常见的几个函数不等式及其应用
- 格式:doc
- 大小:4.29 MB
- 文档页数:13
常用不等式公式考研不等式是数学中最重要的基础概念之一,它对考研中数学的学习和理解至关重要。
本文将介绍考研中常见的不等式公式及其应用,为考研数学的学习提供参考。
首先,让我们介绍一下考研数学中最常用的不等式公式。
一、凸函数不等式凸函数不等式也是考研数学中常见的不等式公式,它的基本性质是:如果f(x)的导数 >= 0,则f(x)的函数值是单调递增的。
因此,凸函数不等式可以用来证明某个函数的单调性,也可以用来判断某个函数是可以单调递增的。
此外,凸函数不等式常常被用来证明函数的连续性、反函数的存在性、函数的最小值或最大值存在性等。
二、二次不等式二次不等式也是考研数学中常见的不等式公式,它的基本性质是:当两个不同的根底数相乘时,当两个数的符号一致时,则乘积的结果大于0,而当两个数的符号不一致时,则乘积的结果小于0。
通过利用这种不等式,我们可以证明函数的最小值或最大值的具体值,也可以判断函数是否有最小值或最大值,以及函数是否是单调函数。
三、非负不等式非负不等式也是考研数学中常见的不等式公式,它的基本性质是:当某个函数是非负函数,则函数的值只能是非负数,即当函数的值>=0时,函数的值才是有效的。
非负不等式通常用来证明函数的连续性,以及判断函数的有效性、函数的最大值或最小值的具体值。
四、微积分不等式微积分不等式也是考研数学中常见的不等式公式,它的基本性质是:当函数的导数>=0时,那么函数的值也是单调的,即函数的值是单调递增的;反之,如果函数的导数<=0,那么函数的值是单调递减的。
因此,微积分不等式可以用来证明函数的单调性,以及判断函数的有效性、函数的最大值或最小值的具体值等。
以上就是考研数学中常用的不等式公式,以及它们的应用。
理解不等式的基本性质,可以帮助我们更好地分析问题,为考研数学的学习提供积极的指导。
高一数学函数不等式知识点在高一数学课程中,函数不等式是一个重要的知识点。
函数不等式主要涉及到函数的不等关系及其在数轴上的图像表示。
以下是关于高一数学函数不等式的一些基本知识点:一、函数的不等关系函数的不等关系是指函数值之间的大小关系。
在数学中,有几种常见的不等关系,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)等。
二、一次函数不等式一次函数不等式是指函数中只包含一次项的不等式。
对于一个一次函数f(x) = ax + b,可以利用其函数图像以及不等式的性质来求解不等式。
三、二次函数不等式二次函数不等式是指函数中含有二次项(x²)的不等式。
对于一个二次函数f(x) = ax² + bx + c,可以通过求解二次方程来确定函数的零点,并利用零点将函数的图像分为不同的区间进行讨论。
四、绝对值不等式绝对值不等式是指函数中含有绝对值符号(|x|)的不等式。
对于一个绝对值不等式|f(x)| < a(或> a),可以通过拆分成两个不等式进行求解,包括当f(x) > 0或f(x) < 0时的情况。
五、函数不等式的解集表示当求解函数不等式时,我们通常需要表示其解集。
解集可以通过数轴上的图像表示,或使用区间表示。
在数轴上,解集可以用开区间、闭区间、半开半闭区间等形式表示。
六、函数不等式的解法对于不同类型的函数不等式,我们可以采用不同的解法。
常用的解法包括代入法、分析法、图像法等。
通过选择合适的解法,能够更快速地求解函数不等式问题。
总结:高一数学函数不等式是数学课程中的一个重要知识点,涉及到函数的不等关系、一次函数不等式、二次函数不等式、绝对值不等式等内容。
通过掌握函数不等式的基本知识,我们能够更好地理解和解决相关的数学问题。
在实际应用中,函数不等式也经常被用于解决各种实际问题,对培养学生的逻辑思维和问题解决能力有着重要的作用。
不等式的应用与解法不等式是数学中一种常见的表达方式,用于表示两个数或者两个表达式之间的关系。
在实际问题中,不等式常被用来描述条件、限制和约束等情况。
解决不等式问题的过程中,我们可以通过各种方法进行推导和求解。
本文将详细介绍不等式的应用与解法。
一、不等式的应用不等式在日常生活和各个学科中都有广泛的应用。
下面列举几个常见的例子来说明不等式在实际问题中的应用。
1. 金融领域:在股票市场中,人们常用不等式来描述价格变化的范围,并判断是否存在投资机会。
例如,如果股票价格上涨不少于10%,则可以得到利润。
2. 经济学:在经济学中,不等式被用来表示供给和需求等关系。
例如,如果某种商品的需求量超过供给量,则价格将上涨。
3. 物理学:在物理学中,不等式用于描述力学系统中的平衡和稳定性条件。
例如,对于一个悬挂在桥梁上的物体,不等式被用于确定支撑的最大负荷。
4. 工程学:在工程学中,不等式常用于约束条件的限制。
例如,在建筑设计中,不等式被用来确定结构材料的使用范围。
以上只是不等式应用的一些例子,实际中的应用场景更加广泛。
二、不等式的解法解决不等式问题的方法有很多种,下面将详细介绍几种常用的解法。
1. 数轴法:数轴法是一种直观的解决不等式问题的方法。
将不等式中的变量在数轴上表示出来,通过观察数轴上的位置关系,可以找到不等式的解集。
例如,对于不等式x > 3,将3在数轴上标记出来,可以发现x的取值范围是大于3的所有实数。
2. 方程转换法:对于某些特殊的不等式,可以通过将其转化为等价的方程来求解。
例如,不等式x + 2 > 5可以转化为方程x + 2 = 5,然后求解方程得到x的取值范围。
3. 函数法:对于一些复杂的不等式问题,可以利用函数的性质来解决。
通过观察函数图像和函数值的变化,可以确定不等式的解集。
例如,对于不等式x^2 - 4 > 0,可以通过绘制函数y = x^2 - 4的图像,找到使y大于0的x的取值范围。
函数不等式知识点归纳总结函数不等式是解决数学问题中常见的一种形式,它涉及到函数的不等关系及其解集。
本文将对函数不等式的概念、解法和应用进行归纳总结,以帮助读者更好地理解和应用函数不等式。
一、函数不等式的概念函数不等式是指含有函数的不等式关系,其中函数可以是一元函数或多元函数。
函数不等式可以包含一个或多个变量,并且其解集通常是一个或多个实数区间。
解函数不等式的主要目标是确定变量的取值范围,以满足不等式关系。
二、一元函数不等式的解法解一元函数不等式的方法主要包括图像法、代数法和符号法。
图像法借助函数的图像找到不等式的解集;代数法借助代数运算和推导解出不等式的解集;符号法则通过符号变换和符号性质推导解出不等式的解集。
2.1 图像法图像法是通过函数的图像来解不等式的方法。
首先,绘制函数的图像,并观察函数图像的凹凸性、单调性和零点等信息。
然后,根据函数图像的性质确定不等式的解集。
2.2 代数法代数法是通过代数运算和推导来解不等式的方法。
利用一元函数的性质,将不等式进行化简、移项和分式分解等操作,最终得到不等式的解集。
2.3 符号法符号法是通过符号变换和符号性质来解不等式的方法。
不等式中的符号可根据不等式的性质进行变换,并利用符号性质推导出不等式的解集。
常见的符号性质包括非负性、相反性、单调性和倍数性等。
三、多元函数不等式的解法解多元函数不等式的方法主要包括图像法和代数法。
其中,图像法借助多元函数的图像确定不等式的解集;代数法则通过代数运算和推导解出不等式的解集。
3.1 图像法图像法是通过多元函数的图像来解不等式的方法。
首先,绘制多元函数的图像,并观察函数图像的变化趋势。
然后,根据函数图像的性质确定不等式的解集。
3.2 代数法代数法是通过代数运算和推导来解不等式的方法。
利用多元函数的性质,将不等式进行化简、移项和分式分解等操作,最终得到不等式的解集。
四、函数不等式的应用函数不等式在数学和实际问题中有着广泛的应用。
常用的积分不等式积分不等式是数学中常用的工具之一,它可以帮助我们对函数的性质进行研究和估计。
在本文中,我们将介绍几个常用的积分不等式,并说明它们的应用。
1. 切比雪夫不等式切比雪夫不等式是概率论中的重要工具,也可以应用到积分中。
它表明在一个区间上的函数值的平均值与函数值超过平均值的部分之间存在一种关系。
具体来说,如果函数f(x)在区间[a, b]上可积且有界,则对于任意实数M,有以下不等式成立:∫[a,b] |f(x)|dx ≤ M(b-a)这个不等式告诉我们,如果一个函数在一个区间上的绝对值的积分有界,那么函数在这个区间上的平均值也是有界的。
2. 马尔可夫不等式马尔可夫不等式是用来估计一个非负随机变量的期望值的上界的不等式。
同样地,它也可以应用到积分中。
具体来说,如果函数f(x)在区间[a, b]上可积且非负,则对于任意实数M,有以下不等式成立:∫[a,b] f(x)dx ≤ M∫[a,b] f(x) dx这个不等式告诉我们,如果一个函数在一个区间上的积分有界,那么函数在这个区间上的值也是有界的。
3. 柯西-施瓦茨不等式柯西-施瓦茨不等式是线性代数中的重要不等式,也可以应用到积分中。
具体来说,如果函数f(x)和g(x)在区间[a, b]上可积,则有以下不等式成立:∫[a,b] f(x)g(x)dx ≤ (∫[a,b] f(x)^2dx)^0.5 (∫[a,b] g(x)^2dx)^0.5这个不等式告诉我们,如果两个函数在一个区间上的积分有界,那么两个函数的乘积在这个区间上的积分也是有界的。
4. 杨辉不等式杨辉不等式是数论中的一种不等式,它也可以应用到积分中。
具体来说,如果函数f(x)在区间[a, b]上可积,则有以下不等式成立:(∫[a,b] f(x)dx)^2 ≤ (∫[a,b] 1dx)(∫[a,b] f(x)^2dx)这个不等式告诉我们,如果一个函数在一个区间上的积分有界,那么函数的平方在这个区间上的积分也是有界的。
常见的几个函数不等式及其应用武汉市教育科学研究院孔峰在近几年的高考中,无论是国家考试中心的数学命题,还是一些独立命题省市的数学命题,有一些函数不等式在命题中出现的频率很高,它们在函数的性质的应用中和函数不等式的证明中发挥着很重要的作用,下面分别介绍这些函数不等式.一、函数不等式的介绍(1))1()1ln(1->≤+≤+x x x xx①证明:令x x x f -+=)1ln()(,则xx x x f +-=-+='1111)(.当01<<-x 时,0)(>'x f ;当0>x 时,0)(<'x f .所以)(x f 在0=x 时取得极大值,故0)0()(=≤f x f ,所以)1()1ln(->≤+x x x .令x x x x g +-+=1)1ln()(,则22)1()1()1(11)(x xx x x x x g +=+-+-+='.当01<<-x 时,0)(<'x f ;当0>x 时,0)(>'x f .所以)(x f 在0=x 时取得极小值,故0)0()(=≥g x g ,)1)(1ln(1->+≤+∴x x xx .综上可知,)1()1ln(1->≤+≤+x x x xx.变式:)0(1ln >-≤x x x ,②)0(11ln >≥+x x x .③(2))1)(1(21ln ≥-≤x x x x ④)10)(1(21ln ≤<-≥x xx x ⑤证明:令)1(21ln )(x x x x f --=,则02)1(11(211)(22≤--=+-='x x xx x f .所以函数)(x f 在),0(+∞单调递减.所以,当1≥x 时,0)1()(=≤f x f ;当10≤<x 时,0)1()(=≥f x f .所以,不等式④,⑤成立.变式:)0(1)1ln(≥+≤+x x xx ⑥(3))1(1)1(2ln ≥+-≥x x x x ⑦)10(1)1(2ln ≤<+-≤x x x x ⑧证明:令1)1(2ln )(+--=x x x x f ,则0)1()1()(22≥+-='x x x x f .所以函数)(x f 在),0(+∞单调递增.当1≥x 时,0)1()(=≥f x f ;当10≤<x 时,0)1()(=≤f x f .所以,不等式⑦,⑧成立.(4))10(211)1ln(112ln 1≤<<-+≤-x x x ⑨证明:令x x x f 1)1ln(1)(-+=,则221)1(ln )1(1)(x x x x f +++-=',而)1(ln ]1)1][ln(1)1[ln()1(ln 1)1(ln )(222222x x x x x x x x x x x x x x f ++-++++=++-+=',由⑥式)0(1)1ln(≥+≤+x x xx 知,0)(<'x f ,所以)(x f 在10≤<x 上为减函数,12ln 1)1()(-=≥f x f .由⑦式)1(1)1(2ln ≥+-≥x x x x 知211)1ln(1<-+x x .综上可知,不等式⑨成立.(5))0(1)211()1ln(≥++≤+x x x x x ⑩证明:令1)211()1ln()(++-+=x x x x x f ,则0)1(2)(22≤+-='x x x f .故0)0()(=≤f x f .所以,不等式⑩成立.变式:)0)(111(2111ln(>++≤+x x x x ⑪利用上述类似构造函数方法,还可以得到以下一些重要不等式:(6)贝努尼不等式:当1->x 时,)0,1(1)1(<≥+≥+αααα或x x ,⑫)10(1)1(<<+≤+αααx x ⑬(7))0(21)1ln(2≥-≥+x x x x ⑭二、常见的函数不等的作用利用上述介绍的函数不等式,无论是去研究函数性质,还是去证明函数不等式或证明数列不等式都会带来许多便利.下面分别联系近几年高考的命题进行说明。
专题:基本不等式求最值的类型及方法一、几个重要的基本不等式:①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=, 当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。
数学函数不等式知识点总结一、常见的函数不等式类型在数学中,函数不等式涉及到各种类型的函数,常见的函数类型包括线性函数、二次函数、指数函数、对数函数等。
这些函数类型在不等式中都有着各自的特点和解法方法。
接下来我们将针对这些常见的函数类型分别进行介绍。
1.1 线性函数不等式线性函数的一般形式为:f(x) = ax + b,其中a和b为常数,且a≠0。
线性函数不等式的形式为:ax + b > 0或者ax + b < 0。
解线性函数不等式最常用的方法就是通过解一元一次不等式,首先将不等式化为一元一次不等式,然后通过移项、乘除以常数等基本操作进行解答。
1.2 二次函数不等式二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
二次函数不等式的形式为:ax^2 + bx + c > 0或者ax^2 + bx + c < 0。
解二次函数不等式的方法通常有两种,一种是通过画出二次函数的图像,找出函数的取值范围;另一种是通过配方法或者公式法解出二次函数的解析式。
1.3 指数函数不等式指数函数的一般形式为:f(x) = a^x,其中a为正实数且a≠1。
指数函数不等式的形式为:a^x > b或者a^x < b。
解指数函数不等式的方法通常是通过取对数进行化简,然后再求解对数不等式的解。
1.4 对数函数不等式对数函数的一般形式为:f(x) = loga(x),其中a为正实数且a≠1。
对数函数不等式的形式为:loga(x) > b或者loga(x) < b。
解对数函数不等式的方法通常也是通过取对数进行化简,然后再求解对数不等式的解。
需要注意的是,对数函数的定义域为正实数,所以在解对数函数不等式时需要考虑函数的定义域。
二、函数不等式的解法方法解函数不等式的方法通常有几种常见的技巧和步骤,下面我们将对这些解法方法进行介绍。
2.1 移项法移项法是解一元一次不等式的常用方法,通过将不等式中的项移到一边,使得不等式变为一个不含未知数的式子,然后再求解不等式。
函数的不等式性质与应用函数是数学中的重要概念,它描述了两个变量之间的关系。
在实际问题中,我们经常会遇到需要研究函数的不等式性质的情况。
函数的不等式性质不仅能够帮助我们解决实际问题,还能够深化我们对函数的理解。
本文将探讨函数的不等式性质以及其应用。
一、函数的不等式性质函数的不等式性质是指函数在定义域上的取值范围。
通过研究函数的不等式性质,我们可以确定函数的最大值、最小值以及函数值的正负情况。
对于一元函数来说,我们可以通过求导的方法来研究其不等式性质。
当函数的导数大于零时,函数递增;当函数的导数小于零时,函数递减。
通过求导并研究导数的正负情况,我们可以确定函数的增减区间,从而得出函数的不等式性质。
对于二元函数来说,我们可以通过偏导数的方法来研究其不等式性质。
偏导数表示了函数在某个方向上的变化率。
通过研究偏导数的正负情况,我们可以确定函数的增减区域,从而得出函数的不等式性质。
二、函数不等式的应用函数的不等式性质在实际问题中有着广泛的应用。
下面将介绍函数不等式的两个典型应用:最优化问题和约束条件问题。
最优化问题是指在一定条件下,寻找函数的最大值或最小值。
通过研究函数的不等式性质,我们可以确定函数的最大值或最小值所对应的自变量取值。
例如,在生产过程中,我们希望找到一种材料的最佳用量,使得成本最小或者产量最大。
这个问题可以通过建立成本函数或产量函数,并研究其不等式性质来解决。
约束条件问题是指在一定条件下,寻找函数的最大值或最小值,同时满足一定的约束条件。
通过研究函数的不等式性质以及约束条件,我们可以确定函数在约束条件下的最大值或最小值所对应的自变量取值。
例如,在生产过程中,我们希望找到一种材料的最佳用量,使得产量达到一定的要求,同时成本最小。
这个问题可以通过建立成本函数和产量函数,并研究其不等式性质以及约束条件来解决。
三、函数不等式性质的实例为了更好地理解函数的不等式性质与应用,我们来看一个具体的实例。
假设有一块长方形的土地,其中一条边是河流。
三角函数的不等式与应用解析三角函数是数学中一类重要的特殊函数,其在数学和实际应用中具有广泛的应用。
本文将介绍三角函数的不等式及其在实际问题中的应用解析。
一、三角函数的不等式1. 正弦函数的不等式正弦函数sin(x)的定义域为实数集合,其值域范围在[-1, 1]之间。
在解决正弦函数不等式时,我们需要注意以下几点:- 当sin(x) > k时,其中k为正数,不等式的解为 x ∈ (2kπ, 2kπ + π/2) 和(2kπ + 3π/2, 2kπ + 2π),其中k为整数。
- 当sin(x) < k时,其中k为正数,不等式的解为 x ∈ (2kπ + π/2, 2kπ + π) 和(2kπ + 3π/2, 2kπ + 2π),其中k为整数。
2. 余弦函数的不等式余弦函数cos(x)的定义域也是实数集合,其值域范围同样在[-1, 1]之间。
在解决余弦函数不等式时,我们需要注意以下几点:- 当cos(x) > k时,其中k为正数,不等式的解为 x ∈ (2kπ, 2kπ + π) 和(2kπ + 2π, 2kπ + 3π/2),其中k为整数。
- 当cos(x) < k时,其中k为正数,不等式的解为 x ∈ (2kπ + π, 2kπ + 2π),其中k为整数。
3. 正切函数的不等式正切函数tan(x)的定义域为实数集合,其值域无上下界。
在解决正切函数不等式时,我们需要注意以下几点:- 当tan(x) > k时,其中k为正数,不等式的解为 x ∈ (kπ, kπ + arctan(k)),其中k为整数。
- 当tan(x) < k时,其中k为正数,不等式的解为 x ∈ (kπ + arctan(k), kπ + π),其中k为整数。
二、三角函数的应用解析三角函数在实际问题中广泛应用,下面以一些具体问题来说明其应用解析。
1. 几何问题中的应用三角函数在几何问题中有着重要的应用。
常见的几个函数不等式及其应用利用上述类似构造函数方法,还可以得到以下一些重要不等式:(6)贝努尼不等式:当1->x 时, )0,1(1)1(<≥+≥+αααα或x x , ⑫ )10(1)1(<<+≤+αααx x ⑬ (7))0(21)1ln(2≥-≥+x x x x ⑭ 二、常见的函数不等的作用 利用上述介绍的函数不等式,无论是去研究函数性质,还是去证明函数不等式或证明数列不等式都会带来许多便利.下面分别联系近几年高考的命题进行说明。
(1)求函数的单调区间或研究函数的单调性,求函数的极值或最值例 1 (2008年湖南卷,理21)已知函数xxx x f +-+=1)1(ln )(22. (Ⅰ)求函数)(x f 的单调区间; (Ⅱ)若不等式e )11(≤++αn n对任意的*∈N n 都成立,求α的最大值. 解:(Ⅰ)对)(x f 求导数,得22)1()1(211)1ln(2)(x xx x x x x f +-+-+⋅+=')]111(21)1[ln(12xx x x +-+-++=.由不等式④)1)(1(21ln ≥-≤x x x x ,⑤)10)(1(21ln ≤<-≥x x x x 可知: 当0≥x 时,11≥+x ,有)111(21)1ln(xx x +-+≤+,0)(≤'x f ; 当01≤<-x 时,110≤+<x ,有)111(21)1ln(xx x +-+≥+,0)(≥'x f . 因此,当0≥x 时,)(x f 为减函数;当01≤<-x 时,)(x f为增函数.(Ⅱ)由e)11(≤++αn n可知,1)11ln()(≤+⋅+nn α,所以n n-+≤)11ln(1α. 记]1,0(1∈=t n,则t t 1)1ln(1-+≤α,]1,0(∈t . 由不等式⑨)10(211)1ln(112ln 1≤<<-+≤-x x x ,可知12ln 11)1ln(1-≥-+t t ,12ln 1-≤∴α.所以,α的最大值为12ln 1-.(2)利用常用不等式求参数的取值范围 例2 (2010年全国卷,理22)设xx f --=e 1)(. (Ⅰ)证明:1->x 时,1)(+≥x x x f ; (Ⅱ)设0≥x 时,1)(+≤ax x x f ,求a 的取值范围.解:(Ⅰ)利用分析法,结合①式)1()1ln(1->≤+≤+x x x xx 可以证明.(Ⅱ)因为1e 110+≤-<ax x x在0≥x 时恒成立,所以01>+ax 在0≥x 时恒成立,则0≥a . 另一方面,由1e 110+≤-<ax x x ,得xa xx11e e --≤. 令tx=e,由0≥x 知1≥t .)1(ln 11≥--≤∴t tt t a . 由不等式⑦)1(1)1(2ln ≥+-≥x x x x 可知)1(1)1(2ln ≥+-≥t t t t ,所以1>t 时,21)1(211ln 11=-+-->--t t t t t t t . 又由导数定义可知11ln lim 1=-→t t t ,所以21ln )1(lim 1=-+→t t t t ,故21ln 11≥--t t t . 综上,所求a 的取值范围为]21,0[. 例3 (2014年湖南卷,理22)已知常数0>a ,22)1ln()(+-+=x xax x f . (Ⅰ)讨论)(x f 在区间),0(+∞上单调性;(Ⅱ)若)(x f 存在两个极值点21,x x ,且0)()(21>+x f x f ,求a 的取值范围.解:(Ⅰ)222)2)(1()1(4)2(41)(++--=+-+='x ax a ax x ax a x f . 因为0)2)(1(2>++x ax ,所以当01≤-a ,即1≥a 时,0)(≥'x f 恒成立,则函数)(x f 在区间),0(+∞上单调递增.当10<<a 时,由0)(='x f ,得a a a x )1(2-±=.则函数)(x f 在区间))1(2,0(aa a -单调递减,在),)1(2(+∞-aa a 单调递增.(Ⅱ)由(Ⅰ)知,10<<a 时才可能出现两个极值点21,x x ,且021=+x x ,aa x x )1(421-=. 而22)1ln(22)1ln()()(22211121+-+++-+=+x xax x x ax x f x f 44)(2)4(4])(1l n [21212121221-+++++++++=x x x x x x x x a x x a 2122)12ln(2--+-=a a )1121|12|(ln 2--+-=a a ,此时1121<-<-a .由不等式③)0(11ln >≥+x xx 可知: 要使0)()(21>+x f x f 恒成立,必需1120<-<a ,从而121<<a . 所以,所求a 的取值范围为)1,21(. (3)利用常见不等式比较大小 例4 (2013年陕西卷,理21)已知函数xx f e )(=,R∈x .(Ⅰ) 若直线1+=kx y 与)(x f 的反函数的图像相切,求实数k 的值;(Ⅱ) 设0>x ,讨论曲线)(x f y =与曲线2(0)y mx m => 公共点的个数;(Ⅲ) 设b a <,比较()()2f a f b +与()()f b f a b a--的大小,并说明理由.解:(Ⅰ) )(x f 的反函数x x g ln )(=.设直线1+=kx y 与x x g ln )(=相切与点)ln ,(0x x ,则⎪⎩⎪⎨⎧='=+=,1)(,1ln 0000x x g k kx x 解之得2e -=k .(Ⅱ) 由2e mxx= ,得2e xm x =.令2e )(xx g x=,则3)2(e )(x x x g x -='.当20<<x 时,0)(<'x g ;当2>x 时,0)(>'x g . 所以2=x 是极小值点.从而可知,在4e 2<m 时无交点;在4e 2=m 时有一个交点;在4e 2>m 时有两个交点.(Ⅲ) 记ab a b a f b f b f a f M ab b a ---+=---+=e e 2e e )()(2)()(,令0>=-t a b ,则t a b M at a t a a a b b a e e 2e e e e 2e e --+=---+=++)]2()2(e [2e )1e 2e 1(e ++-=--+=t t tt t a t ta .再令0),2()2(e )(>++-=t t t t h t, 在2≥t 时,可知0)(>t h .在20<<t 时,可证明ttt-+<22e . 事实上,令t t t -+='22,则1>'t ,且112+'-'=t t t .只需证)1(ln 1)1(2>''<+'-'t t t t .而由常见不等式⑦)1(1)1(2ln ≥+-≥x x x x 可知上式恒成立.从而0)2()2(e )(>++-=t t t h t在0>t 时恒成立.所以0>M ,即ab a f b f b f a f -->+)()(2)()(. (4)利用常用不等式研究存在性问题例5(2011年湖南卷,文22)设函数)(ln 1)(R ∈--=a x a x x x f . (Ⅰ)讨论)(x f 的单调性; (Ⅱ)若)(x f 有两个极值点1x 和2x ,记过点))(,(11x f x A ,))(,(22x f x B 的直线的斜率为k ,问:是否存在a ,使得a k -=2?若存在,求出a 的值,若不存在,请说明理由. 解:(Ⅰ))(x f 的定义域为),0(+∞.22211'()1a x ax f x x x x -+=+-=令1)(2+-=ax x x g ,其判别式42-=∆a .当22≤≤-a 时,0≤∆,0)(≥'x f ,故)(x f 在),0(+∞上单调递增.当2-<a 时,而0>x ,有0)(≥'x f ,故)(x f 在),0(+∞上单调递增.当2>a 时,0>∆,012=+-ax x 的两根为2421--=a a x ,2422-+=a a x .故)(x f 在),0(1x 上单调递增,在),(21x x 上单调递减,在),(2+∞x 上单调递增.(Ⅱ)由(Ⅰ)知,2>a ,且a x x =+21,121=x x .因为1212121212()()()(ln ln )x x f x f x x x a x x x x --=-+--,所以21212121212121ln ln 2ln ln 11)()(x x x x a x x x x a xx x x x f x f k --⋅-=--⋅-+=--= 若存在a ,使得a k -=2,则1ln ln 2121=--xx xx.而121=x x ,所以2221ln 2x x x-=.由不等式④)1)(1(21ln >-≤x xx x 可知上式不可能成立, 故不存在a ,使得a k -=2.(5)利用常用不等式证明不等式例6 (2013年全国大纲卷,理22)已知函数xx x x x f ++-+=1)1()1ln()(λ. (Ⅰ)若0≥x 时,0)(≤x f ,求λ的最小值;(Ⅱ)设数列}{na 的通项na n131211++++= ,证明:2ln 412>+-na a nn. 解:(Ⅰ)由已知0)0(=f ,22)1()21()(x x x x f +--='λλ,0)0(='f .若21<λ,则当)21(20λ-<<x 时,0)(>'x f ,所以0)(>x f . 若21≥λ,则当0>x 时,0)(<'x f ,所以0)(<x f . 综上,λ的最小值是21. (Ⅱ)由不等式⑩)0(1)211()1ln(≥++≤+x x x x x ,令nx 1=,有 )111(21)11ln(++<+n n n . 于是)111(21ln )1ln(++<-+n n n n , )2111(21)1ln()2ln(+++<+-+n n n n ,……)21121(21)12ln()2ln(nn n n +-<--,以上各式相加,得n n n n n n 41)21211(ln 2ln +++++<- na an n412+-=.所以2ln 412>+-na an n.例7(2016全国卷Ⅰ,理21)已知函数2)1(e )2()(-+-=x a x x f x 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是)(x f 的两个零点,证明:221<+xx .解:(Ⅰ)令t x =-1,则1+=t x . 因为函数2)1(e )2()(-+-=x a x x f x有两个零点,所以21e )1()(at t t g t +-=+有两个零点,而0≠t ,所以tt t t tt a e )(e e )1(1221--+-=-=.记tt tt m e)(e )(12---=,则1321223e2]e )(e )2(e[)(+----+-=-++-=t tt tt t tt tt m .列表如下:而0)1(=h ,所以,当0>a 时,)(t g 有两个零点,其中一个零点01>t ,另一个零点02<t.综上,a 的取值范围为(0,)+∞.(Ⅱ)由(Ⅰ)可知0>a 时,)(t g 有两个零点1t 和2t ,其中0111>-=x t,0122<-=x t,即存在01>t ,02<t使得)(e )1()(e )1(222121211121t m t t t m t t a t t =-==-=++.下面证明021<+tt .记21e )1()(t t t m t +-=,则21e )1()(t t t m t +-+=-,先证明不等式)()(t m t m >-在0>t 时恒成立.(ⅰ)当1≥t 时,0)(>-t m ,0)(<t m ,所以)()(t m t m >-. (ⅱ)当10<<t 时,要证2121e )1(e )1(t t t t t t ++-->+,只需证ttt-+<11e2,即ttt -+<11ln 2. 记111>=-+u t t ,只需证)1(1)1(2ln >+->u u u u 恒成立. 令1)1(2ln )(+--=u u u u F ,则)1()1()(22≥+-='u u u u F ,所以0)1()(=>F u F ,从而)()(t m t m >-在)1,0(∈t 时恒成立. 所以,)()(t m t m >-在0>t 时恒成立. 因为)()(21t m t m a ==,02<t,02>-t,所以)()(22t m t m <-.所以)()()(221t m t m t m ->=.又)(t m 在),0(+∞上单调递减,所以21t t -<,从而021<+tt ,所以0)1()1(21<-+-xx ,故221<+xx .总之,从2006年开始,在近十年的高考数学命题中,这些常见的函数不等式在全国卷中出现的频率是最高的,其次在湖南省、湖北省、陕西省的独立命题中出现也很频繁,在山东省、天津市、辽宁省、广东省等省市的独立命题也时常出现.这些不等式是一种很好的桥梁,能够有效地将一些条件和结论联系起来,无论处理选择题与填空题,还是解决解恨答题,恰当的使用的确能起到事半功倍的效果,要引起广大教师和考生的高度重视,对导数和函数这一部分的复习起到画龙点睛的作用.。