concrete pouring, depositing concrete,模板拆除 formwork removal 混凝⼟搅拌汽车concrete mixer truck混凝⼟搅拌concrete agitation 插⼊式振捣器 insertion type vibrator 振捣混凝⼟ vibrated concrete 平板振动器 plate vibrator 抹⼦,泥⼑ trowel 抹灰,抹光 toweling坍落度slump两组试块two sets of testing blocks 混凝⼟取样witness sampling of concrete混凝⼟施⼯缝处理treatment of concrete construction joint 初凝 initial set 终凝final set初凝时间 initial setting time 终凝时间final setting time 混凝⼟养护concrete curing 草垫 straw mattress回填back fill回填夯实backfill consolidation 1:2⽔泥砂浆20厚1:2 cenment mortarthickness 20mm 找平层leveling blacket 抹灰plastering抹平,找平screeding 抹灰底层rendering coat 抹光,压光trowel finish 灌缝;灌浆grout抹灰罩⾯层setting coat ⼆次灌浆post-grouting 填料filling 翼环plate ring套管pipe sleeve ⽯棉⽔泥asbestos cement 油⿇oil-- hemp 橡胶⽌⽔带rubber water stop 密封胶joint sealant 沥青涂层asphalt coating填缝板joint filler镀锌铁⽪galvanized iron sheet ure ;revetment80mmpile ompressibility area f vibration ssure ol pointsocks。
Steel structure面积:area结构形式:framework坡度:slope跨度:span柱距:bay spacing檐高:eave height屋面板:roof system墙面板:wall system梁底净高: clean height屋面系统: roof cladding招标文件: tender doc建筑结构结构可靠度设计统一标准: unified standard for designing of architecture construction reliablity建筑结构荷载设计规范: load design standard for architecture construction建筑抗震设计规范: anti-seismic design standard for architecture钢结构设计规范: steel structure design standard冷弯薄壁型钢结构技术规范: technical standard for cold bend and thick steel structure门式钢架轻型房屋钢结构技术规范: technical specification for steel structure of light weight building with gabled frames钢结构焊接规程: welding specification for steel structure钢结构工程施工及验收规范: checking standard for constructing and checking of steel structure 压型金属板设计施工规程: design and construction specification for steel panel荷载条件:load condition屋面活荷载:live load on roof屋面悬挂荷载:suspended load in roof风荷载:wind load雪荷载:snow load抗震等级:seismic load变形控制:deflect control柱间支撑X撑:X bracing主结构:primary structure钢架梁柱、端墙柱: frame beam, frame column, and end-wall column钢材牌号为Q345或相当牌号,大型钢厂出品:Q345 or equivalent, from the major steel mill 表面处理:抛丸除锈Sa2.5级,环氧富锌漆,两底两面,总厚度为125UM。
高层建筑中英文对照外文翻译文献中英文对照外文翻译文献英文原文Components of A Building and Tall Buildings1. AbstractMaterials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure and foundation is that part of a building below ground.The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest structure built by man and was not surpassed until 40 years later by a series of American skyscrapers.Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour.2. Load-Carrying FrameUntil the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. Thisconstruction is essentially a post and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Buildi ng built in the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jenney (1832-1907) supported floors on cast-iron columns to form a cage-like construction. Skeleton construction, consisting of steel beams and columns, was first used in 1889. As a consequence of skeleton construction, the enclosing walls become a “curtain wall” rather than serving a supporting function. Masonry was the curtain wall material until the 1930’s, when light metal and glass curta in walls were used. After the introduction of buildings continued to increase rapidly.All tall buildings were built with a skeleton of steel until World War Ⅱ. After thewar, the shortage of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States;its height—588 feet (179 meters)—is exceeded by the 650-foot (198-meter) Post Office Tower in London and by other towers.A change in attitude about skyscraper construction has brought a return to the use of the bearing wall. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns spaced 10 feet (3 meters) from column center to center. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be economically obtained by using thewalls of the building as a tube;the World Trade Center building is another example of this tube approach. In contrast, rigid frames or vertical trusses are usually provided to give lateral stability.3. SkinThe skin of a building consists of both transparent elements (windows) and opaque elements (walls). Windows are traditionally glass, although plastics are being used, especially in schools where breakage creates a maintenance problem. The wall elements, which are used to cover the structure and are supported by it, are built of a variety of materials: brick, precast concrete, stone, opaque glass, plastics, steel, and aluminum. Wood is used mainly in house construction;it is not generally used for commercial, industrial, or public building because of the fire hazard.4. FloorsThe construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are either slabs of concrete resting on steel beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely spaced concrete beams (ribs) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its underside. The kind of floor that is used depends on the span between supporting columns or walls and the function of the space. In an apartment building, for instance, where walls and columns are spaced at 12 to 18 feet (3.7 to 5.5 meters), the most popular construction is a solid concrete slab with no beams. The underside of the slab serves as the ceiling for the space below it. Corrugated steel decks areoften used in office buildings because the corrugations, when enclosed by another sheet of metal, form ducts for telephone and electrical lines.5. Mechanical and Electrical SystemsA modern building not only contains the space for which it is intended (office, classroom, apartment) but also contains ancillary space for mechanical and electrical systems that help to provide a comfortable environment. These ancillary spaces in a skyscraper office building may constitute 25% of the total building area. The importance of heating, ventilating, electrical, and plumbing systems in an office building is shown by the fact that 40% of the construction budget is allocated to them. Because of the increased use of sealed building with windows that cannot be opened, elaborate mechanical systems are provided for ventilation and air conditioning. Ducts and pipes carry fresh air from central fan rooms and air conditioning machinery. The ceiling, which is suspended below the upper floor construction, conceals the ductwork and contains the lighting units. Electrical wiring for power and for telephone communication may also be located in this ceiling space or may be buried in the floor construction in pipes or conduits.There have been attempts to incorporate the mechanical and electrical systems into the architecture of building by frankly expressing them;for example, the American Republic Insurance Company Building(1965) in Des Moines, Iowa, exposes both the ducts and the floor structure in an organized and elegant pattern and dispenses with the suspended ceiling. This type of approach makes it possible to reduce the cost of the building and permits innovations, such as in the span of the structure.6. Soils and FoundationsAll building are supported on the ground, and therefore the nature of the soil becomes an extremely important consideration in the design of any building. The design of a foundation dependson many soil factors, such as type of soil, soil stratification, thickness of soil lavers and their compaction, and groundwater conditions. Soils rarely have a single composition;they generally are mixtures in layers of varying thickness. For evaluation, soils are graded according to particle size, which increases from silt to clay to sand to gravel to rock. In general, the larger particle soils will support heavier loads than the smaller ones. The hardest rock can support loads up to 100 tons per square foot(976.5 metric tons/sq meter), but the softest silt can support a load of only 0.25 ton per square foot(2.44 metric tons/sq meter). All soils beneath the surface are in a state of compaction;that is, they are under a pressure that is equal to the weight of the soil column above it. Many soils (except for most sands and gavels) exhibit elastic properties—they deform when compressed under load and rebound when the load is removed. The elasticity of soils is often time-dependent, that is, deformations of the soil occur over a length of time which may vary from minutes to years after a load is imposed. Over a period of time, a building may settle if it imposes a load on the soil greater than the natural compaction weight of the soil. Conversely, a building may heave if it imposes loads on the soil smaller than the natural compaction weight. The soil may also flow under the weight of a building;that is, it tends to be squeezed out.Due to both the compaction and flow effects, buildings tend settle. Uneven settlements, exemplified by the leaning towers in Pisa and Bologna, can have damaging effects—the building maylean, walls and partitions may crack, windows and doors may become inoperative, and, in the extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions, such as those in Mexico City, can have serious consequences. Over the past 100 years, a change in the groundwater level there has caused some buildings to settle more than 10 feet (3 meters). Because such movements can occur during and after construction, careful analysis of the behavior of soils under a building is vital.The great variability of soils has led to a variety of solutions to the foundation problem. Wherefirm soil exists close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread footing). Where the soil is softer, it is necessary to spread the column load over a greater area;in this case, a continuous slab of concrete(raft or mat) under the whole building is used. In cases where the soil near the surface is unable to support the weight of the building, piles of wood, steel, or concrete are driven down to firm soil.The construction of a building proceeds naturally from the foundation up to the superstructure. The design process, however, proceeds from the roof down to the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 20th century. Karl Terzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundations, using the science of soil mechanics coupled with exploration and testing procedures. Foundation failures of the past, such as the classical example of the leaning tower in Pisa,have become almost nonexistent. Foundations still are a hidden but costly part of many buildings.The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may causeserious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.中文译文建筑及高层建筑的组成1 摘要材料和结构类型是构成建筑物各方面的组成部分,这些部分包括承重结构、围护结构、楼地面和隔墙。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
Steel structure面积:area结构形式:framework坡度:slope跨度:span柱距:bay spacing檐高:eave height屋面板:roof system墙面板:wall system梁底净高: clean height屋面系统: roof cladding招标文件: tender doc建筑结构结构可靠度设计统一标准: unified standard for designing of architecture construction reliablity建筑结构荷载设计规范: load design standard for architecture construction建筑抗震设计规范: anti-seismic design standard for architecture钢结构设计规范: steel structure design standard冷弯薄壁型钢结构技术规范: technical standard for cold bend and thick steel structure门式钢架轻型房屋钢结构技术规范: technical specification for steel structure of light weight building with gabled frames钢结构焊接规程: welding specification for steel structure钢结构工程施工及验收规范: checking standard for constructing and checking of steel structure 压型金属板设计施工规程: design and construction specification for steel panel荷载条件:load condition屋面活荷载:live load on roof屋面悬挂荷载:suspended load in roof风荷载:wind load雪荷载:snow load抗震等级:seismic load变形控制:deflect control柱间支撑X撑:X bracing主结构:primary structure钢架梁柱、端墙柱: frame beam, frame column, and end-wall column钢材牌号为Q345或相当牌号,大型钢厂出品:Q345 or equivalent, from the major steel mill 表面处理:抛丸除锈Sa2.5级,环氧富锌漆,两底两面,总厚度为125UM。
土木工程专业外文翻译--高层建筑外文原文Tall Buildings Although there have been many advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limitExcessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do notrequire additional stiffening to limit the sway In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig. 1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame; Structural engineers have developed structural systems with a view to eliminating this premium Systems in steelTall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings Frames with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses, a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building 1974 in Milwaukee Framed tube. The imum efficiency of the total structure of a tall building, for both strength and stiffness, to resist wind load can be achieved only if all column elements can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut ApartmentBuilding in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with. Diagonal members intersecting at the center line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Center in Chicago, using as much steel as is normally needed for a traditional story buildingFig. 1. Graphical relationship between design quantities of steel and building heights for a typical building frameCurves A and B correspond to the boundary conditions indicated in the two building diagrams. 1 psf 0. 048kPaBundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The i10-story Sears Roebuck Headquarters Building in Chicago has nine tubes, bundled at tile base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft 442 m, is the world's tallest buildingStressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces wind or earthquake and the control of driftlateral building movement in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the facade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor areaBecause of the contribution of the stressed-skin facade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes, minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittsburgh Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive challenge to structural steel systems for both office and apartment buildings Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building, exterior columns were spaced at 5.5-ft 1.68-m centers, and interior columns were used as needed to support the 8-in.-thick 20-cm flat-plate concrete slabs Tube in tube. Anothersystem in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system Fig.2, known as the tube-in-tube system, made it possible to design the world's present tallest 714 ft or 218m lightweight concrete Building in Houstonfor structure of only 35 s oriel building the unit 52?story One Shell Plaza of a traditional shear wall Systems compiling both concrete and steel have also been developed,an example of which is the composite system developed by Skidmore,Owings & Merrill in which an exterior closely spaced framed tube in concrete envelops an interior steel framing,thereby combining the advantages of both reinforced concrete and structuralsteel systems.The 52?story One Shell Square Building in New Orleans is based on this system.NEW WORDS AND PHRASES1.spectacular 壮观的,惊人的,引人注意的2.sway 摇动,摇摆,歪,使倾斜3.residential 居住的,住宅的,作住家用的4mercial 商业的,商业上的,商务的5.innovation 革新,创新,新方法,新事物6.boundary 分界线,边界7.eliminate 排除,消除,除去8.apartment 公寓住宅,单元住宅9.column 柱,支柱,圆柱,柱状物10.demonstrate 示范,证明,演示,11.project 凸出,投射,计划,工程12.stress 应力,压力13.truss 构架,桁架14.bundle 捆,束,包15.terminate 使终止,使结尾,结束16.facade 房屋的/E面,立面,表面17.perimeter 周,周围,周界,周长18.encroach 侵犯,侵占,蚕食19.high?rise building 高层建筑20.reinforced concrete 钢筋混凝土21.spandrel beam 窗下墙的墙托梁22.shear wall 剪力墙中文译文高层建筑大体上建筑施工工艺学方面已经有许多进步, 在超高层的设计和施工上已经取得了惊人的成就。
外文原文:Talling building and Steel constructionAlthough there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame.Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or thecolumn-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural con cept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig .2), known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Siemens-Martin (openj-hearth) processes made it possible toproduce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which began with the Coalbrookdale Bridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addition to the construction of steam boilers and iron ship hulls , spurred the development of techniques for fabricating, designing, and jioning. The advantages of iron over masonry lay in the much smaller amounts of material required. The truss form, based on the resistance of the triangle to deformation, long used in timber, was translated effectively into iron, with cast iron being used for compression members-i.e, those bearing the weight of direct loading-and wrought iron being used for tension members-i.e, those bearing the pull of suspended loading.The technique for passing iron, heated to the plastic state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, 17.7 feet (5.4m) long , were fabricated as roof girders for a Paris railroad station.Two years later Joseph Paxton of England built the Crystal Palace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palace was provided by diagonal iron rods. Two feature are particularly important in the history of metal construction; first, the use of latticed girder, which are small trusses, a form first developed in timber bridges and other structures and translated into metal by Paxton ; and second, the joining of wrought-iron tension members and cast-iron compression members by means of rivets inserted while hot.In 1853 the first metal floor beams were rolled for the Cooper Union Building in New York. In the light of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails.The development of the Bessemer and Siemens-Martin processes in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notably by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the U.S.A notable example was the Eads Bridge, also known as the St. Louis Bridge, in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (152.5m). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft (3.66m) in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcement of standards and codification of permissible design stresses. The lack of adequate theoretical knowledge, and even of an adequate basis for theoretical studies, limited the value of stress analysis during the early years of the 20th century,as iccasionally failures,such as that of a cantilever bridge in Quebec in 1907,revealed.But failures were rare in the metal-skeleton office buildings;the simplicity of their design proved highly practical even in the absence of sophisticated analysis techniques. Throughout the first third of the century, ordinary carbon steel, without any special alloy strengthening or hardening, was universally used.The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of 1889.for which Alexandre-Gustave Eiffel, a leading French bridge engineer, erected an openwork metal tower 300m (984 ft) high. Not only was the height-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so,a small crew completed the work in a few months.The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicago engineer , had designed the Home Insurance Building, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on the cast iron columns. Soild masonry court and party walls provided lateral support against wind loading. Within a decade the same type of construction had been used in more than 30 office buildings in Chicago and New York. Steel played a larger and larger role in these , with riveted connections for beams and columns, sometimes strengthened for wind bracing by overlaying gusset plates at the junction of vertical and horizontal members. Light masonry curtain walls, supported at each floor level, replaced the old heavy masonry curtain walls, supported at each floor level , replaced the old heavy masonry.Though the new construction form was to remain centred almost entirely in America for several decade, its impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( 0.508m) in depth and Z and T shapes of lesser proportions were readily available, to combine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced through hot-rolling weighed less than 100 pounds (45 kilograms) per foot; decade by decade this figure rose until in the 1960s it exceeded 700 pounds (320 kilograms) per foot.Coincident with the introduction of structural steel came the introduction of the Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent building heights soaring. In New York the 286-ft (87.2-m) Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City Investing Company Building in Wall Street, the 612-ft (187-m) Singer Building (1908), the 700-ft (214-m) Metropolitan Tower (1909) and, in 1913, the 780-ft (232-m) Woolworth Building.The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the technical side, the problem of lateral support was studied. A diagonal bracing system, such as that used in the Eiffel Tower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was found in greater reliance on the bending resistance of certain individual beams and columns strategically designed into the skeletn frame, together with a high degree of rigidity sought at the junction of the beams and columns. With today’s modern interior lighting sys tems, however, diagonal bracing against wind loads has returned; one notable example is the John Hancock Center in Chicago, where the external X-braces form a dramatic part of the structure’s façade.World War I brought an interruption to the boom in what had come to be called skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Empire State Building in the 1931. The Empi re State’s 102 stories (1,250ft. [381m]) were to keep it established as the hightest building in the world for the next 40 years. Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot across the bay at Bayonne, N.J., supplied the girders by lighter and truck on a schedule operated with millitary precision; nine derricks powerde by electric hoists lifted the girders to position; an industrial-railway setup moved steel and other material on each floor. Initial connections were made bybolting , closely followed by riveting, followed by masonry and finishing. The entire job was completed in one year and 45 days.The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important advance.Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to construction was limited until after World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections.Since the close of World War II, research in Europe, the U.S., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more refined and systematic analysis. This in turn has led to the adoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer by short-cutting tedious paperwork, made further advances and savings possible.高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。
中英文资料翻译一.英文原文A NEW STAGGERED SHEAR WALL STRUCTURE FOR HIGH-RISE BUILDINGABSTRACTShear wall structure has been widely used in tall buildings. However, there are still two obvious disadvantages in this structure: first of all, space between two shear wall could not too big and the plane layout is not flexible, so that serviceability requirements are dissatisfied for public buildings; secondly, the bigger dead weight will lead to the increase of constructional materials and seismic force which cause desigh difficulty of super-structures and foundations. In this paper, a new type tall building structure-staggered shear wall structure-is presented in order to overcome above disadvantages of traditional shear wall, which not only provide big space for architectural design but also has lighter dead weight and high capacity of resistance to horizontal load. REINFORCEMENT CONCRETE STAGGERED SHEAR WALL STRUCTURAL SYSTEM IN TALL BUILDINGS Structure Style and Features of New Type Shear Wall Structural System:In this new-type shear wall structural system,every shear wall is at staggered location on adjacent floor, as well as adjacent shear walls are staggered with each other.One end of floor slab is supported on top edge of one shear wall; the other end of floor slab is supported on bottom edge of adjacent shear wall. The edge column and beam are set beside every shear wall. The embedded column and connected beam are set on every floor. The advantage of this structural system is its big use space with small span floor slab.The shear wall arrangement can be staggered or not according to use requirement, shown in Figure 1. As a result, the width of one bay is increased from L to 2L or 3L. In addition, the dead weigh of staggered shear wall is smaller than that of traditional down-to-ground shear wall, so the material cost is reduced. The structural analysis result indicates the wall amount decreases by 25% and the dead weigh decreased by 20%comparing the new-type shear wall with traditional shear wall, while both have same lateral stiffness. Two main obvious disadvantages of traditional shear wall are overcome and the use space of shear wall structures is enlarged effectively. Besides the architectural convenience, the staggered shear wall has other advantages. Although the stiffness of every shear wall is changed along vertical direction, the sum stiffness of whole structure is even along vertical direction when adjacent shear walls are set on staggered locations. The whole structural deformation is basically bending style. Form the analysis of reference,the staggered shear wall has stronger whole stiffness, less top-storey displacement(decreasing by about 58%),and less relative storey displacement comparing with traditional coupled shear wall.Under the same horizontal load, the staggered shear wall structure could effectively cut down the internal force of coupled beam and embedded column, at the same time the structural seismic performance is improved.1 2Working Mechanism of New Type Shear Wall StructureUnder the vertical load, this structure effect is the same as ordinary frame-shear wall structure, that is, the shear wall and column act together to resist the vertical load. Because the stiffness of every span shear wall is large and the deformation is small, the bending deformation and moment of columns are very small. Under lateral load, the structure deformation is uniform, thereby it can improve the whole stiffness effectively and the higher capability resisting lateral load is obtained.The main cause is the particular arrangement method of walls, which could be explained as follows: firstly, the lateralshearing force transfer mechanism is different from traditional shear wall. The lateral shearing force on top edge of shear wall is transferred to under layer floor slab though the bottom edge of wall, then to under storey adjacent shear wall through the under storey floor slab. At last, the lateral shearing force is transferred to ground floor shear wall and foundation.By this way,the lateral shearing force transfer mechanism is special, in which every floor slab transfer the lateral shearing force of itself floor and above floor.But in traditional shear wall directly. This structure makes the best use of the peculiarity that the slab stiffness is very strong to transfer and resist lateral shear. Although the shear walls are not up bottom in sequence, the slabs which has larger stiffness participate in the work transferring and resisting lateral shear force from the top to the down,from the floor middle part to edge, and from the edge to middle part in whole structure.It corresponds to a space integer structure with large lateral stiffness connected all shear walls by slabs, which have been cut in every story and span. It has been proved in author’s paper that the whole structure will occur integer-bending deformation under lateral force action,while every storey shear walls will occur integer bending without local bending. Secondly, in every piece of staggered shear wall (shown in Figure 2),the shear wall arrangement forms four large X diagonal brace along adcb,cfed, ehgf, gjih (dashed as shown in Figure 2).Because the shear walls forming X diagonal brace have large stiffness and strength, the X diagonal brace stiffness is strong. In addition, both the edge beams and columns around the boundary form bracing ‘frame”with large lateral stiffness. Hence, the structural integer stiffness is greatly improved.Due to the above main reasons, this structure is considered to have particular advantages compared with traditional shear wall structure in improving structural lateral stiffness. It can provide larger using space, and reduce the material, earthquake action as well as dead weight.Also, it can provide larger lateral stiffness, which will benefit the structural lateral capability. In author’s paper and in this paper the example calculating results indicates that lateral stiffness of this structure are double of coupled shear wall structure ,and nearly equal to integer shear wall structure (light small than the latter).Aseismic analysis and construction measures in a buildingexampleIn order to study dynamic characteristics and aseismic performances in this structural system, the staggered shear wall will be used as all cross walls in the large bay shear wall structure without internal longitudinal walls.Example. Thereis a nine-storey reinforcement concrete building, which is large bay shear wall struvture, shown in figure3. here,walls columns, beams, and slabs are all cast-in-situ. The thickness t=240mm is used for shear walls from 1 to 3 stories, while thickness t=200mm is used for shear walls from 4 to 9 stories. Given the section of columns of width b=500mm and depth h=600mm . Given the section of beams of width b=300mm and depth h=700mm . The modulus of elasticity is assumed to be E=2.1*10E7kN/2m and G=1.05*10E7 kN /2m . The external longitudinal walls are cast-in-situ wall frame, and the cross walls are staggered shear walls , showm in Figure 3 (a) (scheme I) ,intensity 8 zones near earthquake, 2type site ground 。
Talling building and Steel constructionAlthough there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height forthe traditional column-and-beam frame.Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled formto create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems forboth office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig .2), known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steelconstruction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Siemens-Martin (openj-hearth) processes made it possible to produce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which began with the Coalbrookdale Bridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addition to the construction of steam boilers and iron ship hulls , spurred the development of techniques for fabricating, designing, and jioning. The advantages of iron over masonry lay in the much smaller amounts of material required. The truss form, based on the resistance of the triangle to deformation, long used in timber, was translated effectively into iron, with cast iron being used for compression members-i.e, those bearing the weight of direct loading-and wrought iron being used for tension members-i.e, those bearing the pull of suspended loading.The technique for passing iron, heated to the plastic state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, 17.7 feet (5.4m) long , were fabricated as roof girders for a Paris railroad station.Two years later Joseph Paxton of England built the Crystal Palace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palacewas provided by diagonal iron rods. Two feature are particularly important in the history of metal construction; first, the use of latticed girder, which are small trusses, a form first developed in timber bridges and other structures and translated into metal by Paxton ; and second, the joining of wrought-iron tension members and cast-iron compression members by means of rivets inserted while hot.In 1853 the first metal floor beams were rolled for the Cooper Union Building in New York. In the light of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails.The development of the Bessemer and Siemens-Martin processes in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notably by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the U.S.A notable example was the Eads Bridge, also known as the St. Louis Bridge, in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (152.5m). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft (3.66m) in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcement of standards and codification of permissible design stresses. The lack of adequate theoretical knowledge, and even of an adequate basis for theoretical studies, limited the value of stress analysis during the early years of the 20th century,asiccasionally failures,such as that of a cantilever bridge in Quebec in 1907,revealed.But failures were rare in the metal-skeleton office buildings;the simplicity of their design proved highly practical even in the absence of sophisticated analysis techniques. Throughout the first third of the century, ordinary carbon steel, without any special alloy strengthening or hardening, was universally used.The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of 1889.for which Alexandre-Gustave Eiffel, a leading French bridge engineer, erected an openwork metal tower 300m (984 ft) high. Not only was the height-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so, a small crew completed the work in a few months.The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicago engineer , had designed the Home Insurance Building, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on the cast iron columns. Soild masonry court and party walls provided lateral support against wind loading. Within a decade the same type of construction had been used in more than 30 office buildings in Chicago and New York. Steel played a larger and larger role in these , with riveted connections for beams and columns, sometimes strengthened for wind bracing by overlaying gusset plates at the junction of vertical and horizontal members. Light masonry curtain walls, supported ateach floor level, replaced the old heavy masonry curtain walls, supported at each floor level , replaced the old heavy masonry.Though the new construction form was to remain centred almost entirely in America for several decade, its impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( 0.508m) in depth and Z and T shapes of lesser proportions were readily available, to combine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced through hot-rolling weighed less than 100 pounds (45 kilograms) per foot; decade by decade this figure rose until in the 1960s it exceeded 700 pounds (320 kilograms) per foot.Coincident with the introduction of structural steel came the introduction of the Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent building heights soaring. In New York the 286-ft (87.2-m) Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City Investing Company Building in Wall Street, the 612-ft (187-m) Singer Building (1908), the 700-ft (214-m) Metropolitan Tower (1909) and, in 1913, the 780-ft (232-m) Woolworth Building.The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the technical side, the problem of lateral support was studied. A diagonal bracing system, such as that used in the Eiffel Tower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was foundin greater reliance on the bending resistance of certain individual beams and columns strategically designed into the skeletn frame, together with a high degree of rigidity sought at the junction of the beams and columns. With today’s modern interior lighting systems, however, diagonal bracing against wind loads has returned; one notable example is the John Hancock Center in Chicago, where the external X-braces form a dramatic part of the structure’s façade.World War I brought an interruption to the boom in what had come to be called skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Empire State Building in the 1931. The Emp ire State’s 102 stories (1,250ft. [381m]) were to keep it established as the hightest building in the world for the next 40 years. Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot across the bay at Bayonne, N.J., supplied the girders by lighter and truck on a schedule operated with millitary precision; nine derricks powerde by electric hoists lifted the girders to position; an industrial-railway setup moved steel and other material on each floor. Initial connections were made by bolting , closely followed by riveting, followed by masonry and finishing. The entire job was completed in one year and 45 days.The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important advance.Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to construction was limited untilafter World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections.Since the close of World War II, research in Europe, the U.S., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more refined and systematic analysis. This in turn has led to the adoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer by short-cutting tedious paperwork, made further advances and savings possible.高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。