九年级数学上册 第一章 特殊平行四边形 1.3 正方形的性质与判定 第2课时 正方形的判定作业课件
- 格式:ppt
- 大小:1.93 MB
- 文档页数:23
九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。
※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。
第一章特殊的平行四边形1.3 正方形的性质与判定第2课时教学设计一、教学目标1.探索并证明正方形的判定定理,进一步发展推理能力.2.体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:探索并证明正方形的判定定理.难点:学会并积累一些分析问题的思路和解题的方法.三、教学用具多媒体课件、直尺或三角板、长方形折纸.四、相关资源《正方形的判定和性质》微课,《正方形的判定》图片.五、教学过程【情境导入】将一张长方形纸对折两次,然后剪下一个角,打开。
怎样剪才能剪出一个正方形?师生活动:教师出示问题,学生回答,然后教师引出课题.答:只要确保剪口线与折痕成45°角即可剪出一个正方形。
设计意图:从生活中的图片入手引出本节课要探究的内容,激发学生学习本节课的兴趣.【探究新知】议一议:满足什么条件的矩形是正方形?满足什么条件的菱形是正方形?请证明你的结论,并与同学交流。
师生活动:教师出示问题,学生思考、讨论,教师引导,师生共同总结出判定一个四边形是正方形的基本方法.(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定一个四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形. 老师强调:后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:(1)有一个角是直角,且有一组邻边相等的平行四边形是正方形;(2)有一组邻边相等的矩形是正方形;(3)对角线垂直的矩形是正方形;(4)有一个角是直角的菱形是正方形;(5)对角线相等的菱形是正方形.证明:(2)已知:如图,四边形ABCD 是矩形,且AB =AD .求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是矩形,∴∠A =90°.又∵AB =AD ,∴四边形ABCD 是正方形.(3)已知:如图,四边形ABCD 是矩形,AC ,BD 是对角线,且AC ⊥BD .求证:四边形ABCD 是正方形.DC B A证明:∵四边形ABCD 是矩形,∴AC =BD ,OD =OB ,∠DAB =90°.又∵AC ⊥BD ,OA =OA∴∠DOA =∠BOA =90°.∴△ABD ≌△BAC (SAS ).∴AD =AB∴四边形ABCD 是正方形.(4)已知:如图,四边形ABCD 是菱形,∠A =90°.求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是菱形,∴AB =AD .又∵∠A =90°.∴四边形ABCD 是正方形.(5)已知:如图,四边形ABCD 是菱形,AC ,BD 是对角线,且AC =BD .求证:四边形ABCD 是正方形.A DC B A OA证明:∵四边形ABCD是菱形,∴AD=BC.又∵AB=BA,BD=AC,∴△ABD≌△BAC(SSS).∴∠DAB=∠CBA.又∵AD∥BC,∴∠DAB+∠CBA=180°.∴∠DAB=∠CBA=90°.∴四边形ABCD是正方形.设计意图:引导学生讨论正方形的判定方法,重点并不在于得到几条判定定理,而是要形成判定正方形的基本思路:一个四边形既是矩形又是菱形,这个四边形就是正方形。
九年级上册数学目录
第一章特殊平行四边形
1.1 菱形的性质和判定
1.2 矩形的性质和判定
1.3 正方形的性质和判定
第二章一元二次方程
2.1 认识一元二次方程
2.2 用配方法解一元二次方程
2.3 用公式法解一元二次方程
2.4 用因式分解法解一元二次方程2.5 一元二次方程的根与系数的关系2.6 应用一元二次方程
第三章概率初步认识
3.1 用树状图或表格求概率
3.2 用频率估计概率第四章图形的相似
4.1成比例线段
4.2平行线分线段成比例
4.3相似三角形
4.4探索三角形相似的条件
4.5相似三角形判定定理的证明4.6利用相似三角形测高
4.7相似三角形的性质
4.8图形的位似
第五章投影和视图
5.1投影
5.2视图
第六章反比例函数
6.1反比例函数
6.2反比例函数的图像与性质6.3反比例函数的应用。