应力分析设计规定
- 格式:doc
- 大小:562.50 KB
- 文档页数:14
供热管道应力验算1 一般规定1.1 管道的应力验算应采用应力分类法,并应符合下列规定:1 一次应力的当量应力不应大于钢材的许用应力;2 一次应力和二次应力的当量应力变化范围不应大于3倍钢材的许用应力;3 局部应力集中部位的一次应力、二次应力和峰值应力的当量应力变化幅度不应大于3倍钢材的许用应力。
1.2 进行管道应力计算时,计算参数应按下列规定取值:1 计算压力应取管道设计压力;2 工作循环最高温度应取供热管网设计供水温度;3 工作循环最低温度,对于全年运行的管道应取30℃,对于只在采暖期运行的管道应取10℃;4 计算安装温度应取安装时的最低温度;5 计算应力变化范围范围时,计算温差应采用工作循环最高温度与工作循环最低温度之差;6 计算轴向力时,计算温差应采用工作循环最高温度与计算安装温度之差。
1.3 保温管与土壤之间的单位长度摩擦力应按下式计算:⎪⎭⎫⎝⎛⨯⨯-+⨯⨯+=g D G D K F ρπσπμ2c v c 0421 (5.1.3-1)ϕsin 10-=K (5.1.3-2)式中:F ——单位长度摩擦力(N/m );μ——摩擦系数;c D ——外护管外径(m );v σ——管道中心线处土壤应力(Pa );G ——包括介质在内的保温管单位长度自重(N/m ); ρ——土壤密度(kg/m 3),可取1800 kg/m 3; g ——重力加速度(m/s 2); 0K ——土壤静压力系数;ϕ——回填土内摩擦角(°),砂土可取30°。
1.4 土壤应力应按下列公式计算:1 当管道中心线位于地下水位以上时的土壤应力:H g ⨯⨯=ρσv (5.1.4-1)式中:v σ——管道中心线处土壤应力(Pa )ρ——土壤密度(kg/m 3),可取1800 kg/m 3; g ——重力加速度(m/s 2);H ——管道中心线覆土深度(m ); 2 当管道中心线位于地下水位以下时的土壤应力:()w sw w v H H g H g -⨯+⨯⨯=ρρσ (5.1.4-2)式中:sw ρ——地下水位线以下的土壤有效密度(kg/m 3),可取1000 kg/m 3;w H ——地下水位线深度(m )。
HQB-B06-05.306PP-2003主编部室:管道室参编部室:参编人员:参校人员:说明:1.文件版号为A、B、C......。
2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。
本规定(HQB-B06-05.306PP-2003)自2003年月实施。
目录1. 总则 (1)2. 应力分析管线的分类及应力分析方法 (2)3. 管道应力分析设计输入和设计输出 (6)4. 管道应力分析条件的确定 (9)5. 管道应力分析评定准则 (11)附件1 管线应力分析分类表 (14)附件2 设备管口承载能力表 (15)附件3 柔性系数k和应力增强系数i (16)附件4 API 610《一般炼厂用离心泵》(摘录) (17)附件5 NEMA SM23 (摘录) (22)附件6 API 661 《一般厂用空冷器》(摘录) (23)1. 总则1.1 适用范围1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。
本规定所列内容为管道应力分析设计工作的最低要求。
1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题:1)管道的应力过大或金属疲劳引起管道或支架破坏。
2)管道连接处泄漏。
3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应力,而影响了设备的正常运行。
4)管架因强度或刚度不够而造成管架破坏。
5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。
6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管道振动及破坏。
1.2 应力分析设计工作相关的标准、规范:1) GB150-1999 《钢制压力容器》2) GB50316-2000 《工业金属管道设计规范》3) HG/T20645-1998 《化工装置管道机械设计规定》4) JB/T8130.2-95 《可变弹簧支吊架》5) JB/T8130.1-95 《恒力弹簧支吊架》6) HQB-B06-05.203PP-2003《简化柔性计算的规定》7) ASME/ANSI B31.3 Process Piping8) ASME/ANSI B31.1 Power Piping9) ASME/ANSI B31.4 Liquid Transmission and Distribution pipingsystems10)ASME/ANSI B31.8 Gas Transmission and Distribution pipingsystems11)API 610 Centrifugal Pumps for General Refinery Services12)API 617 Liquid Transportation System for Hydrocarbone,Liquid ,Petroleum Gve, Anhydrone Ammonis , and Alcohols13) NEMA SM-23 Steam Turbine14) API 661 Air-Cooled Heat Exchangers for General RefineryService15) HQB-B06-05.105PP-2003 《管道配管设计规定》16) HQB-B06-04.301PP- 《管架设计工程规定》17) SHJ.41-91 《石油化工企业管道柔性设计规范》18) GB 50316-2000 《工业金属管道设计规范》2. 应力分析管线的分类及应力分析方法2.1 应力分析管线的分类原则上,所有的管线均应做应力分析,并根据管线的类别(温度、压力、口径、壁厚、所连接的设备的荷载要求等)确定应力分析的方法和详细程度。
管道应力设计规定1 范围1.1 本标准对管道应力分析设计条件、评定标准以及分析方法进行了规定。
1.2 适用于设计压力不大于42 MPa,设计温度不超过材料允许使用温度,非直接埋地且无衬里的低碳素钢、合金钢或不锈钢管道。
2 引用标准使用本标准时,应使用下列标准的最新版本。
GB 50316 《工业金属管道设计规范》GB 50009 《建筑结构荷载规范》SH 3039 《石油化工企业非埋地管道抗震设计通则》API 610 《石油、化工和气体工业用离心泵》API 617 《石油、化工和气体工业用离心式压缩机》NEMA SM23 《机械驱动用汽轮机》3 设计规定3.1 一般要求3.1.1 应兼顾管道热补偿及防振要求。
3.1.2 应兼顾管道及设备安全,应避免管道对相关设备造成危害。
3.1.3 应优先采取自然补偿方法解决管道柔性问题,安装空间狭小而不具备自然补偿条件时方考虑采用金属膨胀节。
采用膨胀节应考虑满足工艺条件及防腐要求,不得采用填函式伸缩节和球形补偿器。
3.1.4 可采取冷紧措施减小管道对设备、法兰以及固定架的作用力,但不可以应用在敏感转动设备的管道上。
3.1.5 存在明显振源的管道应优先考虑防止其振动。
3.1.6 往复式压缩机管道应按照与制造商签定的合同要求进行防振计算。
3.2 设计条件3.2.1 计算基础数据应由相关各专业提供。
3.2.2 计算工况应涵盖最不利工况,如烘炉、催化剂再生、烧焦、吹扫等特殊工况。
3.2.3 另有规定除外,热态计算温度按最高操作温度状态确定。
对于有外隔热层管道,计算温度取介质温度;对于无外隔热层管道,计算温度可取95 %介质温度;对于有内隔热层管道,计算温度应根据热传导计算确定。
3.2.4 另有规定除外,安装温度取20 ℃。
3.2.5 另有规定除外,冷态计算温度取安装温度。
3.2.6 另有规定除外,计算压力取最高操作压力。
3.2.7 金属管道的许用应力按GB 50316附录A取值。
管道应力分析设计技术规定1. 总则1.1 概述1.1.1 管道应力计算主要验算管道在内压、持续外载作用下的一次应力和由于热胀、冷缩及其它位移受约束产生的二次应力,以判明所计算的管道是否安全、经济、合理;计算管道由于热胀、冷缩及其它位移受约束和持续外载作用产生的对设备的推力和力矩,以判明是否在设备所能安全承受的范围之内。
1.2 范围1.2.1 下列范围的管道必须通过计算机计算:(1)管径大于等于DN150,且设计温度大于等于230℃或低于-20℃的所有管线。
(2)设计温度大于等于340℃的所有管线。
(3)管径大于等于DN100,且操作温度大于等于230℃或低于-20℃的所有泵的进出口管线。
(4)汽轮机进、进口连接的管道。
(5)离心压缩机进、出口连接的管道。
(6)往复压缩机进、出口连接的管道。
(7)有关规范中规定要进行应力计算的管道。
1.2.2 下列范围内(除1.2.1条规定之外)的管道一般应通过目测、手工简易计算进行应力分析,在判断困难时,仍应通过计算机计算:(1)管径大于、等于DN400的管道。
(2)连接到压力容器的重要管道。
(3)所有由工艺专业提出的重要管道和内部绝热管道。
(4)所有铝及铝合金的管道。
(5)管道支撑点或与管道相连的设备、建构筑物基础可能过度下沉的管道。
(6)夹套管。
(7)管道应力分析人员选定的管线。
(8)安全阀放散管。
1.2.3 下列管道可不再进行应力计算(1)与运行良好的管道柔性相同或基本相当的管道。
(2)和已分析的管道比较,确认有足够柔性的管道。
2. 设计条件和设计标准2.1 设计条件2.1.1 管道应力计算空视草图由配管人员绘制后提交给管道应力计算人员。
格式见附件5.1。
2.1.2 管道应力计算必须具备的基础数据(1)管道计算压力(a)一条管道的计算压力不应小于在操作中可能遇到内压或外压与温度相偶合时的最严格情况下的压力(即确定的设计压力)。
(b)如果管系与其压力泄放装置之间的通路可能被堵塞或隔离,则此管系应按不低于在上述情况下可能产生的最大压力计算。
混凝土应力-应变关系标准混凝土应力-应变关系标准一、引言混凝土是工程中常用的建筑材料之一,其力学性能的研究对于设计和施工至关重要。
混凝土的力学性能主要包括强度、刚度和韧性等方面,其中应力-应变关系是研究混凝土力学性能的基础。
应力-应变关系是指在应力作用下混凝土的应变情况,是描述混凝土性能的重要参数。
混凝土应力-应变关系的研究可以为混凝土结构的设计提供参考依据,同时也可以为混凝土材料的开发和生产提供指导。
本文将基于国内外相关标准和研究成果,对混凝土应力-应变关系进行详细的阐述和分析,并提出相应的标准。
二、混凝土应力-应变关系的研究方法混凝土应力-应变关系的研究方法主要有实验法和理论计算法两种。
1. 实验法实验法是通过对混凝土试件进行加载实验,测量应力和应变的变化,建立应力-应变曲线的方法。
实验法的优点是可以直接测量混凝土的力学性能,具有较高的可靠性和准确性。
但是实验方法存在试件尺寸、制备和加载方式等方面的影响,同时也需要耗费较多的时间和资源。
2. 理论计算法理论计算法主要是基于混凝土的本构关系以及力学方程,通过数学模型进行计算得出应力-应变曲线。
理论计算法的优点是可以减少试验成本,快速得到混凝土的力学性能参数,同时也可以分析混凝土的力学性能变化规律。
但是理论计算法需要对混凝土的本构关系进行假设和简化,对结果的准确性存在一定的影响。
三、混凝土应力-应变关系的基本特征混凝土应力-应变关系的基本特征包括应力-应变曲线的形状、峰值应力、极限应变和弹性模量等参数。
1. 应力-应变曲线的形状混凝土应力-应变曲线的形状主要包括线性阶段、非线性阶段和破坏阶段三个部分。
线性阶段是指混凝土在低应力下呈现出线性弹性变形,其应力-应变曲线接近于一条直线。
非线性阶段是指混凝土在较高应力下出现非线性弹性变形,此时应力-应变曲线呈现出曲线形状。
破坏阶段是指混凝土在应力达到一定程度下出现裂缝和破坏,此时应力-应变曲线急剧下降。
2. 峰值应力峰值应力是指混凝土在应力-应变曲线中达到的最大应力。
1 范围本标准规定了:(1)管道在内压、持续外载作用下的一次应力和由于热胀、冷缩及其它位移受约束产生的热胀二次应力的验算方法,以判断所计算的管道是否安全、经济、合理;(2)管道由于热胀、冷缩及其它位移受约束和持续外载作用产生的对设备的推力和力矩核算方法,以判明是否在设备所能安全承受的范围内;(3)管道应力分析方法的选择依据;(4)支吊架的选用原则.执行本规定时,尚应符合现行有关标准规范的要求。
本规定适用于石油化工企业承受静力载荷的碳素钢、合金钢及不锈钢管道的柔性设计2 引用标准《石油化工企业管道柔性设计规范》SHJ41《石油化工企业管道设计器材选用通则》SH3059《石油化工钢制压力容器》SH3074《石油化工企业管道支吊架设计规范》SH3073《化工厂和炼油厂管道》ANSI/ASME B31.3《API-610/NEMA-SM23》上述标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
在标准出版时,所示标准均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用上述标准最新版本的可能性。
3 一般规定3.1 管道柔性设计应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、端点附加位移和管道支撑设置不当等原因造成的下列问题:一.管道应力过大或金属疲劳引起管道或支架破坏;二.管道连接处产生泄漏;三.管道推力和力矩过大,使与其相连接的设备产生过大的应力和变形,影响设备正常运行。
3.2 在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移:一.加热炉管对加热炉进出口管道施加的附加位移;二.塔或其它立式设备产生热胀冷缩时对连接管道施加的附加位移;三.管壳式换热器及其它卧式设备滑动支座移动造成连接管道的附加位移;五.几台设备互为备用时,不操作管道对操作管道的影响;六.不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加位移;七.根据需要,应考虑固定架和限位架的刚度影响。
起重机械金属结构应力测试技术规范编制说明起重机械应力测试工作是起重机械安全评估工作的重点内容,它能直接反映出结构的强度与疲劳性能。
目前不同机构在实施应力测试工作时存在无标准可依的情况,导致测试内容不尽相同,产生了一定的分歧。
广州特种机电设备检测研究院长期从事起重机械安全评估工作,在应力测试方面积累了丰富的经验。
为统一测试过程,规范测试手段,撰写此标准。
1前言世界经济全球化促进了国际贸易的迅速发展,而其中90%以上的国际贸易量是通过水路运输来完成的。
考虑运输的经济性,船舶趋向大型化和专业化,使码头起重机朝着重型、高速、专业化方向发展,目前大型集装箱桥吊的起重量达己到65t,外伸距接近70m,而金属结构的重量通常占整机重量的60%-70%对于大型港口机械,如各类装卸桥,o金属结构的比重甚至上升到80%-90K起重机出现安全事故小则造成经济损失,大则出现人员伤亡,而设备的大型化使人们对安全性问题更为重视,但是令人遗憾的事情还是时有发生。
如1987年8月上港7区(今上海煤炭装卸公司)1台大型卸煤机主臂架突然断裂造成灾难性破坏;1995年香港友联公司1台40t41m多用途起重机臂架系统突然断裂失效;1997年3月山东日照港1台16∕25t门座起重机突然臂架折断。
上述事故大部分都在正常作业状态下发生,造成人员伤亡及巨大的经济损失。
事后调查表明绝大部分事故是由于金属结构失效引起的。
原武汉交通科技大学物流技术与装备CAD/CAE研究所,根据武汉汉阳港、厦门东渡港和广州新港42台门座起重机的抽样调查,在所发生的141次故障中,折断故障占到5.67%□随着国内大量起重机超过使用期限,部分使用甚至达到40年,对这类起重机进行安全评估势在必行。
目前国内标准对安全评估有规定,其中涉及到对起重机金属结构进行应力测试,以此来判断结构的强度情况。
实际应用过程中,国内安全评估机构进行应力测试时,根据力学原理分析或有限元分析确定测试点的位置和数量,操作起来自成一家,导致评估质量下降。
质量管理体系文件HQB-B06-05.306PP-2003设计规定管道应力分析设计规定版号:0受控号:2003年月日发布 2003年月日实施管道应力分析设计规定HQB-B06-05.306PP-2003版号编制校核审核批准批准日期0主编部室:管道室参编部室:参编人员:参校人员:会签部室签署会签部室签署会签部室签署说明:1.文件版号为A、B、C......。
2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。
本规定(HQB-B06-05.306PP-2003)自2003年月实施。
目录1. 总则 (1)2. 应力分析管线的分类及应力分析方法 (2)3. 管道应力分析设计输入和设计输出 (6)4. 管道应力分析条件的确定 (9)5. 管道应力分析评定准则 (11)附件1 管线应力分析分类表 (14)附件2 设备管口承载能力表 (15)附件3 柔性系数k和应力增强系数i (16)附件4 API 610《一般炼厂用离心泵》(摘录) (17)附件5 NEMA SM23 (摘录) (22)附件6 API 661 《一般厂用空冷器》(摘录) (23)1. 总则1.1 适用范围1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。
本规定所列内容为管道应力分析设计工作的最低要求。
1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题:1)管道的应力过大或金属疲劳引起管道或支架破坏。
2)管道连接处泄漏。
3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应力,而影响了设备的正常运行。
4)管架因强度或刚度不够而造成管架破坏。
5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。
6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管道振动及破坏。
第一章任务与职责1. 管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1) 因应力过大或金属疲劳而引起管道破坏;2) 管道接头处泄漏;3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4) 管道的推力或力矩过大引起管道支架破坏;2. 压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10) GB 150-1998《钢制压力容器》3. 专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4. 工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10) 设置、调整支吊架11) 设置、调整补偿器12) 评定管道应力13) 评定设备接口受力14) 编制设计文件15) 施工现场技术服务5. 工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1. 管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。
主编部室:管道室参编部室:参编人员:参校人员:说明:1.文件版号为A、B、C......。
2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。
本规定(HQB-B06-05.306PP-2003)自2003年月实施。
目录1. 总则 (1)2. 应力分析管线的分类及应力分析方法 (2)3. 管道应力分析设计输入和设计输出 (6)4. 管道应力分析条件的确定 (9)5. 管道应力分析评定准则 (11)附件1 管线应力分析分类表 (14)附件2 设备管口承载能力表 (15)附件3 柔性系数k和应力增强系数i (16)附件4 API 610《一般炼厂用离心泵》(摘录) (17)附件5 NEMA SM23 (摘录) (22)附件6 API 661 《一般厂用空冷器》(摘录) (23)1. 总则1.1 适用范围1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。
本规定所列内容为管道应力分析设计工作的最低要求。
1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题:1)管道的应力过大或金属疲劳引起管道或支架破坏。
2)管道连接处泄漏。
3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应力,而影响了设备的正常运行。
4)管架因强度或刚度不够而造成管架破坏。
5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。
6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管道振动及破坏。
1.2 应力分析设计工作相关的标准、规范:1) GB150-1999 《钢制压力容器》2) GB50316-2000 《工业金属管道设计规范》3) HG/T20645-1998 《化工装置管道机械设计规定》4) JB/T8130.2-95 《可变弹簧支吊架》5) JB/T8130.1-95 《恒力弹簧支吊架》6) HQB-B06-05.203PP-2003《简化柔性计算的规定》7) ASME/ANSI B31.3 Process Piping8) ASME/ANSI B31.1 Power Piping9) ASME/ANSI B31.4 Liquid Transmission and Distribution pipingsystems10)ASME/ANSI B31.8 Gas Transmission and Distribution pipingsystems11)API 610 Centrifugal Pumps for General Refinery Services12)API 617 Liquid Transportation System for Hydrocarbone,Liquid ,Petroleum Gve, Anhydrone Ammonis , and Alcohols13) NEMA SM-23 Steam Turbine14) API 661 Air-Cooled Heat Exchangers for General RefineryService15) HQB-B06-05.105PP-2003 《管道配管设计规定》16) HQB-B06-04.301PP- 《管架设计工程规定》17) SHJ.41-91 《石油化工企业管道柔性设计规范》18) GB 50316-2000 《工业金属管道设计规范》2. 应力分析管线的分类及应力分析方法2.1 应力分析管线的分类原则上,所有的管线均应做应力分析,并根据管线的类别(温度、压力、口径、壁厚、所连接的设备的荷载要求等)确定应力分析的方法和详细程度。
1 范围本标准规定了:(1)管道在内压、持续外载作用下的一次应力和由于热胀、冷缩及其它位移受约束产生的热胀二次应力的验算方法,以判断所计算的管道是否安全、经济、合理;(2)管道由于热胀、冷缩及其它位移受约束和持续外载作用产生的对设备的推力和力矩核算方法,以判明是否在设备所能安全承受的范围内;(3)管道应力分析方法的选择依据;(4)支吊架的选用原则.执行本规定时,尚应符合现行有关标准规范的要求。
本规定适用于石油化工企业承受静力载荷的碳素钢、合金钢及不锈钢管道的柔性设计2 引用标准《石油化工企业管道柔性设计规范》SHJ41《石油化工企业管道设计器材选用通则》SH3059《石油化工钢制压力容器》SH3074《石油化工企业管道支吊架设计规范》SH3073《化工厂和炼油厂管道》ANSI/ASME B31.3《API-610/NEMA-SM23》上述标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
在标准出版时,所示标准均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用上述标准最新版本的可能性。
3 一般规定3.1 管道柔性设计应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、端点附加位移和管道支撑设置不当等原因造成的下列问题:一.管道应力过大或金属疲劳引起管道或支架破坏;二.管道连接处产生泄漏;三.管道推力和力矩过大,使与其相连接的设备产生过大的应力和变形,影响设备正常运行。
3.2 在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移:一.加热炉管对加热炉进出口管道施加的附加位移;二.塔或其它立式设备产生热胀冷缩时对连接管道施加的附加位移;三.管壳式换热器及其它卧式设备滑动支座移动造成连接管道的附加位移;五.几台设备互为备用时,不操作管道对操作管道的影响;六.不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加位移;七.根据需要,应考虑固定架和限位架的刚度影响。
各标准对需要进行详 各 详细应力分析管道 道的确定方法的规 规定 GB50316 1、 管 道 设 计 温 度 ≤ ‐50℃或≥100℃ ℃; 2、 对柔性计算的 的公称 直径范围按设 设计温 度和管道布置 置的具 体情况在工程 程设计 时确定; 3、 第 1 条规定以 以外满 足下列条件之 之一的 管道: a. 受 室 外 温 度 影 响的无隔热层 长距离的管道; b. 管 道 端 点 距 离 大, 不能用 用经验 判断其柔性的 管道; c. 小 支 管 与 大 管 连接, 且大 大管有 位移并会影响 柔性判断 断时, 小 管应与大管同 时计算。
ASME B3 31.3 规定不需 需要进行正式柔性 性分析的管道为: 1、 与运 运行良好的管道相同或没有重要变动 动的 管道 道; 2、 与分 分析过的管道相比较,能够容易的判 判断 出具 具有足够的柔性的管 管道; 3、 对具 具有同一尺寸、不多于两个固定点、 、无 中间 间约束,且满足以下 下经验公式的管道 道: SH/T3041 宜采用计算 算机分析的管道: 1、 操作温 温度>400℃或<-50℃的管道; 2、 进出加 加热炉及蒸汽发生 生器的高温管道; 3、 进出反 反应器的高温管道 道; 4、 进出汽 汽轮机的蒸汽管道 道; 5、 进出离 离心压缩机、往复 复压缩机的工艺管道 道; 6、 与离心 心泵连接的管道,可根据设计要求或按下图确定柔性 性设 计方法 法 GB/T208 801 1、 设 备 管 口 有特殊的 载荷要 要求; 2、 预 期 寿 命 内热循环 次数超过 7000 次的 管道; 3、 管 道 设 计 温 度 ≤ ‐70 ℃ 或 ≥ 400℃ 公式 式的不适用范围: a. 剧 剧烈循环条件下运 运行的管道(剧烈 烈循 环 环指管道的应力变 变化范围超过 0.8 8 倍 许 许用应力变化范围 围且运行寿命期间 间等 效 效循环次数超过 7000 7 次) ; b. L L/U>2.5 的不等腿 腿 U 形弯管管道, ,或 7、 设备管 管口有特殊受力要 要求的其他管道; 近 近似直线的锯齿状 状管道; 8、 利用简 简化分析方法后,表明需要进一步详 详细分析的管道。
构造应力分析应力分析是工程学中非常重要的一环,它可以帮助工程师们更好地了解和评估结构在不同力的作用下的行为和性能。
应力分析可以通过使用数学模型和工程计算方法来推导和预测结构的应力分布和变形情况,从而指导工程实践中的设计和优化。
首先,我们需要明确什么是应力。
应力是指单位面积内的力,常用单位是帕斯卡(Pa)或兆帕(MPa)。
应力分为三种类型:拉伸应力、压缩应力和剪切应力。
拉伸应力和压缩应力是由力的作用方向引起的,而剪切应力是由力的切向作用引起的。
应力分析的第一步是确定力的大小和方向。
这通常通过力的矢量分解和平衡方程来实现。
接下来,将力施加到结构上,并根据结构的几何特征和材料的力学性质,应用适当的理论和公式来计算结构的应力分布。
应力分析的一个重要概念是应力集中。
应力集中指的是在结构中存在局部应力增强的区域。
这通常是由于结构几何形状不均匀或应力传递不连续引起的。
应力集中会导致结构的强度降低,容易造成断裂和损坏。
因此,在设计和优化结构时,需要注意减轻或避免应力集中的发生。
应力分析还可以用于确定结构的变形。
变形是指结构由于受力而发生的形状或尺寸的改变。
变形可以通过应用弹性理论和材料力学性质来计算。
通过了解结构的变形情况,可以评估结构的稳定性和刚度,并进行适当的设计和调整。
应力分析在实际工程中具有广泛的应用。
例如,在建筑工程中,应力分析可以帮助工程师们确定房屋或桥梁的载荷承受能力,避免结构的失稳和破坏。
在机械工程中,应力分析可以用于评估机械零件的强度和寿命,以及预测在不同工作条件下的变形量和疲劳破坏。
在进行应力分析时,还需要考虑材料的力学性质。
材料的力学性质包括弹性模量、屈服强度、断裂韧度等。
工程师们需要根据结构要求和实际材料的性能来选择合适的材料,并将其用于应力分析中的计算和预测。
总之,应力分析是工程学中不可或缺的一环。
它可以帮助工程师们更好地了解和评估结构在不同力的作用下的行为和性能。
通过应力分析,工程师们可以指导工程实践中的设计和优化,确保结构的安全和可靠。
目次1 总则 (1)1.1 范围 (1)1.2 管道应力分析的任务 (1)2 引用文件 (2)3 设计 (2)3.1 一般规定 (2)3.2 管道冷紧 (3)3.3 摩擦力 (3)3.4 弹簧支吊架 (3)3.5 设计条件 (4)3.6 应力计算 (5)3.7 力与力矩计算 (5)3.8 管道应力分析评定标准 (5)3.9 应力分析的方法 (8)3.10 应力分析管道分类 (9)4 应力分析报告 (12)1 总则1.1 范围本标准规定了石油化工装置内管道应力分析的原则和相关要求。
本规定适用于石油化工装置设计压力不大于 42MPa,设计温度不超过材料允许使用温度的碳钢、合金钢及不锈钢管道的应力设计。
专利设备或成套设施,其设备的操作、维修、管道布置还应满足设备制造厂的特殊要求及标准。
执行本规定的同时,尚应符合国家现行有关标准。
1.2 管道应力分析的任务管道应力分析的任务是保证管道系统布置的安全和经济性,避免发生以下情况:a) 因管道应力过大或金属疲劳而引起管道或支架损坏;b) 管道连接处发生泄漏;c) 因管道的推力和力矩过大而使管道或与管道连接的设备产生不允许的应力或变形;d) 管道从所在支架上脱落;e) 由于外部振动或管内流体引起的管道共振;f) 管道挠度过大,尤其是对于带有一定坡度自流排液的管道。
2 引用文件GB50009 建筑结构荷载规范GB/T20801 压力管道规范工业管道SH/T3039 石油化工非埋地管道抗震设计通则ASME B31.3 Process PipingAPI610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas IndustriesAPI617 Centrifugal Compressors for Petroleum, Chemical, and Gas Service IndustriesAPI661 Air-Cooled Heat Exhangers for General Refinery Service NEMA SM23 Steam Turbines for Mechanical Drive Service3 设计3.1 一般规定a) 管道布置和支架设计应兼顾管道及设备安全,避免管道对相关设备造成危害。
目次1 总则 (1)1.1 范围 (1)1.2 管道应力分析的任务 (1)2 引用文件 (2)3 设计 (2)3.1 一般规定 (2)3.2 管道冷紧 (3)3.3 摩擦力 (3)3.4 弹簧支吊架 (3)3.5 设计条件 (4)3.6 应力计算 (5)3.7 力与力矩计算 (5)3.8 管道应力分析评定标准 (5)3.9 应力分析的方法 (8)3.10 应力分析管道分类 (9)4 应力分析报告 (12)1 总则1.1 范围本标准规定了石油化工装置内管道应力分析的原则和相关要求。
本规定适用于石油化工装置设计压力不大于 42MPa,设计温度不超过材料允许使用温度的碳钢、合金钢及不锈钢管道的应力设计。
专利设备或成套设施,其设备的操作、维修、管道布置还应满足设备制造厂的特殊要求及标准。
执行本规定的同时,尚应符合国家现行有关标准。
1.2 管道应力分析的任务管道应力分析的任务是保证管道系统布置的安全和经济性,避免发生以下情况:a) 因管道应力过大或金属疲劳而引起管道或支架损坏;b) 管道连接处发生泄漏;c) 因管道的推力和力矩过大而使管道或与管道连接的设备产生不允许的应力或变形;d) 管道从所在支架上脱落;e) 由于外部振动或管内流体引起的管道共振;f) 管道挠度过大,尤其是对于带有一定坡度自流排液的管道。
2 引用文件GB50009 建筑结构荷载规范GB/T20801 压力管道规范工业管道SH/T3039 石油化工非埋地管道抗震设计通则ASME B31.3 Process PipingAPI610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas IndustriesAPI617 Centrifugal Compressors for Petroleum, Chemical, and Gas Service IndustriesAPI661 Air-Cooled Heat Exhangers for General Refinery Service NEMA SM23 Steam Turbines for Mechanical Drive Service3 设计3.1 一般规定a) 管道布置和支架设计应兼顾管道及设备安全,避免管道对相关设备造成危害。
b) 管道布置和支架设计应兼顾管道热补偿及防振要求。
c) 管道布置应优先采取自然补偿方法解决管道柔性问题,布置空间狭小而不具备自然补偿条件时方考虑采用金属膨胀节。
膨胀节应满足工艺条件及防腐要求。
d) 在有毒及可燃介质管道中严禁采用填料函式补偿器。
e) 存在明显振源的管道应优先考虑防止其振动。
f) 在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移:1) 静设备热胀冷缩时对连接管道施加的附加位移;2) 转动设备热胀冷缩在连接管口处产生的附加位移;3) 几台设备互为备用时,不操作管道对操作管道的影响;4) 加热炉管对加热炉进出口管道施加的附加位移;5) 不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加位移。
g) 对于复杂管道可用固定架将其划分成几个较为简单的管段,如 L形管段,Π形管段、Z形管段等再进行分析计算。
h) 确定管道固定点位置时,宜使两固定点间的管段能自然补偿。
i) 采用Π型管段补偿时,宜将其设置在两固定点中部。
3.2 管道冷紧a) 冷紧可降低管道操作时对连接管道或固定架的作用力,但冷紧不宜用于与敏感转动设备相连的管道上。
b) 在确定管道对设备或端点的作用力和力矩时,应计算冷紧的影响。
c) 在管道应力范围的校核中不应考虑冷紧的作用。
d) 热态冷紧有效系数可取 2/3,冷态取 1。
e) 对于材料在蠕变温度下(碳素钢 380℃以上,低合金钢 420℃以上)工作的管道,冷紧比(即冷紧值与全补偿值的比值)宜取 0.7。
对于材料在非蠕变温度下工作的管道,冷紧比宜取 0.5。
冷紧有效系数:热态取 2/3,冷态取 1。
3.3 摩擦力a) 下列管道应考虑摩擦力的不利影响,摩擦力方向与管道位移方向相反:1) 公称直径大于或等于 DN600的管道;2) 与敏感转动设备相连的管道;b) 滑动摩擦系数按下列取值:1) 滑动面为钢对钢时,取 0.3;2) 滑动面为钢对混凝土时,取 0.6;3) 滑动面为不锈钢对聚四氟乙烯时,取 0.1。
c) 滚动摩擦系数按 0.1考虑。
d) 仅需要考虑载重支承面上摩擦效应。
e) 当采用吊杆或弹簧吊架承受管道荷载时,可不考虑摩擦力的影响。
3.4 弹簧支吊架a) 管道在支承点处有垂直位移且允许的荷载变化率大于 6%时,应选用可变弹簧支吊架;当允许的荷载变化率不大于 6%时,应选用恒力弹簧支吊架。
b) 可变弹簧支吊架的荷载变化率不应大于 25%。
荷载变化率按公式(1)计算。
Fs=(△·Ks)/FH×100%……………………………………( 1)式中:FH——工作荷载,单位为牛顿(N);Fs——荷载变化率, %;Ks——弹簧刚度,单位为牛顿每毫米( N/mm);△——管道垂直位移,单位为毫米(mm)。
c) 对于烟气轮机、透平等要求进行冷态安装检测的设备,弹簧支吊架的设计应按冷态吊零的原则进行。
3.5 设计条件3.5.1 计算压力管道计算压力应不低于正常操作中预计的最高压力或在最苛刻温度下同时发生的内压或外压,取其最危险工况。
对工艺有特殊要求的工况(指温度与压力的耦合)也应予以考虑。
3.5.2 计算温度a) 管道计算温度应不低于正常操作中预计的最高温度或在其它工况下的最苛刻温度,取其最高值,或二者均应考虑计算。
对工艺有特殊要求的工况(指温度与压力的耦合)也应予以考虑。
b) 对于无隔热层管道:介质温度低于 65℃时,取介质温度为计算温度;介质温度等于或高于 65℃时,取介质温度的 95%为计算温度。
c) 蒸汽伴热管道根据具体条件确定计算温度。
d) 蒸汽夹套管道和需蒸汽吹扫的管道,取介质设计温度和蒸汽温度的高者为计算温度。
e) 带内衬里的管道应根据工艺管道表利用计算值确定计算温度。
f) 安全阀排泄管道,应取排放时可能出现的最高或最低温度作为计算温度,同时,还应考虑正常操作时,排出管道处于常温下的工况。
g) 进行管道应力分析时,不仅要考虑正常操作条件下的温度,还要考虑短时超温工况(如开车、停车、除焦、再生、蒸气吹扫、备用等工况),且应考虑设备的蒸气吹扫工况。
h) 当管道的操作工况复杂,难以确定计算工况时,可选几种工况进行分析比较。
i) 对于无介质管道(如备用泵的连接管道)的温度取值:1) 保温管道取 50%的操作温度。
2) 非保温管道取安装温度。
3) 蒸汽伴热管道取设计温度的 70%。
4) 备用的泵暖管道取设计温度的 70%。
3.5.3 安装温度除另有规定外,管道安装温度取 20℃。
3.5.4计算中的任何假设与简化,不应对计算结果的作用力、应力等产生不安全的影响。
3.5.5 金属管道的许用应力、柔性系数及应力增大系数、金属弹性模量及膨胀系数等按GB/T20801标准取值,ASTM材料按 ASME B31.3标准取值。
3.5.6 腐蚀裕量腐蚀裕量依据管道等级规定确定。
3.5.7 设计荷载3.5.7.1 管道设计应考虑管道由重力和介质压力、温度变化及内外部冲击产生的荷载。
3.5.7.2 除考虑沿管道轴线发生的热胀冷缩以及与温度有关的设备附加位移外,对于连接自重较大的设备或机器的较大口径的管道,以及高温、高压厚壁管道,应考虑设备之间、设备与构架、设备与管桥之间可能出现的不均匀(差异)沉降的影响。
3.5.7.3 风荷载a) 当管道外径(含保温厚度)大于等于 400mm时,应计算风载荷对下列管道的影响:1) 从塔或立罐上下来的标高大于 10m的管道;2) 空冷器入口管道;3) 标高大于 10m的管道。
b) 风荷载可按 GB50009《建筑结构荷载规范》规定计算。
此时,计算的工况为偶然载荷工况。
3.5.7.4 地震荷载地震荷载可按 SH/T3039《石油化工非埋地管道抗震设计通则》计算,此时应作为偶然载荷工况来计算。
3.5.7.5 应考虑泄压阀、调节阀和安全阀冲击荷载的作用。
3.6 应力计算a) 计算由管道自重、内压等持续载荷引起的管道纵向应力时,计算壁厚中应剔除腐蚀裕量和管道壁厚负偏差。
b) 计算管件热应力变化范围时,要考虑应力增大系数。
c) 管道系统应力分析使用软件:CAESARII。
3.7 力与力矩计算按管道名义厚度计算管道对设备、法兰以及固定架的作用力与力矩。
3.8 管道应力分析评定标准3.8.1 管道应力a) 由重力、压力等持续载荷引起的管道纵向应力之和不得超过材料在最高操作温度下的许用应力。
b) 由风或地震等偶然载荷与重力、压力等持续载荷共同引起的管道纵向应力不得超过 1.33倍材料在最高操作温度下的许用应力。
c) 管道由于热胀、冷缩和其他位移受约束而产生的二次应力范围应符合 GB/T20801标准的规定。
d) 除管道系统要做应力分析外,下列情况还需要单独做管件本体的局部应力分析:1) 带假管的 DN≥650大直径弯管2) DN≥400的大直径分支管3) 非标管件e) 局部应力分析使用软件:FE/Pipe。
3.8.2 作用于法兰的力与力矩管道施加到法兰上的力与力矩应满足公式( 2)和公式( 3),若不满足,应减小力与力矩,或提高法兰压力等级。
f p eq P P P ≤+ (2)23416GG eq D F D M P ππ+= (3) 式中:P eq ——管道操作时,作用在法兰连接处的弯矩和轴向力的当量压力,单位为兆帕(MPa );P p ——管道设计压力,单位为兆帕(MPa );P f ——法兰设计压力,单位为兆帕(MPa );M ——管道操作时作用在法兰连接处的弯矩,单位为牛顿毫米(N.mm );D G ——垫片压紧力作用中心圆直径,单位为毫米(mm );F ——管道操作时作用在法兰连接处的轴向力( N )。
在计算中只考虑管道受拉伸时的轴向力,当轴向力使管道受压缩时,取 F=0。
3.8.3 作用于设备的力与力矩管道在工作状态下作用于机器管嘴的力与力矩应符合机器或设备制造厂提出的限制性条件,在机器或设备制造厂没有提出要求情况下,应符合以下标准的相关规定:a) 泵:与泵进出口相连的管道,除其应力需满足相关规范的要求外,离心泵口所承受的载荷应满足 API610标准的要求,对于往复泵应做动力分析。
b) 压缩机:与压缩机进出口相连的管道,除其应力需满足相关规范的要求外,离心式压缩机管嘴所承受的载荷应满足 API617标准的要求,对于往复式压缩机应做动力分析。
c) 蒸汽透平和汽轮机:与蒸汽透平或汽轮机相连的管道,除其应力需满足相关规范的要求外,透平和汽轮机管嘴所承受的载荷应满足 NEMA SM23标准的要求。