原子物理学 褚圣麟 第一章
- 格式:ppt
- 大小:1.97 MB
- 文档页数:51
原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。
第一章:原子的基本状况一、原子的质量和大小① 已知原子量求原子质量:0N AM =,原子量A 以g 为单位,N o =6.022×1023/mol ; ② 原子质量的数量级:10-27kg~10-25kg ;③ 1 个电子伏特1 eV 表示1 个带单位电荷e 的粒子在电位差为1 V 的电场中加速所得到的能量,1 eV = 1.602 177 33(49) *10-19 焦耳;④ 质子:m p = 938.272 31(28) MeV/c 2 电子: m e = 0.510 999 06(15) MeV/c 2⑤ 原子的大小:ρπAN r=0334 ,原子大小线度(半径): 10-10 m (0.1nm ) 二、原子的核式结构(1) 电子电荷e=1.60217733×10-19C , 电子质量m=9.1093897×10-31kg (2) m p /m e =1836.15 (3) α粒子散射实验:① α粒子:放射性元素发射出的高速带电粒子,其速度约为光速的十分之一,带+2e 的电荷,质量约为4M H ,后来证明为氦核。
② 散射: 一个运动粒子受到另一个粒子的作用而改变原运动方向的现象。
③ 散射角: 粒子受到散射时,出射方向与原入射方向之间的夹角。
④ 实验结果:大多数散射角很小,约1/8000散射大于 90°极个别的散射角等于180°。
⑤ 汤姆逊模型(均匀带电)的困难:核式模型正电荷集中在原子中心很小的区域,所以无限接近核时,作用力会变得很大,而汤姆逊模型在原子中心附近不能提供很强的作用力。
掠入射 ( r=R ) 时, 入射α粒子受力最大。
⑥ 库伦散射公式:,Ee Z Z a a b πεθ4,2cos 2221==b 小,θ大、b 大,θ小;⑦ 卢瑟福散射公式:常数==Ω22224)()41(2sin MvZe Nnt d dn πεθ; α粒子散射实验的意义:(1) 通过实验解决了原子中正、负电荷的分布问题,建立了一个与实验相符的原子结构模型,使人们认识到原子中的正电荷集中在核上,提出了以核为中心的概念,从而将原子分为核外与核内两部分,并且认识到高密度的原子核的存在,在原子物理学中起了重要作用。
第一章 原子的基本状况若卢瑟福散射用的粒子是放射性物质镭C ' 放射的,其动能为 7.68 106 电子伏特。
散射物质是原子序数Z 79 的金箔。
试问散射角150 所对应的对准距离b 多大解:依据卢瑟福散射公式:ctg24Mv2K2b40 b22 Ze获得:Ze219 2 150bZe ctg 2(479(1.60 10 ) ctg 23.9710 15米40 K8.85 10 12) (7.68106 10 19)式中 K21 Mv2 是 粒子的功能。
已知散射角为 的 粒子与散射核的最短距离为r m (12 Ze2 (11) 4)2sin,Mv2试问上题 粒子与散射的金原子核之间的最短距离r m 多大2解:将题中各量代入r m 的表达式,得:rmin( 1 )2 Ze2 (11 )4Mvsin29 10 94 79 (1.60 10 19 )2 (1 1 ) 3.02 10 14米7.68 10 6 1.60 10 19 sin 75若用动能为 1 兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大又问假如用相同能量的氘核 (氘核带一个e 电荷而质量是质子的两倍, 是氢的一种同位素的原子核)取代质子,其与金箔原子核的最小距离多大解:当入射粒子与靶查对心碰撞时,散射角为180 。
当入射粒子的动能所有转变为两粒子间的势能时,两粒子间的作用距离最小。
依据上边的剖析可得:1Mv 2K pZe 2,故有: r minZe 24Kp24 0 rmin910 979 (1.60 10 19 ) 21.1410 13米1061.601019由上式看出: r min 与入射粒子的质量没关,所以当用相同能量质量和相同电量获得核代替质子时,其与靶核的作用的最小距离仍为1.14 10 13 米。
钋放射的一种粒子的速度为 1.597 107米 / 秒,正面垂直入射于厚度为10 7米、密度为 1.93210 4公斤 / 米3的金箔。
第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V ',沿θ方向散射。
电子质量用m e 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e+'=αα (1) ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sin θ=0 (1)若 sin θ=0,则 θ=0(极小) (8)(2)若cos(θ+2φ)=0则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-由此可得θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n , 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z 2=79答:散射角为90º所对所对应的瞄准距离为22.8fm. (2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出Z Au =79,A Au =197,ρAu =1.888×104kg/m 3 依: θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室1.1 若卢瑟福散射用的α 粒子是放射性物质镭 C 放射的,其动能为 7.68⨯10 电子伏特。
散射物质是原子序数 Z = 79 的金箔。
试问散射角θ = 150 所对应的瞄准距离 b 多大?219 2Ze ctg θ2 279 ⨯ (1.60 ⨯ 10 ) ctg 150 (4π ⨯ 8.85 ⨯ 10 ) ⨯ (7.68 ⨯ 106 ⨯ 10 )4πε 0 K α 式中 K α = 12 Mv 是α 粒子的功能。
) (1 + M v 4 π ε = ( ) (1 + Mv4π ε 0 4 ⨯ 79 ⨯ (1.60 ⨯ 10 ) 1 7.68 ⨯ 10 6 ⨯ 1.60 ⨯ 10 sin 75ο解:当入射粒子与靶核对心碰撞时,散射角为180 。
当入射粒子的动能全部转化为两7 9 ⨯ (1 .6 0 ⨯ 1 0) 2= 9 ⨯ 10 9 ⨯= 1 .1 4 ⨯ 1 0 - 1 3 米1 0 ⨯ 1 .6 0 ⨯ 1 0第一章 原子的基本状况' 6ο解:根据卢瑟福散射公式:cot θ 2= 4 π ε 0M v 2 2 Ze 2b = 4 π ε0 K α Ze 2b得到:οb == = 3.97 ⨯ 10-15 米-12 -19 21.2 已知散射角为θ 的α 粒子与散射核的最短距离为 r m = ( 1 2 Ze 2 2 0 1 s inθ 2 ),试问上题α 粒子与散射的金原子核之间的最短距离 r m 多大?解:将 1.1 题中各量代入 r m 的表达式,得: r m in 1 2 Ze 22 1 sin θ 2 )-19 2= 9 ⨯ 10 9 ⨯ ⨯ (1 +-19 )= 3 .0 2 ⨯ 1 0 -14 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可 能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?ο粒子间的势能时,两粒子间的作用距离最小。
原子物理学习题第一章作业教材 20页 3题:若用动能为 1 MeV 的质子射向金箔,问质子和金箔原子核(Z=79)可以达到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r m =Z 1*Z 2*e 2/4*π*ε0*E = …… = 1.14 ⨯ 10-13 m氕核情况结论相同-----------------------------------------------------------------------------------------------21页 4题:α粒子的速度为 1.597 ⨯ 107 m/s ,正面垂直入射于厚度为 10-7米、密度为1.932 ⨯104 kg/m 3 的金箔。
试求所有散射在 θ ≥ 90︒ 的α粒子占全部入射粒子的百分比。
金的原子量为197。
解:金原子质量 M Au = 197 ⨯ 1.66 ⨯ 10-27 kg = 3.27 ⨯ 10-25 kg箔中金原子密度 N = ρ/M Au = …… = 5.91 ⨯ 1028 个/m 3入射粒子能量 E = 1/2 MV 2 = 1/2 ⨯ 4 ⨯ 1.66 ⨯ 10-27 kg ⨯ (1.597 ⨯ 107 m/s)2 = 8.47 ⨯ 10-13 J若做相对论修正 E = E 0/(1-V 2/C 2)1/2 = 8.50 ⨯ 10-13 J对心碰撞最短距离 a=Z 1⨯Z 2⨯e 2/4⨯π⨯ε0⨯E = …. = 4.28 ⨯ 10-14 m 百分比d n/n(90︒→180︒)=⎪⎭⎫ ⎝⎛︒-︒⨯90sin 145sin 14222Nta π= … = 8.50 ⨯ 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 MeV α粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。
《原子物理学》讲义教 材:杨福家《原子物理学》高等教育出版社.2000.7第三版参考教材:褚圣麟《原子物理学》人民教育出版社.1979.6第一版作者简介:1936年6月出生于上海,著名科学家,中科院院士。
1958年复旦大学物理系毕业后留校任教,1960年担任复旦大学原子核物理系副主任。
此后历任中国科学院上海原子核研究所所长、复旦大学研究生院院长、复旦大学校长、上海市科协主席等职。
又受原本只有王室成员和有爵位的人才能担任校长的英国诺丁汉大学的聘请,于2001年出任该校第六任校长。
2004年兼任宁波诺丁汉大学校长。
1984年获国家级“有突出贡献的中青年专家”称号。
1991年当选为中国科学院院士,领导、组织并建成了基于加速器的原子、原子核物理实验室,完成了一批引起国际重视的研究成果。
撰有《原子物理学》、《应用核物理》等专著。
课程简介:《原子物理学》这门课程是在经典物理课程(力学、热学、电磁学、光学)之后的一门重要必修课程。
它以力、热、光、电磁等课程的知识为基础,从物理实验规律出发,引进量子化概念,探讨原子、原子核及基本粒子的结构和运动规律,从微观机制解释物质的宏观性质,同时介绍原子物理学知识在现代科学技术上的重大应用。
本课程强调物理实验的分析、微观物理概念和物理图像的建立和理解。
通过本课程教学,使学生初步了解物质的微观结构和运动规律,了解物质世界中三个递进的结构层次,为学习量子力学和后续专业课程打下基础。
本课程注重智能方面的培养,力求讲清基本概念,而大多数问题需经学生通过阅读思考去掌握。
部分内容由学生自行学习。
本课程原则上采用SI 单位制,同时在计算中广泛采用复合常数以简化数值运算。
[通常用0A (cm A 80101-=)描写原子线度,用fm (m fm 15101-=)描写核的线度,用eV 、MeV 描述原子和核的能量等。
]第一章 原子的位形:卢瑟福模型§1-1背景知识“原子”概念(源于希腊文,其意为“不可分割的” )提出已2000多年,至19世纪,人们对原子已有了相当的了解。
原子物理学介绍原子物理学是研究原子的性质、结构和行为的科学。
它是物理学的一个重要分支,对于了解物质的微观结构和性质具有重要意义。
在原子物理学的研究中,人们经过多年的努力探索,得到了许多重要的理论成果和实验发现,从而推动了科技的发展和人类社会的进步。
原子结构原子是物质的基本单位,由原子核和围绕核旋转的电子组成。
原子核是由质子和中子组成的,而电子则带有负电荷。
根据原子的结构,可以将原子分为几个主要的部分:质子、中子和电子。
•质子:质子是具有正电荷的粒子,它们组成了原子核。
质子的质量为1个质子质量单位(amu),电荷为+1。
•中子:中子是没有电荷的粒子,它们组成了原子核。
中子的质量也为1个质子质量单位(amu)。
•电子:电子是具有负电荷的粒子,它们围绕原子核旋转。
电子的质量很小,可以忽略不计,电荷为-1。
原子模型的发展历程人们对原子的认识是在经过长期的研究和探索后逐步建立起来的。
自古以来,人们对物质的构成和性质就有着一定的认识,但直到19世纪末20世纪初,原子模型的发展才取得了重大突破。
没有内部结构的原子模型早期的原子模型认为原子是没有内部结构的,认为原子是不可分割的基本粒子。
这一观点首先由希腊哲学家德谟克利特提出,他认为物质是由一种无可分割的基本粒子组成的。
这种观点影响了很长一段时间,直到17世纪末,英国科学家道尔顿提出了“道尔顿原子论”,认为原子是一个球状的固体物质,不可再分割。
汤姆逊的原子模型19世纪末20世纪初,英国科学家汤姆逊的实验发现了电子,他提出了第一个完整的原子模型。
汤姆逊采用了“西瓜糖果模型”,认为原子是一个正电荷均匀分布的球体,而电子则像西瓜糖果中的干果一样分布在正电荷球体内部。
卢瑟福的原子模型在汤姆逊的原子模型基础上,卢瑟福进行了阿尔法粒子散射实验,并发现了原子核。
卢瑟福的实验结果表明,原子核是非常小而密集的,而电子则围绕在原子核周围。
根据这一实验结果,卢瑟福提出了著名的“卢瑟福原子模型”,也称为“行星模型”。
《原子物理学》讲义教材:杨福家《原子物理学》高等教育出版社.2008.4第四版参考教材:褚圣麟《原子物理学》人民教育出版社.1979.6第一版作者简介:1936年6月出生于上海,著名科学家,中科院院士。
1958年复旦大学物理系毕业后留校任教,1960年担任复旦大学原子核物理系副主任。
此后历任中国科学院上海原子核研究所所长、复旦大学研究生院院长、复旦大学校长、上海市科协主席等职。
又受原本只有王室成员和有爵位的人才能担任校长的英国诺丁汉大学的聘请,于2001年出任该校第六任校长。
2004年兼任宁波诺丁汉大学校长。
1984年获国家级“有突出贡献的中青年专家”称号。
1991年当选为中国科学院院士,领导、组织并建成了基于加速器的原子、原子核物理实验室,完成了一批引起国际重视的研究成果。
撰有《原子物理学》、《应用核物理》等专著。
课程简介:《原子物理学》是20世纪初开始形成的一门学科,主要研究物质结构的“原子”层次。
随着近代物理学的发展,原子物理学的知识体系也在不断更新和充实。
原子物理学的发展导致量子理论的发展,而量子力学又使原子物理学得以完善。
《原子物理学》这门课程是在经典物理课程(力学、热学、电磁学、光学)之后的一门重要必修课程。
它以力、热、光、电磁等课程的知识为基础,从物理实验规律出发,引进量子化概念,探讨原子、原子核及基本粒子的结构和运动规律,从微观机制解释物质的宏观性质,同时介绍原子物理学知识在现代科学技术上的重大应用。
本课程强调物理实验的分析、微观物理概念和物理图像的建立和理解。
通过本课程教学,使学生初步了解物质的微观结构和运动规律,了解物质世界中三个递进的结构层次,为学习量子力学和后续专业课程打下基础。
本课程注重智能方面的培养,力求讲清基本概念,而大多数问题需经学生通过阅读思考去掌握。
部分内容由学生自行学习。
第一章 原子的位形:卢瑟福模型§1-1背景知识“原子”概念(源于希腊文,其意为“不可分割的” )提出已2000多年,至19世纪,人们对原子已有了相当的了解。
原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室1.1 若卢瑟福散射用的α 粒子是放射性物质镭 C 放射的,其动能为 7.68⨯10 电子伏特。
散射物质是原子序数 Z = 79 的金箔。
试问散射角θ = 150 所对应的瞄准距离 b 多大?219 2Ze ctg θ2 279 ⨯ (1.60 ⨯ 10 ) ctg 150 (4π ⨯ 8.85 ⨯ 10 ) ⨯ (7.68 ⨯ 106 ⨯ 10 )4πε 0 K α 式中 K α = 12 Mv 是α 粒子的功能。
) (1 + M v 4 π ε = ( ) (1 + Mv4π ε 0 4 ⨯ 79 ⨯ (1.60 ⨯ 10 ) 1 6 sin 75ο解:当入射粒子与靶核对心碰撞时,散射角为180 。
当入射粒子的动能全部转化为两7 9 ⨯ (1 .6 0 ⨯ 1 0) 2= 9 ⨯ 10 9 ⨯= 1 .1 4 ⨯ 1 0 - 1 3 米1 0 ⨯ 1 .6 0 ⨯ 1 0第一章 原子的基本状况' 6ο解:根据卢瑟福散射公式:cot θ 2= 4 π ε 0M v 2 2 Ze 2b = 4 π ε0 K α Ze 2b得到:οb == = 3.97 ⨯ 10-15 米-12 -19 21.2 已知散射角为θ 的α 粒子与散射核的最短距离为 r m = ( 1 2 Ze 2 2 0 1 s inθ ),试问上题α 粒子与散射的金原子核之间的最短距离 r m 多大?解:将 1.1 题中各量代入 r m 的表达式,得: r m in 1 2 Ze 2 2 1 sin θ 2)-19 2= 9 ⨯ 10 9 ⨯ ⨯ (1 +-19 )= 3 .0 2 ⨯ 1 0 -14 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可 能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?ο粒子间的势能时,两粒子间的作用距离最小。