数据结构课程设计最小生成树问题
- 格式:doc
- 大小:239.00 KB
- 文档页数:10
最小生成树简答题1. 最小生成树(Minimum Spanning Tree,简称MST)是图论中一个重要的概念,常用于解决网络设计、电力传输、城市规划等实际问题。
它可以被定义为一个连通图的子图,包含了图中所有的顶点,且边的权重之和最小。
2. 在许多实际应用中,我们需要找到连接所有节点的最小成本路径。
这个问题可以通过最小生成树算法来解决。
最小生成树算法的目标是找到一棵包含所有节点的树,并且边的权重之和最小化。
3. 最小生成树可以使用多种算法来计算,其中最著名的两种算法是Prim算法和Kruskal算法。
这两种算法分别属于贪心算法和并查集算法。
它们的核心思想是从图中的某个节点开始,逐步扩展生成树,直到覆盖了所有的节点。
4. Prim算法是一种贪心算法,它从图中的某个节点开始,每次选择一条与当前生成树相连的最短边,并将其加入生成树中。
通过这样的方式,不断扩展生成树,直到覆盖了所有的节点。
Prim算法的时间复杂度为O(V^2),其中V是节点的数量。
5. Kruskal算法是一种基于并查集的算法,它首先将所有的边按照权重从小到大进行排序。
然后依次遍历排序后的边,如果当前边的两个节点不在同一个连通分量中,就将这条边加入生成树中,并将这两个节点合并到同一个连通分量中。
通过不断地合并连通分量,最终生成包含所有节点的最小生成树。
Kruskal算法的时间复杂度为O(ElogE),其中E是边的数量。
6. 然而,最小生成树算法并不是唯一的解决方案。
在某些特定情况下,其他算法可能更加高效。
例如,在稀疏图中,Prim 算法的时间复杂度较高,可以使用Prim算法的优化版本Prim-Jarnik算法来解决。
7. 此外,最小生成树算法还有一些扩展应用,例如最小生成森林、最小生成树问题的变体等。
最小生成森林是指一个无向图中的若干个最小生成树的集合,它可以通过去掉一些边来得到。
而最小生成树问题的变体则是在原问题的基础上增加了一些约束条件,例如要求生成树中的边的数量满足某个范围。
最小生成树问题例题最小生成树(Minimum Spanning Tree)是图论中的一个经典问题,它是指在一个带权无向图中找到一棵生成树,使得树上所有边的权值之和最小。
最小生成树问题在实际生活中有着广泛的应用,比如电力输送、通信网络等领域。
下面我们以一个具体的例子来说明最小生成树问题的求解过程。
假设有一个无向图,图中包含了6个节点(A、B、C、D、E、F)和9条边。
每条边都有一个权值,表示连接两个节点的成本。
我们的目标是找到一棵最小生成树。
首先,我们可以使用 Prim 算法来求解最小生成树。
Prim 算法的基本思想是从一个起始节点开始,逐步扩展生成树,直到包含所有节点为止。
具体步骤如下:1. 选择一个起始节点,将其标记为已访问。
2. 从已访问的节点中,选择一条连接到未访问节点的最短边。
3. 将这条边加入到最小生成树中,并将连接的节点标记为已访问。
4. 重复步骤2和步骤3,直到所有节点都被访问过。
根据上述算法,我们可以依次选取边 AB、CD、BC、EF、DE 来构建最小生成树。
最终的最小生成树是:A-B、C-D、B-C、E-F 和 D-E 这五条边,它们的权值之和为12。
另外一个常用的求解最小生成树问题的算法是 Kruskal 算法。
Kruskal 算法的基本思想是将图中的边按照权值从小到大进行排序,然后依次选取边,如果这条边连接的两个节点不在同一个连通分量中,就将这条边加入到最小生成树中。
具体步骤如下:1. 对图中的边按照权值进行排序。
2. 从权值最小的边开始,依次选取边。
3. 如果选取的边连接的两个节点不在同一个连通分量中,就将这条边加入到最小生成树中,并将连接的节点合并为一个连通分量。
4. 重复步骤2和步骤3,直到最小生成树中包含了所有的节点。
使用 Kruskal 算法求解上述例子,我们可以依次选取边 AB、BC、CD、DE、EF 来构建最小生成树。
最终的最小生成树是:A-B、B-C、C-D、D-E 和 E-F 这五条边,它们的权值之和也是12。
最小生成树问题课程设计一、课程目标知识目标:1. 理解最小生成树的概念,掌握其定义及性质;2. 学会运用普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法求解最小生成树问题;3. 了解最小生成树在实际问题中的应用,如网络设计、电路设计等。
技能目标:1. 能够运用普里姆和克鲁斯卡尔算法解决最小生成树问题,并进行算法分析;2. 能够运用所学知识解决实际问题,具备一定的算法设计能力;3. 能够通过合作与交流,提高问题分析和解决问题的能力。
情感态度价值观目标:1. 培养学生对数据结构与算法的兴趣,激发学习热情;2. 培养学生的团队合作意识,学会倾听、尊重他人意见;3. 培养学生面对问题勇于挑战、积极进取的精神。
课程性质:本课程为计算机科学与技术专业的高年级课程,旨在帮助学生掌握图论中的最小生成树问题及其求解方法。
学生特点:学生具备一定的编程基础和图论知识,对算法有一定的了解,但可能对最小生成树问题尚不熟悉。
教学要求:结合学生特点,采用案例教学、任务驱动等方法,注重理论与实践相结合,培养学生的实际操作能力和创新思维。
通过本课程的学习,使学生能够将所学知识应用于实际问题中,提高解决复杂问题的能力。
二、教学内容1. 最小生成树概念与性质- 定义、性质及定理- 最小生成树的构建方法2. 普里姆算法- 算法原理与步骤- 算法实现与复杂度分析- 举例应用3. 克鲁斯卡尔算法- 算法原理与步骤- 算法实现与复杂度分析- 举例应用4. 最小生成树在实际问题中的应用- 网络设计- 电路设计- 其他领域应用案例5. 算法比较与优化- 普里姆与克鲁斯卡尔算法的比较- 算法优化方法及其适用场景6. 实践环节- 编程实现普里姆和克鲁斯卡尔算法- 分析并解决实际问题- 小组讨论与成果展示教学内容依据课程目标进行选择和组织,注重科学性和系统性。
参考教材相关章节,制定以下教学安排:第1周:最小生成树概念与性质第2周:普里姆算法第3周:克鲁斯卡尔算法第4周:最小生成树在实际问题中的应用第5周:算法比较与优化第6周:实践环节与总结三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言和形象的比喻,对最小生成树的概念、性质、算法原理等基础知识进行讲解,使学生快速掌握课程内容。
榆林学院12届课程设计《最小生成树问题》课程设计说明书学生姓名:赵佳学号:1412210112院系:信息工程学院专业:计算机科学与技术班级:计14本1指导教师:答辩时间:年月日最小生成树问题一、问题陈述最小生成树问题设计要求:在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。
存储结构采用多种。
求解算法多种。
二、需求分析1.在n个城市之间建设网络,只需保证连通即可。
2.求城市之间最经济的架设方法。
3.采用多种存储结构,求解算法也采用多种。
三、概要设计1、功能模块图2、功能描述(1)CreateUDG()创建一个图:通过给用户信息提示,让用户将城市信息及城市之间的联系关系和连接权值写入程序,并根据写入的数据创建成一个图。
(2)Switch()功能选择:给用户提示信息,让用户选择相应功能。
(3)Adjacency_Matrix()建立邻接矩阵:将用户输入的数据整理成邻接矩阵并显现在屏幕上。
(4)Adjacency_List()建立邻接表:将用户输入的数据整理成临接表并显现在屏幕上。
(5)MiniSpanTree_KRSL()kruskal算法:利用kruskal算法求出图的最小生成树,即:城市之间最经济的连接方案。
(6)MiniSpanTree_PRIM()PRIM算法:利用PRIM算法求出图的最小生成树,即:城市之间最经济的连接方案。
四、详细设计本次课程设计采用两种存储结构以及两种求解算法。
1、两种存储结构的存储定义如下:typedef struct Arcell{double adj;}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{char vexs[MAX_VERTEX_NUM]; //节点数组AdjMatrix arcs; //邻接矩阵int vexnum,arcnum; //图的当前节点数和弧数}MGraph;typedef struct Pnode //用于普利姆算法{ char adjvex; //节点double lowcost; //权值}Pnode,Closedge[MAX_VERTEX_NUM];//记录顶点集U到V-U的代价最小的边的辅助数组定义typedef struct Knode//用于克鲁斯卡尔算法中存储一条边及其对应的2个节点{char ch1; //节点1char ch2; //节点2double value;//权值}Knode,Dgevalue[MAX_VERTEX_NUM];2、求解算法采用Prim算法和Kruskal算法。
数据结构之最⼩⽣成树Prim算法普⾥姆算法介绍 普⾥姆(Prim)算法,是⽤来求加权连通图的最⼩⽣成树算法 基本思想:对于图G⽽⾔,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U⽤于存放G的最⼩⽣成树中的顶点,T存放G的最⼩⽣成树中的边。
从所有uЄU,vЄ(V-U) (V-U表⽰出去U的所有顶点)的边中选取权值最⼩的边(u, v),将顶点v加⼊集合U中,将边(u, v)加⼊集合T中,如此不断重复,直到U=V为⽌,最⼩⽣成树构造完毕,这时集合T中包含了最⼩⽣成树中的所有边。
代码实现1. 思想逻辑 (1)以⽆向图的某个顶点(A)出发,计算所有点到该点的权重值,若⽆连接取最⼤权重值#define INF (~(0x1<<31)) (2)找到与该顶点最⼩权重值的顶点(B),再以B为顶点计算所有点到改点的权重值,依次更新之前的权重值,注意权重值为0或⼩于当前权重值的不更新,因为1是⼀当找到最⼩权重值的顶点时,将权重值设为了0,2是会出现⽆连接的情况。
(3)将上述过程⼀次循环,并得到最⼩⽣成树。
2. Prim算法// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < m_nVexNum; i++){weights[i] = GetWeight(nStart, i);}for (i = 0; i < m_nVexNum; i ++){if (nStart == i){continue;}int min = INF;int nMinWeightIndex = 0;for (int k = 0; k < m_nVexNum; k ++){if (weights[k]!= 0 && weights[k] < min){min = weights[k];nMinWeightIndex = k;}}// 找到下⼀个最⼩权重值索引cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;// 以找到的顶点更新其他点到该点的权重值weights[nMinWeightIndex]=0;int nNewWeight = 0;for (int ii = 0; ii < m_nVexNum; ii++){nNewWeight = GetWeight(nMinWeightIndex, ii);// 该位置需要特别注意if (0 != weights[ii] && weights[ii] > nNewWeight){weights[ii] = nNewWeight;}}for (i = 1; i < nIndex; i ++){int min = INF;int nVexsIndex = GetVIndex(cPrims[i]);for (int kk = 0; kk < i; kk ++){int nNextVexsIndex = GetVIndex(cPrims[kk]);int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);if (nWeight < min){min = nWeight;}}nSum += min;}// 打印最⼩⽣成树cout << "PRIM(" << m_mVexs[nStart].data <<")=" << nSum << ": ";for (i = 0; i < nIndex; i++)cout << cPrims[i] << "";cout << endl;}3. 全部实现#include "stdio.h"#include <iostream>using namespace std;#define MAX 100#define INF (~(0x1<<31)) // 最⼤值(即0X7FFFFFFF)class EData{public:EData(char start, char end, int weight) : nStart(start), nEnd(end), nWeight(weight){} char nStart;char nEnd;int nWeight;};// 边struct ENode{int nVindex; // 该边所指的顶点的位置int nWeight; // 边的权重ENode *pNext; // 指向下⼀个边的指针};struct VNode{char data; // 顶点信息ENode *pFirstEdge; // 指向第⼀条依附该顶点的边};// ⽆向邻接表class listUDG{public:listUDG(){};listUDG(char *vexs, int vlen, EData **pEData, int elen){m_nVexNum = vlen;m_nEdgNum = elen;// 初始化"邻接表"的顶点for (int i = 0; i < vlen; i ++){m_mVexs[i].data = vexs[i];m_mVexs[i].pFirstEdge = NULL;}char c1,c2;int p1,p2;ENode *node1, *node2;// 初始化"邻接表"的边for (int j = 0; j < elen; j ++){// 读取边的起始顶点和结束顶点p1 = GetVIndex(c1);p2 = GetVIndex(c2);node1 = new ENode();node1->nVindex = p2;node1->nWeight = pEData[j]->nWeight;if (m_mVexs[p1].pFirstEdge == NULL){m_mVexs[p1].pFirstEdge = node1;}else{LinkLast(m_mVexs[p1].pFirstEdge, node1);}node2 = new ENode();node2->nVindex = p1;node2->nWeight = pEData[j]->nWeight;if (m_mVexs[p2].pFirstEdge == NULL){m_mVexs[p2].pFirstEdge = node2;}else{LinkLast(m_mVexs[p2].pFirstEdge, node2);}}}~listUDG(){ENode *pENode = NULL;ENode *pTemp = NULL;for (int i = 0; i < m_nVexNum; i ++){pENode = m_mVexs[i].pFirstEdge;if (pENode != NULL){pTemp = pENode;pENode = pENode->pNext;delete pTemp;}delete pENode;}}void PrintUDG(){ENode *pTempNode = NULL;cout << "邻接⽆向表:" << endl;for (int i = 0; i < m_nVexNum; i ++){cout << "顶点:" << GetVIndex(m_mVexs[i].data)<< "-" << m_mVexs[i].data<< "->"; pTempNode = m_mVexs[i].pFirstEdge;while (pTempNode){cout <<pTempNode->nVindex << "->";pTempNode = pTempNode->pNext;}cout << endl;}}// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
AtCoder 关于最小生成树的题目:在 AtCoder 的竞赛中经常会遇到与最小生成树相关的题目,这些题目往往需要我们深入理解最小生成树的概念和算法,并能够灵活运用它们解决实际问题。
在本文中,我们将从简到繁地探讨最小生成树的概念和相关算法,并且结合 AtCoder 中的一些题目进行讲解,帮助大家更好地理解和掌握这一重要的算法。
1. 最小生成树的概念最小生成树是指一个给定的带权无向连通图中,权值之和最小的生成树。
在这里,我们需要理解带权图、连通图以及生成树的概念。
带权图是指图中每条边都带有权值,连通图是指图中任意两个顶点之间都存在路径,生成树是指一个图中包含所有顶点的树。
最小生成树可以通过 Prim 算法和 Kruskal 算法来求解,这两个算法是我们在解决AtCoder 中相关题目时常用的方法。
2. Prim 算法Prim 算法是一种贪心算法,其核心思想是以一个顶点作为起点开始,逐步选择与当前生成树相邻且权值最小的边,直到所有顶点都被包含在生成树中。
在 AtCoder 的题目中,我们可能会遇到需要使用 Prim 算法求解最小生成树的情况。
某道题目给定了一个带权无向连通图,要求我们找到其最小生成树的权值之和,这时我们就可以考虑使用Prim 算法来解决。
3. Kruskal 算法Kruskal 算法也是求解最小生成树的常用算法之一,其思想是先将图中的边按权值从小到大排序,然后依次加入权值最小且不形成环的边,直到生成树中包含所有顶点为止。
在 AtCoder 的题目中,有时会要求我们使用 Kruskal 算法求解最小生成树的权值之和,这时我们需要对题目中的边进行排序并且判断是否形成环,从而得到最小生成树的权值。
4. AtCoder 相关题目在 AtCoder 的比赛中,经常会见到一些与最小生成树相关的题目,这些题目可能涉及到图论、树的搜索和动态规划等知识。
在解决这些题目时,我们需要结合 Prim 和 Kruskal 算法来思考,同时考虑到题目背景和限制条件,灵活选择合适的算法求解。
最小生成树的教学过程设计最小生成树是图论中的一个经典问题,它的解法有多种方法,其中Kruskal和Prim算法是最常用的两种方法。
如何让学生理解这些算法,并掌握它们的运用,是教学过程设计的重要问题。
以下是一个最小生成树教学过程的设计:1. 引言和概述在开始教授算法之前,首先需要给学生一个概念性的介绍,让他们了解最小生成树的定义、作用和主要应用场景。
2. Kruskal算法的介绍首先,通过一个简单的例子来介绍Kruskal算法的基本思想和步骤。
然后,逐步深入,讲解算法的具体实现过程,包括如何选择边、如何判断是否构成环等。
最后,通过多个例子的练习,让学生掌握算法的应用技巧。
3. Prim算法的介绍与Kruskal算法类似,通过一个简单的例子来介绍Prim算法的基本思想和步骤。
然后,逐步深入,讲解算法的具体实现过程,包括如何选择顶点、如何更新距离等。
最后,通过多个例子的练习,让学生掌握算法的应用技巧。
4. 算法的比较和分析在讲解完Kruskal和Prim算法之后,需要对它们进行比较和分析,让学生了解它们之间的异同点、优缺点和适用场景。
可以通过实例分析、复杂度分析等方式进行讲解。
5. 实践应用最后,通过一个实际问题的案例,让学生运用所学算法,解决实际问题。
例如,给定一张地图和路线长度,如何找到连接所有城市的最短路径。
这样的实践应用,能够让学生更好地理解和掌握算法的实际应用。
总之,最小生成树教学过程的设计需要重视基本概念和实际应用的结合,注重实践操作和应用技巧的培养,以及比较和分析不同算法的优缺点。
通过这些措施,可以让学生更好地理解和掌握最小生成树的算法和应用。
数学建模最小生成树例题例题1:某城市计划建设一条高速公路,需要在若干个村庄之间选择一条最优路径。
已知各个村庄之间的距离,请使用最小生成树算法为高速公路选择最优路径。
参考答案:最小生成树算法可以用于解决此类问题。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题2:一个通信网络由若干个节点和边组成,节点代表城市,边代表通信线路。
已知各个城市之间的距离和通信需求,请使用最小生成树算法为该通信网络设计一个最优的通信线路网。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总权重最小的树形结构,以满足各个城市之间的通信需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题3:一个城市的电力网由多个节点和边组成,节点代表发电厂或变电站,边代表输电线路。
已知各个节点之间的电抗和传输功率,请使用最小生成树算法为该城市电力网设计一个最优的输电线路。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总电抗最小的树形结构,以满足各个节点之间的电力传输需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的电抗从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
最小生成树课程设计一、课程目标知识目标:1. 学生能够理解最小生成树的概念,掌握其定义和性质;2. 学生能够掌握两种常见的最小生成树算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法;3. 学生能够运用最小生成树解决实际问题,如网络设计、电路设计等。
技能目标:1. 学生能够运用图论知识,分析并解决最小生成树问题;2. 学生能够编写和调试实现最小生成树的算法程序;3. 学生能够通过小组合作,共同探讨并解决最小生成树相关问题。
情感态度价值观目标:1. 学生通过学习最小生成树,培养对图论的兴趣,激发探索数学问题的热情;2. 学生在合作解决问题的过程中,学会沟通、协作,培养团队精神;3. 学生能够认识到数学知识在实际生活中的广泛应用,增强学习的积极性和主动性。
课程性质:本课程为计算机科学、信息技术等相关专业的高年级学生设计,旨在帮助学生掌握最小生成树的基本原理和算法,提高解决实际问题的能力。
学生特点:学生已经具备一定的图论基础,熟悉基本的算法和数据结构,具有一定的编程能力。
教学要求:通过讲解、示例、练习和小组讨论等形式,使学生掌握最小生成树的相关知识,提高编程实践能力和解决问题的能力。
同时,注重培养学生的团队合作精神和数学思维。
二、教学内容1. 最小生成树概念与性质- 定义、性质和判定条件- 最小生成树的应用场景2. 普里姆(Prim)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析3. 克鲁斯卡尔(Kruskal)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析4. 最小生成树算法比较与应用- 普里姆与克鲁斯卡尔算法的优缺点对比- 实际问题中的应用案例分析5. 小组讨论与练习- 分组讨论最小生成树相关算法及应用- 编写和调试最小生成树算法程序- 解决实际问题,如网络设计、电路设计等教学内容安排与进度:第一周:最小生成树概念与性质,普里姆算法原理与实现第二周:普里姆算法性能分析,克鲁斯卡尔算法原理与实现第三周:克鲁斯卡尔算法性能分析,最小生成树算法比较与应用第四周:小组讨论与练习,解决实际问题教材章节:《离散数学及其应用》第6章:图论《数据结构与算法分析》第9章:图论算法《计算机算法设计与分析》第4章:最小生成树与最短路径三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言、形象的比喻和具体的案例,讲解最小生成树的概念、性质和算法原理,使学生系统掌握理论知识。
数据结构(三⼗三)最⼩⽣成树(Prim、Kruskal) ⼀、最⼩⽣成树的定义 ⼀个连通图的⽣成树是⼀个极⼩的连通⼦图,它含有图中全部的顶点,但只有⾜以构成⼀棵树的n-1条边。
在⼀个⽹的所有⽣成树中,权值总和最⼩的⽣成树称为最⼩代价⽣成树(Minimum Cost Spanning Tree),简称为最⼩⽣成树。
构造最⼩⽣成树的准则有以下3条:只能使⽤该图中的边构造最⼩⽣成树当且仅当使⽤n-1条边来连接图中的n个顶点不能使⽤产⽣回路的边 对⽐两个算法,Kruskal算法主要是针对边来展开,边数少时效率会⾮常⾼,所以对于稀疏图有很⼤的优势;⽽Prim算法对于稠密图,即边数⾮常多的情况会更好⼀些。
⼆、普⾥姆(Prim)算法 1.Prim算法描述 假设N={V,{E}}是连通⽹,TE是N上最⼩⽣成树中边的集合。
算法从U={u0,u0属于V},TE={}开始。
重复执⾏下⾯的操作:在所有u属于U,v 属于V-U的边(u,v)中找⼀条代价最⼩的边(u0,v0)并加⼊集合TE,同时v0加⼊U,直到U=V为⽌。
此时TE中必有n-1条边,则T=(V,{TE})为N的最⼩⽣成树。
2.Prim算法的C语⾔代码实现/* Prim算法⽣成最⼩⽣成树 */void MiniSpanTree_Prim(MGraph G){int min, i, j, k;int adjvex[MAXVEX]; /* 保存相关顶点下标 */int lowcost[MAXVEX]; /* 保存相关顶点间边的权值 */lowcost[0] = 0;/* 初始化第⼀个权值为0,即v0加⼊⽣成树 *//* lowcost的值为0,在这⾥就是此下标的顶点已经加⼊⽣成树 */adjvex[0] = 0; /* 初始化第⼀个顶点下标为0 */for(i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */{lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存⼊数组 */adjvex[i] = 0; /* 初始化都为v0的下标 */}for(i = 1; i < G.numVertexes; i++){min = INFINITY; /* 初始化最⼩权值为∞, *//* 通常设置为不可能的⼤数字如32767、65535等 */j = 1;k = 0;while(j < G.numVertexes) /* 循环全部顶点 */{if(lowcost[j]!=0 && lowcost[j] < min)/* 如果权值不为0且权值⼩于min */{min = lowcost[j]; /* 则让当前权值成为最⼩值 */k = j; /* 将当前最⼩值的下标存⼊k */}j++;}printf("(%d, %d)\n", adjvex[k], k);/* 打印当前顶点边中权值最⼩的边 */lowcost[k] = 0;/* 将当前顶点的权值设置为0,表⽰此顶点已经完成任务 */for(j = 1; j < G.numVertexes; j++) /* 循环所有顶点 */{if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j]){/* 如果下标为k顶点各边权值⼩于此前这些顶点未被加⼊⽣成树权值 */lowcost[j] = G.arc[k][j];/* 将较⼩的权值存⼊lowcost相应位置 */adjvex[j] = k; /* 将下标为k的顶点存⼊adjvex */}}}}Prim算法 3.Prim算法的Java语⾔代码实现package bigjun.iplab.adjacencyMatrix;/*** 最⼩⽣成树之Prim算法*/public class MiniSpanTree_Prim {int lowCost; // 顶点对应的权值public CloseEdge(Object adjVex, int lowCost) {this.adjVex = adjVex;this.lowCost = lowCost;}}private static int getMinMum(CloseEdge[] closeEdges) {int min = Integer.MAX_VALUE; // 初始化最⼩权值为正⽆穷int v = -1; // 顶点数组下标for (int i = 0; i < closeEdges.length; i++) { // 遍历权值数组,找到最⼩的权值以及对应的顶点数组的下标if (closeEdges[i].lowCost != 0 && closeEdges[i].lowCost < min) {min = closeEdges[i].lowCost;v = i;}}return v;}// Prim算法构造图G的以u为起始点的最⼩⽣成树public static void Prim(AdjacencyMatrixGraphINF G, Object u) throws Exception{// 初始化⼀个⼆维最⼩⽣成树数组minSpanTree,由于最⼩⽣成树的边是n-1,所以数组第⼀个参数是G.getVexNum() - 1,第⼆个参数表⽰边的起点和终点符号,所以是2 Object[][] minSpanTree = new Object[G.getVexNum() - 1][2];int count = 0; // 最⼩⽣成树得到的边的序号// 初始化保存相关顶点和相关顶点间边的权值的数组对象CloseEdge[] closeEdges = new CloseEdge[G.getVexNum()];int k = G.locateVex(u);for (int j = 0; j < G.getVexNum(); j++) {if (j!=k) {closeEdges[j] = new CloseEdge(u, G.getArcs()[k][j]);// 将顶点u到其他各个顶点权值写⼊数组中}}closeEdges[k] = new CloseEdge(u, 0); // 加⼊u到⾃⾝的权值0for (int i = 1; i < G.getVexNum(); i++) { // 注意,这⾥从1开始,k = getMinMum(closeEdges); // 获取u到数组下标为k的顶点的权值最短minSpanTree[count][0] = closeEdges[k].adjVex; // 最⼩⽣成树第⼀个值为uminSpanTree[count][1] = G.getVexs()[k]; // 最⼩⽣成树第⼆个值为k对应的顶点count++;closeEdges[k].lowCost = 0; // 下标为k的顶点不参与最⼩权值的查找了for (int j = 0; j < G.getVexNum(); j++) {if (G.getArcs()[k][j] < closeEdges[j].lowCost) {closeEdges[j] = new CloseEdge(G.getVex(k), G.getArcs()[k][j]);}}}System.out.print("通过Prim算法得到的最⼩⽣成树序列为: {");for (Object[] Tree : minSpanTree) {System.out.print("(" + Tree[0].toString() + "-" + Tree[1].toString() + ")");}System.out.println("}");}} 4.举例说明Prim算法实现过程 以下图为例: 测试类:// ⼿动创建⼀个⽤于测试最⼩⽣成树算法的⽆向⽹public static AdjacencyMatrixGraphINF createUDNByYourHand_ForMiniSpanTree() {Object vexs_UDN[] = {"V0", "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8"};int arcsNum_UDN = 15;int[][] arcs_UDN = new int[vexs_UDN.length][vexs_UDN.length];for (int i = 0; i < vexs_UDN.length; i++) // 构造⽆向图邻接矩阵for (int j = 0; j < vexs_UDN.length; j++)if (i==j) {arcs_UDN[i][j]=0;} else {arcs_UDN[i][j] = arcs_UDN[i][j] = INFINITY;}arcs_UDN[0][5] = 11;arcs_UDN[1][2] = 18;arcs_UDN[1][6] = 16;arcs_UDN[1][8] = 12;arcs_UDN[2][3] = 22;arcs_UDN[2][8] = 8;arcs_UDN[3][4] = 20;arcs_UDN[3][6] = 24;arcs_UDN[3][7] = 16;arcs_UDN[3][8] = 21;arcs_UDN[4][5] = 26;arcs_UDN[4][7] = 7;arcs_UDN[5][6] = 17;arcs_UDN[6][7] = 19;for (int i = 0; i < vexs_UDN.length; i++) // 构造⽆向图邻接矩阵for (int j = i; j < vexs_UDN.length; j++)arcs_UDN[j][i] = arcs_UDN[i][j];return new AdjMatGraph(GraphKind.UDN, vexs_UDN.length, arcsNum_UDN, vexs_UDN, arcs_UDN);}public static void main(String[] args) throws Exception {AdjMatGraph UDN_Graph = (AdjMatGraph) createUDNByYourHand_ForMiniSpanTree();MiniSpanTree_Prim.Prim(UDN_Graph, "V0");} 输出为:通过Prim算法得到的最⼩⽣成树序列为: {(V0-V1)(V0-V5)(V1-V8)(V8-V2)(V1-V6)(V6-V7)(V7-V4)(V7-V3)} 分析算法执⾏过程:从V0开始:-count为0,k为0,closeEdges数组的-lowCost为{0 10 INF INF INF 11 INF INF INF},adjVex数组为{V0,V0,V0,V0,V0,V0,V0,V0,V0}-⽐较lowCost,于是k为1,adjVex[1]为V0,minSpanTree[0]为(V0,V1),lowCost为{0 0 INF INF INF 11 INF INF INF}-k为1,与V1的权值⾏⽐较,得到新的-lowCost为:{0 0 18 INF INF 11 16 INF 12},adjVex数组为{V0,V0,V1,V0,V0,V0,V1,V0,V1}-⽐较lowCost,于是k为5,adjVex[5]为V0,minSpanTree[1]为(V0,V5),lowCost为{0 0 18 INF INF 0 16 INF 12}-k为5,与V5的权值⾏⽐较,得到新的-lowCost为{0 0 18 INF 26 0 16 INF 12},adjVex数组为{V0,V0,V1,V0,V5,V0,V1,V0,V1}-⽐较lowCost,于是k为8,adjVex[8]为V1,minSpanTree[2]为(V1,V8),lowCost为{0 0 18 INF INF 0 16 INF 0}... 三、克鲁斯卡尔(Kruskal)算法 1.Kruskal算法描述 Kruskal算法是根据边的权值递增的⽅式,依次找出权值最⼩的边建⽴的最⼩⽣成树,并且规定每次新增的边,不能造成⽣成树有回路,直到找到n-1条边为⽌。
数据结构与算法课程设计报告课程设计题目:最小生成树问题专业班级:信息与计算科学1001班姓名:谢炜学号:********* 设计室号:理学院机房设计时间: 2011-12-26 批阅时间:指导教师:杜洪波成绩:一、摘要:随着社会经济的发展,人们的生活已经越来越离不开网络,网络成为人们社会生活的重要组成部分。
我们希望拥有一个宽松的上网环境,以便更好的进行信息的交流,在此我们有必要提升我们的网络传播速度。
从某种程度上来说网络传播速度代表着一个国家网络化程度的高低。
为了解决网络传输速度的问题我们希望在各个城市之间多架设一些通信网络线路,以缓解网络不够流畅不够便捷的问题。
而在城市之间架设网络线路受到资金因素等的限制,我们希望找到一条捷径这样我们即达到了连接了各个城市网络的目的又节省了建设成本。
通过以上的分析我们得出解决此问题的关键在于找到一个短的路径完成网络的假设。
在此我们想将各个城市抽象成为一个个节点,连接各个城市之间的网络作为连接各个节点的边。
于是我们就将城市的空间分布抽象成为一个网络图,再将各条边的距离抽象成为各节点之间的权值。
在原来的基础上建立一个带有权值的网络图。
于是原有的问题就转化为找图的最小生成树问题。
我们利用普利姆算法和卡鲁斯卡尔算法找到我们所需要的最小的生成树。
二、问题分析在n个城市间建立通信网络,需架设n-1条路线。
求解如何以最低的经济代价建设此通信网,这是一个最小生成树问题。
我们可以利用普利姆算法或者克鲁斯卡尔算法求出网的最小生成树,输入各城市的数目以及各个城市之间的距离。
将城市之间的距离当做网中各点之间的权值。
三、实现本程序需要解决的问题(1)如何选择存储结构去建立一个带权的网络;(2)如何在所选存储结构下输出这个带权网络;(3)如何实现普利姆算法的功能;(4)如何从每个顶点开始找到所有的最小生成树的顶点;(5)如何输出最小生成树的边及其权值此问题的关键就是利用普利姆算法,找到一个最小上的生成树,在一个就是输出我们所需要的信息,在此我们将各个城市看做是网中的各个顶点城市之间的距离看做是个顶点之间的权值。
现在我们问题做如下的分析:这个问题主要在于普利姆算法的实现。
我们将各个城市的空间分布抽象成一个带有权值的网络,这个权值就是任意两个城市之间,各个城市就看做是网络的各个顶点。
我们建立的输入的数据格式为:首先提示输入带权的顶点数目,我定义为整形的数据型,然后输入每条边的信息,即边的两个顶点之间的权值,以十进制整数类型数据,这样我们就建立了一个带权的网络。
问题的输出我是将我们所得到的最小生成树的路线输出出来。
题目的要求就是我们在n个城市之间架设网络得到的最为经济的架设方法,我们进行以上的工作就是在找我们所需要的最小生成树,已解决我们的问题。
四、算法思想普利姆算法求最小生成树的主要思想假设N=(V,{E})是连通网,TE是N上最小生成树中边的集合。
算法从U={u0}( u0∈V),TE={}开始,重复执行下述操作:在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止。
此时TE中必有n-1条边,则T=(V,{E})为N的最小生成树。
对于最小生成树问题:最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个但是他们权值之和是相等的。
五、程序设计流程图:六、模块划分(1)预处理#include<stdio.h>#define maxvertexnum 20#define maxedgenum 40typedef int adjmatrix[maxvertexnum][maxvertexnum];(2)定义一个储存节点信息的结构体struct edgenode{int frontvex;int rearvex;int weight;};typedef edgenode adgeset[maxedgenum];(3)初始化的无向图,将每条边的权值赋值为无穷void insitadj(adjmatrix &GA){for(int i=1;i<maxvertexnum;i++){for(int j=1;j<maxvertexnum;j++){GA[i][j]=20000; //将边的权值赋值为无穷// }}}(4)以各个城市为基础建立一个网络void setadj(adjmatrix &GA,int n) //建立网络{for(int i=1;i<=n+1;i++){for(int j=i+1;j<n+1;j++){printf("请输入第%d个城市到第%d个城市的距离:",i,j);scanf("%d",&GA[i][j]);}}for(i=1;i<=n+1;i++){for(int j=i+1;j<n+1;j++){GA[j][i]=GA[i][j];}}}(5)将建立的网络各个连接的节点赋上权值void insit(adgeset>,int n,adjmatrix GA){for(int i=1;i<n;i++){GT[i].frontvex=1;GT[i].rearvex=i+1;GT[i].weight=GA[1][i+1];}(6)输出我们所找到的最小生成树void fun(adjmatrix GA,adgeset>,int n){ int i;for(i=1;i<n;i++){int min=10000,m=i;for(int j=i;j<n;j++){if(GT[j].weight<min){min=GT[j].weight;m=j;}}edgenode temp=GT[i];GT[i]=GT[m];GT[m]=temp;int k=GT[m].rearvex;for(j=i;j<n;j++){int t=GT[j].rearvex;int w=GA[k][t];if(w<GT[j].weight){GT[j].weight=w;GT[j].frontvex=k;}}}}void display(adgeset GT,int n){for(int i=1;i<n;i++){printf("第%d个城市到第%d城市修建一条电缆!\n",GT[i].frontvex,GT[i].rearvex);}printf("这样修建可以使距离最短!");}(7)主函数int main()printf("请问您要在几个城市间建立网络?\n请在此输入:");int n;scanf("%d",&n) ;adgeset GT;adjmatrix GA;insitadj(GA);setadj(GA,n);insit(GT,n,GA);fun(GA,GT,n);display(GT,n);return 0;}七、算法设计与分析选定存储形式要实现对于给定带权网络和顶点,运用普利姆基本算法思想求解所有的最小生成树的运算,在这里我们首先要明确所选用的数据结构,即采用何种数据结构来存储带权网络,这是必须首先解决的问题,我们采用图的邻接矩阵的存储方式来存储带权网络。
我们在建立邻接矩阵的时候选用数组来分别存储每个节点的信息以及边的权值。
八、源程序#include<stdio.h>#define maxvertexnum 20#define maxedgenum 40typedef int adjmatrix[maxvertexnum][maxvertexnum];struct edgenode{int frontvex;int rearvex;int weight;};typedef edgenode adgeset[maxedgenum];//===============================================void insitadj(adjmatrix &GA);void setadj(adjmatrix &GA,int n);void fun(adjmatrix GA,adgeset >,int n);void display(adgeset GT,int n);void insit(adgeset >,int n,adjmatrix GA);//=============================================void insit(adgeset>,int n,adjmatrix GA){for(int i=1;i<n;i++){GT[i].frontvex=1;GT[i].rearvex=i+1;GT[i].weight=GA[1][i+1];}}void insitadj(adjmatrix &GA){for(int i=1;i<maxvertexnum;i++){for(int j=1;j<maxvertexnum;j++){GA[i][j]=20000;}}}void setadj(adjmatrix &GA,int n) //建立网络{for(int i=1;i<=n+1;i++){for(int j=i+1;j<n+1;j++){printf("请输入第%d个城市到第%d个城市的距离:",i,j);scanf("%d",&GA[i][j]);}}for(i=1;i<=n+1;i++){for(int j=i+1;j<n+1;j++){GA[j][i]=GA[i][j];}}}void fun(adjmatrix GA,adgeset>,int n){ int i;for(i=1;i<n;i++){int min=10000,m=i;for(int j=i;j<n;j++){if(GT[j].weight<min){min=GT[j].weight;m=j;}}edgenode temp=GT[i];GT[i]=GT[m];GT[m]=temp;int k=GT[m].rearvex;for(j=i;j<n;j++){int t=GT[j].rearvex;int w=GA[k][t];if(w<GT[j].weight){GT[j].weight=w;GT[j].frontvex=k;}}}}void display(adgeset GT,int n){for(int i=1;i<n;i++){printf("第%d个城市到第%d城市修建一条电缆!\n",GT[i].frontvex,GT[i].rearvex);}printf("这样修建可以使距离最短!");}int main(){printf("请问您要在几个城市间建立网络?\n请在此输入:");int n;scanf("%d",&n) ;adgeset GT;adjmatrix GA;insitadj(GA);setadj(GA,n);insit(GT,n,GA);fun(GA,GT,n);display(GT,n);return 0;}九、算法实现(1)提示输入截图(2)输入各节点间的权(3)输出结果十、心得体会数据结构是学习计算机的一门重要的基础课,在学习数据结构之前我们学习了C语言在我们看来数据结构就是学习C语言的延续。