初中数学第一课(用)
- 格式:ppt
- 大小:785.50 KB
- 文档页数:21
初中数学开学第一课一、课程简介初中数学是学生在小学数学基础上,进一步培养学生的逻辑思维、抽象思维和解决问题的能力。
开学第一课旨在帮助学生了解初中数学的学习内容、方法和技巧,为今后的学习打下坚实的基础。
二、课程目标1. 让学生了解初中数学的学习内容,明确学习目标。
2. 培养学生良好的学习习惯和思维方式。
3. 传授实用的学习方法和技巧,提高学习效率。
4. 激发学生对数学的兴趣,增强学习动力。
三、课程内容1. 初中数学学习内容概述- 代数:一元一次方程、不等式、函数、有理数等。
- 几何:平面几何、立体几何、解析几何等。
- 概率与统计:概率的基本概念、统计方法等。
- 数学思想:分类讨论、转化与化归、数形结合等。
2. 学习方法与技巧- 预习:提前预习新课内容,了解重点、难点。
- 听课:认真听讲,做好笔记,积极参与课堂讨论。
- 复习:课后及时复习,巩固所学知识。
- 练习:多做习题,提高解题能力。
- 思考:注重培养逻辑思维和抽象思维。
3. 学习习惯与态度- 制定学习计划:合理安排学习时间,确保学习效果。
- 培养自律意识:自觉遵守学习纪律,养成良好的学习习惯。
- 保持好奇心:积极探索数学问题,勇于挑战自己。
- 合作学习:与同学互相帮助,共同进步。
四、课程实施1. 讲解初中数学的学习内容,让学生对所学内容有一个整体的认识。
2. 针对不同学科特点,传授具体的学习方法和技巧。
3. 分享成功案例,激发学生的学习兴趣和动力。
4. 组织课堂互动,让学生积极参与,提高课堂效果。
5. 布置课后作业,巩固所学知识。
五、课程评价1. 学生满意度:通过问卷调查、访谈等方式了解学生的满意度。
2. 学习成绩:关注学生在数学学科的成绩变化。
3. 学习态度:观察学生在课堂上的表现,了解学生的学习态度。
4. 课堂互动:评估学生在课堂互动中的表现,鼓励学生积极参与。
六、总结初中数学开学第一课旨在帮助学生了解学习内容、方法和技巧,激发学习兴趣。
通过本节课的学习,学生应能明确学习目标,掌握实用的学习方法,养成良好的学习习惯,为初中数学学习打下坚实基础。
教案:初中数学第一课课程名称:初中数学年级:七年级教材:《人教版初中数学》第一册课时:2课时教学目标:1. 让学生了解数学在日常生活中的应用,培养学生的数学兴趣。
2. 使学生掌握数轴的基本概念和绘制方法。
3. 培养学生运用数轴解决实际问题的能力。
教学内容:1. 数轴的定义、特点和绘制方法。
2. 数轴上点的表示方法。
3. 数轴在实际问题中的应用。
教学过程:第一课时:一、导入(5分钟)1. 教师通过向学生展示日常生活中的数学现象,如身高、体重、温度等,引导学生认识到数学与生活的紧密联系。
2. 学生分享自己对数学的认识和感受。
二、新课导入(15分钟)1. 教师介绍数轴的定义、特点和绘制方法。
2. 学生跟随教师一起绘制一个简单的数轴。
3. 教师讲解数轴上点的表示方法,如正方向、负方向、原点等。
三、课堂练习(15分钟)1. 学生独立完成教材上的练习题,巩固数轴的基本概念。
2. 教师选取部分学生的作业进行点评,指出优点和不足。
四、拓展与应用(15分钟)1. 教师提出实际问题,如“小明家距离学校3公里,小明向学校走去,每小时走2公里,问小明需要多少时间才能到达学校?”2. 学生运用数轴解决上述问题,画出小明走的路程与时间的对应关系。
3. 教师引导学生总结数轴在实际问题中的应用方法。
第二课时:一、复习导入(5分钟)1. 教师简要回顾上一节课的内容,检查学生的掌握情况。
2. 学生分享自己在课后用数轴解决实际问题的经历。
二、深入学习(15分钟)1. 教师讲解数轴的另一种表示方法——数对表示法。
2. 学生跟随教师一起用数对表示法表示数轴上的点。
三、课堂练习(15分钟)1. 学生独立完成教材上的练习题,巩固数轴的表示方法。
2. 教师选取部分学生的作业进行点评,指出优点和不足。
四、总结与反思(15分钟)1. 教师引导学生总结本节课所学内容,巩固数轴的基本概念和表示方法。
2. 学生分享自己的学习收获和感悟。
教学评价:1. 课后作业:检查学生对数轴的基本概念和表示方法的掌握情况。
§1.1集合的概念第1课时集合的概念学习目标1.通过实例了解集合的含义.2.理解集合中元素的特征.3.体会元素与集合的“属于”关系,记住常用数集的表示符号并会应用.知识点一元素与集合的概念1.元素:一般地,把统称为元素(element),常用小写拉丁字母表示.2.集合:把一些组成的总体叫做集合(set)(简称为集),常用大写拉丁字母…表示.3.集合相等:指构成两个集合的元素是的.4.集合中元素的特性:给定的集合,它的元素必须是、.思考某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?知识点二元素与集合的关系知识点关系概念记法读法元素与集合的关系属于如果,就说a 属于集合A “a 属于A ”不属于如果,就说a 不属于集合A“a 不属于A ”思考设集合A 表示“1~10以内的所有素数”,3,4这两个元素与集合A 有什么关系?如何用数学语言表示?知识点三常用数集及表示符号名称自然数集正整数集整数集有理数集实数集记法1.接近于0的数可以组成集合.()2.分别由元素0,1,2和2,0,1组成的两个集合是相等的.()3.一个集合中可以找到两个相同的元素.()4.由方程x2-4=0和x-2=0的根组成的集合中有3个元素.()一、对集合概念的理解例1(1)下列对象能组成集合的是()A.2的所有近似值B.某个班级中学习好的所有同学C.2020年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员(2)下列说法中,正确的有________.(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中有3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.跟踪训练1(多选)下列说法正确的有()A.花坛上色彩艳丽的花朵构成一个集合B.正方体的全体构成一个集合C.未来世界的高科技产品构成一个集合D.不大于3的所有自然数构成一个集合二、元素与集合的关系例2(1)设集合M是由不小于25的数组成的集合,a=15,则下列关系中正确的是() A.a∈M B.a∉MC.a=M D.a≠M(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.跟踪训练2用符号“∈”或“∉”填空:(1)设集合B是小于11的所有实数的集合,则23________B,1+2________B;(2)设集合C是满足方程x=n2+1(其中n为正整数)的实数x的集合,则3________C,5________C;(3)设集合D是满足方程y=x2的有序实数对(x,y)组成的集合,则-1________D,(-1,1)________D.三、元素特性的应用例3已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求实数a.跟踪训练3设集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2∈A,求实数x的值.1.下列各组对象能构成集合的有()①接近于1的所有正整数;②小于0的实数;③(2020,1)与(1,2020).A.1组B.2组C.3组D.0组2.若a是R中的元素,但不是Q中的元素,则a可以是()D.7A.3.14B.-5 C.373.已知集合A中的元素x满足x-1<3,则下列各式正确的是()A.3∈A且-3∉A B.3∈A且-3∈AC.3∉A且-3∉A D.3∉A且-3∈A4.由方程x2-2x-3=0和x2-1=0的根组成的集合中的元素的个数为________.5.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是________.1.知识清单:(1)元素与集合的概念、元素与集合的关系.(2)常用数集的表示.(3)集合中元素的特性及应用.2.方法归纳:分类讨论.3.常见误区:忽视集合中元素的互异性.1.(多选)下列选项中能构成集合的是()A.高一年级跑得快的同学B.中国的大河C.3的倍数D.大于6的有理数2.给出下列关系:①13∈R;②5∈Q;③-3∉Z;④-3∉N,其中正确的个数为() A.1B.2C.3D.43.集合M是由大于-2且小于1的实数构成的,则下列关系式正确的是()A.5∈M B.0∉MC.1∈M D.-π2∈M4.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形5.集合A中有三个元素2,3,4,集合B中有三个元素2,4,6,若x∈A且x∉B,则x等于() A.2B.3C.4D.66.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________.7.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.8.若由a,b2,a+b,0组成的集合相等,则a2020+b2020的值为________.a,1组成的集合与由a9.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值.10.已知集合A 含有两个元素1和a 2,若a ∈A ,求实数a 的值.11.(多选)由a 2,2-a,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值不可能是()A .1B .-2C .-1D .212.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是()A .0∈MB .-1∈MC .3∉MD .1∈M13.已知集合M 中的元素x 满足x =a +2b ,其中a ,b ∈Z ,则下列实数中不属于集合M 中元素的个数是()①0;②-1;③32-1;④23-22;⑤8;⑥11-2.A .0B .1C .2D .314.已知集合A 含有两个元素1和2,集合B 表示方程x 2+ax +b =0的解组成的集合,且集合A 与集合B 相等,则a =________;b =________.15.已知集合M有2个元素x,2-x,若-1∉M,则下列说法一定错误的是________.(填序号)①2∈M;②1∈M;③x≠3.16.设集合A中的元素均为实数,且满足条件:若a∈A,则11-a∈A(a≠1,且a≠0).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.。
七年级数学开学第一课完整版课件一、教学内容1. 有理数的定义与分类2. 有理数的表示方法3. 有理数的基本性质二、教学目标1. 让学生掌握有理数的概念,了解有理数的分类及表示方法。
2. 使学生理解有理数的基本性质,并能运用性质解决相关问题。
3. 培养学生的逻辑思维能力和数学运算能力。
三、教学难点与重点1. 教学难点:有理数的分类及表示方法,有理数的基本性质。
2. 教学重点:有理数的概念,有理数的运算规则。
四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔。
2. 学具:学生每人一本教材,练习本,铅笔。
五、教学过程1. 实践情景引入:以气温变化为例,让学生了解有理数的实际应用。
2. 新课导入:通过气温变化实例,引出有理数的概念。
3. 例题讲解:(1)讲解有理数的定义,分类及表示方法。
(2)讲解有理数的基本性质。
4. 随堂练习:(1)让学生判断一些数是否为有理数,并说明理由。
(2)让学生举例说明有理数在实际生活中的应用。
5. 知识巩固:(1)讲解有理数的运算规则。
(2)让学生进行有理数运算的练习。
六、板书设计1. 有理数的定义、分类、表示方法。
2. 有理数的基本性质。
3. 有理数的运算规则。
七、作业设计1. 作业题目:(2)计算:(2)×(3/4)。
2. 答案:(1)3/4是有理数,因为它可以表示为分数;5是有理数,因为它可以表示为整数;√2不是有理数,因为它不能表示为分数或整数。
(2)(2)×(3/4) = 3/2。
八、课后反思及拓展延伸1. 反思:本节课学生对有理数的概念、分类、表示方法掌握情况较好,但在有理数运算方面还需加强练习。
2. 拓展延伸:(1)探讨无理数的概念。
(2)研究有理数的乘方和开方运算。
重点和难点解析1. 教学内容的详细程度与结构安排。
2. 教学目标的明确性与可达成性。
3. 教学难点与重点的识别与处理。
4. 教学过程中的实践情景引入与例题讲解。
5. 板书设计的系统性与清晰度。