常微分方程期末复习提纲共72页文档
- 格式:ppt
- 大小:4.21 MB
- 文档页数:72
常微分方程期末复习提要中央电大 顾静相常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。
本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习.一、复习要求和重点第一章 初等积分法1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法.常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。
2.了解变量分离方程的类型,熟练掌握变量分离方程解法.(1)显式变量可分离方程为:)()(d d y g x f x y = ; 当0≠g 时,通过积分⎰⎰+=C x x f y g y d )()(d 求出通解。
(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=;当0)()(21≠x M y N 时,通过积分 ⎰⎰+=C x x M x M y y N y N d )()(d )()(2112求出通解。
3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法.第一类可化为变量可分离方程的一阶齐次微分方程为:)(d d x y g x y = ; 令x y u =,代入方程得xu u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得⎰=-uu g u x C )(d 1e ,即)(e u C x ϕ=,用x y u =回代,得通解)(e x y C x ϕ=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法.(1)一阶线性齐次微分方程为:0)(d d =+y x p xy 通解为:⎰=-x x p C y d )(e 。
1.求下列方程的通解。
1sin 4-=-x e dxdyy . 解:方程可化为1sin 4-+-=x e dxde y y令ye z =,得x z dxdzsin 4+-= 由一阶线性方程的求解公式,得[]xx x dx dx ce x x c e x x e c dx xe e z -----+-=+-=+⎰⎰=⎰)cos (sin 2)cos (sin 2)sin 4()1()1(所以原方程为:y e =xcex x -+-)cos (sin 22.求下列方程的通解。
1)(122=⎥⎦⎤⎢⎣⎡-dx dy y .解:设t p dxdysin ==,则有t y sec =, 从而c tgt t tdt c tdt tgt tx +=+=+⋅=⎰⎰2sec sec sin 1,故方程的解为221)(y c x =++, 另外1±=y 也是方程的解 .3.求方程2y x dxdy+=通过)0,0(的第三次近似解. 解:0)(0=x ϕ 20121)(x xdx x x==⎰ϕ5204220121)41()(x x dx x x x x +=+=⎰ϕ dx x x x x dx x x x x x x⎰⎰⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡++=0710402523201400141)20121()(ϕ 8115216014400120121x x x x +++=4.求解下列常系数线性方程。
0=+'+''x x x解:对应的特征方程为:012=++λλ, .解得i i 23,23212211--=+-=λλ 所以方程的通解为:)23sin 23cos(2121t c t c ex t +=-5.求解下列常系数线性方程。
t e x x =-'''解:齐线性方程0=-'''x x 的特征方程为013=-λ,解得231,13,21i±-==λλ, 故齐线性方程的基本解组为:i e i ee t23sin ,23cos ,2121--,因为1=λ是特征根,所以原方程有形如t tAe t x =)(,代入原方程得,tt t t e Ate Ate Ae =-+3,所以31=A ,所以原方程的通解为2121-+=e c e c x tt te i e c i 3123sin 23cos 213++-6.试求下列线性方程组的奇点,并通过变换将奇点变为原点,进一步判断奇点的类型及稳定性:5,1--=+--=y x dtdyy x dt dx 解: ⎩⎨⎧=--=+--050!y x y x 解得⎩⎨⎧-==23y x 所以奇点为()2,3-经变换,⎩⎨⎧+=-=33y Y x X方程组化为⎪⎩⎪⎨⎧-=--=Y X dtdy Y X dt dx因为,01111≠---又01)1(11112=++=+-+λλλ 所以i i --=+-=1,121λλ,故奇点为稳定焦点,所对应的零解为渐近稳定的。
2012-2013第二学期常微分方程期末复习提纲第一章绪论掌握微分方程的概念, 能正确判断微分方程的阶数以及是否线性方程.第二章一阶微分方程的解法1 掌握变量分离方程的解法.2 掌握恰当方程的判定以及求解方法. 对于非恰当方程, 重点掌握如何求只与x或y有关的积分因子, 并由此求解方程.3 了解一些常见的能够化为变量分离方程的类型以及所用的变换. 例如齐次方程ddy ygx x⎛⎫= ⎪⎝⎭, 111222dda xb y cyx a x b y c++=++, ()ddyf ax by cx=++等类型.重点掌握形如111222d da xb y cyx a x b y c++=++的方程的求解方法.第三章一阶微分方程的解的存在定理1 简要理解解的存在性定理.2 了解利普希兹(Lipschitz)条件与偏导连续的关系.第四章高阶微分方程1 熟悉齐次与非齐次线性方程的解的结构以及性质定理2 掌握Wronsky行列式与线性相关或无关的关系.3 掌握基本解组相关概念.4 重点掌握常系数高阶非齐次线性微分方程的求法.特征根法和比较系数法.5 了解常见的可以降阶的高阶方程的类型, 重点掌握不显含未知函数的高阶方程的降阶求解法.第五章方程组1 熟悉基解矩阵的概念.2 掌握Atexp与基解矩阵的关系.3 重点掌握利用特征值求基解矩阵以及标准基解矩阵Atexp的方法.(只考虑有n个特征值的情形即可)。
《常微分方程》复习资料1.(变量分离方程)形如()()dyf x y dxϕ=(1.1)的方程,称为变量分离方程,这里(),()f x y ϕ分别是,x y 的连续函数. 解法:(1)分离变量,当()0y ϕ≠时,将(1.1)写成()()dyf x dx y ϕ=,这样变量就“分离”了; (2)两边积分得()()dyf x dx c y ϕ=⎰⎰+(1.2),由(1.2)所确定的函数(,)y x c ϕ=就为(1.1)的解. 注:若存在0y ,使0()0y ϕ=,则0y y =也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上. 2.(齐次方程)形如(dy yg dx x=的方程称为齐次方程,这里是u 的连续函数. ()g u 解法:(1)作变量代换(引入新变量)y u x =,方程化为()du g u u dx x -=,(这里由于dy dux u dx dx=+);(2)解以上的分离变量方程;(3)变量还原.3.(一阶线性微分方程与常数变异法)一阶线性微分方程()()()0dya xb x yc x dx++=在的区间上可写成()0a x ≠()()dyP x y Q x dx =+(3.1),这里假设在考虑的区间上是(),()P x Q x x 的连续函数.若,则(3.1)变为()0Q x =()dyP x y dx=(3.2),(3.2)称为一阶齐次线性方程.若()0Q x ≠,则(3.1)称为一阶非齐次线性方程. 解法:(1)解对应的齐次方程()dyP x y dx=,得对应齐次方程解()p x y ce dx ⎰=,为任意常数;c (2)常数变异法求解(将常数变为c x 的待定函数,使它为(3.1)的解):令为(3.1)的解,则()c x ()()p x dxy c x e ⎰=()()()()()p ⎰⎰p x dx p x dy dc x e c x x e dx dx =+dx ,代入(3.1)得()()()p x dx dc dxx Q x e -⎰=),积分得;()p x dx c ⎰=+ ()()c x Q x e -⎰(3)故(3.1)的通解为()()(()p x dxp x dxy e Q x e dx -⎰⎰c=+⎰ . 4.(伯努利方程)形如()()n dyP x y Q x y dx=+的方程,称为伯努利方程,这里为(),()P x Q x x 的连续函数. 解法:(1)引入变量变换,方程变为1nz y -=(1)()(1)()dz n P x z n Q x dx=-+-;(2)求以上线性方程的通解; (3)变量还原.5.(可解出的方程)形如y (,)dyy f x dx=(5.1)的方程,这里假设(,)f x y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(5.1)变为(,)y f x p =(5.2); (2)将(5.2)两边对x 求导,并以dy p dx =代入,得f f pp x p x∂∂∂=+∂∂∂(5.3),这是关于变量,x p 的一阶微分方程;(3)(i )若求得(5.3)的通解形式为(,)p x c ϕ=,将它代入(5.2),即得原方程(5.1)的通解(,(,))y f x x c ϕ=,为任意常数;c(ii )若求得(5.3)的通解形式为(,)x p c ψ=,则得(5.1)的参数形式的通解为(,)((,),)x p c y f p c p ψψ=⎧⎨=⎩,其中p 是参数,是任意常数;c (iii )若求得(5.3)的通解形式为,则得(5.1)的参数形式的通解为(,,)0x p c Φ=(,,)0(,)x p c y f x p Φ=⎧⎨=⎩,其中p 是参数,是任意常数.c 6.(可解出x 的方程)形如(,)dyx f y dx=(6.1)的方程,这里假设(,)f y y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(6.1)变为(,)x f y p =(6.2); (2)将(6.2)两边对y 求导,并以1dx dy p=代入,得1f f pp y p y ∂∂∂=+∂∂∂(6.3),这是关于变量,y p 的一阶微分方程;(3)若求得(6.3)的通解形式为,则得(6.1)的参数形式的通解为(,,)0y p c Φ=(,)(,,)0x f y p y p c =⎧⎨Φ=⎩,其中p 是参数,是任意常数.c 7.(不显含的方程)形如y (,)0dyF x dx=的方程,这里假设(,)F x y '有连续的偏导数. 解法:(1)设dyp dx=,则方程变为; (,)0F x p =(2)引入参数,将用参数曲线表示出来,即t (,)0F x p =()()x t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步); (3)把()x t ϕ=,()p t ψ=代入dy ,并两边积分得pdx =()()y t t dt ψϕ'c =+⎰;(4)通解为()()()x t y t t dt ϕψϕ=⎧⎪⎨'=+⎪⎩⎰c .8.(不显含x 的方程)形如(,)0dyF y dx=的方程,这里假设(,)F y y '有连续的偏导数.解法:(1)设dyp dx=,则方程变为;(,)0F y p =(2)引入参数,将用参数曲线表示出来,即t (,)0F y p =()()y t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步);(3)把()y t ϕ=,()p t ψ=代入dy dx p =,并两边积分得()()t x dt c t ϕψ'=+⎰; (4)通解为()()()t x dt c t y t ϕψϕ'⎧=+⎪⎨⎪=⎩⎰. 9.(型可降阶高阶方程)特点:不显含未知函数()(1)(,,,,)0(1)k n n F x y y y k -=≥ y 及.(1),,k y y -' 解法:令()()k yz x =,则(1)k y z +'=,.代入原方程,得.若能求得,()()n n y z -=k ()(,(),(),,())0n k F x z x z x z x -'= ()z x将()()k yz x =()yf =连续积分次,可得通解.k , 10.(型可降阶高阶方程)特点:右端不显含自变量()(1)(,,)n k y y y -n x .解法:设,则()y 222,(dp dy dP d p dP y P y P P dy dx dy dy dy'''''===+ y p '=2,) ,代入原方程得到新函数的()P y (1n -阶方程,求得其解为1()(,,,)n 1P y y C C ϕ-== dy dx,原方程通解为11(,,,)n n dyx C y C C ϕ-=+⎰ .11.(恰当导数方程)特点:左端恰为某一函数对(1)(,,,,)n x y y y -'Φ x 的导数,即(1)(,,,,)0n dx y y y dx-'Φ= . 解法:类似于全微分方程可降低一阶(1)(,,,,)n x y y y C -'Φ =',再设法求解这个方程.12.(齐次方程)特点:(k 次齐次函数).()()(,,,,)(,,,,)n k n x ty ty ty t F x y y y '= F zdx解法:可通过变换y e =⎰将其降阶,得新未知函数.因为()z x 2()(1),(),,(,,,)zdxzdxzdxn n y ze y z z e yz z z e -⎰⎰⎰'''''==+=Φ (1)(,,,,)0n f x z z z -',代入原方程并消去,得新函数的阶方程k z e ⎰dx ()z x (n -1)= .13.(存在唯一性定理)考虑初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩(13.1),其中(,)f x y 在矩形区域00:,R x x a y y b -≤-≤上连续,并且对满足Lipschitz 条件:即存在,使对所有(,y 0L >12(,)),x y x y R ∈常成立121(,)(,)2f x y f x y L y y -≤-,则初值问题(13.1)在区间0x x -≤h 上的解存在且唯一,这里(,)min(,h a =(,)x y R M Max f x y ∈=bM.初值问题(13.1)等价于积分方程00(,)xx y y f t y =+⎰dt ,构造Picard 逐步逼近函数列}{00001()()()(,())xn nn x x y x x y f ϕϕϕξϕ-=⎧⎪⎨=+⎪⎩⎰dx ξ 00x x x ≤≤+h ,n .1,= 2,14.(包络的求法)曲线族(14.1)的包络包含在下列两方程(,,)0x y c Φ=(,,)0(,,)0c x y c x y c Φ=⎧⎨'Φ=⎩消去参数而得到的曲线之中.曲线c (,)0F x y =(,)0F x y =称为(14.1)的c -判别曲线.15.(奇解的直接计算法)方程(,,)0dyF 15.1)的奇解包含在由方程组⎨去参数x y dx =(消(,,)0(,,)0c F x y p F x y p =⎧'=⎩p 而之得到的曲线(,Φ=中,此曲线称为(15.1)的)0x y p -别曲线,这里(,F 判,)x y p 0=是,,x y p 的连续可微函数. 注:p -判别曲线是否为方程的奇解,尚需进一步讨论. 16.(克莱罗方程)形如dy dy y xf dxdx ⎛⎫=+ ⎝⎭⎪(16.1)的方程,称为克莱罗方程,这里. ()0f p ''≠解法:令dy p dx =,得.两边对()y xp f p =+x 求导,并以dyp dx=代入,即得()dp dp p x p f p dx dx '=++,经化简,得[()]0.dpx f p dx '+= 如果0dp dx=,则得到p c =.于是,方程(16.1)的通解为:()y cx f c =+.如果,它与等式()0x f p '+=()y xp f p =+联立,则得到方程(16.1)的以p 为参数的解:()0()x f p y xp f p '+=⎧⎨=+⎩或()0()x f c y xc f c '+==+⎧⎨⎩其中为参数.消去参数c p 便得方程的一个解. 17.(函数向量组线性相关与无关)设12(),(),,()m x t x t x t a t b ≤≤是一组定义在区间[,上的函数列向量,如果存在一组不全为0的常数,使得对所有,有恒等式]a b c 12,,m c c c 1122()()()0m m c x t c x t x t +++ =, 则称12(),(),,()m x t x t x t 在区间[,上线性相关;否则就称这组向量函数在区间[,上线性无关.]a b ]a b 18.(Wronsky 行列式)设有n 个定义在a t 上的向量函数b ≤≤nn 11121212221212()()()()()()(),(),,()()()()n n n n n x t x t x t x t x t x x t x t x t t x t x t x t ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢===⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣ ⎦ ,由这n 个向量函数所构成的行列式111212122212[(),(12()()()()()()),()()()()()n n n n n nn x t x t x t x t x t x t W x x t W t t x t x t x t x t ≡称为这个向量函数所构成的Wronsky 行列式.n 如果向量函数12(),(),,()n x t x t x t 在a t 上线性相关,则它们的Wronsky 行列式. b ≤≤()0,t W t a b ≡≤≤19.(基解矩阵的计算公式)(1)如果矩阵具有个线性无关的特征向量,它们相应的特征值为A n 12,,,n v v v 12,,,n λλ λ(不必互不相同),那么矩阵是常系数线性微分方程组12tte λλ12(),,,],n tn v v e v λΦ=-∞<< [t e x +∞x Ax '=的一个基解矩阵; (2)矩阵的特征值、特征根出现复根时(略); A (3)矩阵的特征根有重根时(略).A 20.(常系数齐线性方程)考虑方程111[]0n n n n n d x d xL x a a x dt dt--=+++= (20.1),其中为常数,称(20.1)为阶常系数齐线性方程.12,,n a a a n 解法:(1)求(20.1)特征方程的特征根12,,,k λλλ ;(2)计算方程(20.1)相应的解:(i )对每一个实单根k λ,方程有解k teλ;(ii )对每一个重实根1m >k λ,方程有个解:m 21,,,,k k k tttm e te t e te k tλλλ- λ;(iii )对每一个重数是1的共轭复数i αβ±,方程有两个解:cos ,sin tte t e ααt ββ; (iv )对每一个重数是的共轭复数1m >i αβ±,方程有个解:2m 11cos ,cos ,,cos ;sin ,sin ,,sin t t m t ttm te t te t t e t e t te t te tααααααββββββ-- ;(3)根据(2)中的(i )、(ii )、(iii )、(iv )情形,写出方程(20.1)的基本解组及通解.21.(常系数非齐次线性方程)()y py qy f x '''++=二阶常系数非齐次线性方程对应齐次方程,通解结构0y py qy '''++=y Y y =+.设非齐次方程特解()x y Q x e λ=代入原方程 2()(2)()()()()m Q x p Q x p q Q x P x λλλ'''+++++=(1)若λ不是特征方程的根,,可设20p q λλ++≠()()m Q x Q x =,()xm y Q x e λ=;(2)若λ是特征方程的单根,,2020p q λλ++=p λ+≠,可设()()m Q x xQ x =,()xm y xQ x e λ=; (3)若λ是特征方程的重根,,2020p q λλ++=p λ+=,可设,2()()m Q x x Q x =2()xm y x Q x e λ=. ()k x综上讨论,设y m x e Q x λ=,. 012k λλλ⎧⎪=⎨⎪⎩不是根是单根是重根。
常微分方程期末复习提要中央电大 顾静相常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。
本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习.一、复习要求和重点第一章 初等积分法1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法.常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。
2.了解变量分离方程的类型,熟练掌握变量分离方程解法.(1)显式变量可分离方程为:)()(d d y g x f x y = ; 当0≠g 时,通过积分⎰⎰+=C x x f y g y d )()(d 求出通解。
(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=;当0)()(21≠x M y N 时,通过积分 ⎰⎰+=C x x M x M y y N y N d )()(d )()(2112求出通解。
3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法.第一类可化为变量可分离方程的一阶齐次微分方程为:)(d d x y g x y = ; 令x y u =,代入方程得xu u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得⎰=-uu g u x C )(d 1e ,即)(e u C x ϕ=,用x y u =回代,得通解)(e x y C x ϕ=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法.(1)一阶线性齐次微分方程为:0)(d d =+y x p xy 通解为:⎰=-x x p C y d )(e 。
常微分方程复习总结初等积分法一、主要概念常微分方程:未知函数是一个变元的函数,由这样的函数及其导数(或微分)构成的等式。
方程的阶:在微分方程中,未知函数最高阶导数的阶数,称为方程的阶。
微分方程的解:一个函数代入微分方程中去,使得它成为关于自变量的恒等式,称此函数为微分方程的解。
通解:n 阶方程,其解中含有n 个(独立的)任意常数,此解称为方程的通解。
由隐式表出的通解称为通积分。
特解:给通解中的任意常数以定值,所得到的解称为特解,由隐式给出的特解称为特积分。
初值问题:求微分方程满足初值条件的解的问题。
变量可分离方程: 形如 )()(d d y g x f xy=或 y y N x M x y N x M d )()(d )()(2211= 的方程称为变量可分离方程。
齐次微分方程:形如)(d d xyx y ϕ=的方程,称为齐次微分方程。
线性微分方程:未知函数和它的导数都是一次的微分方程。
一阶线性微分方程:一阶线性微分方程的形式是 )()(d d x f y x p x y =+ 如果0)(≡x f ,即0)(d d =+y x p xy称为一阶线性齐次方程。
如果)(x f 不恒为零,则称)()(d d x f y x p x y=+为一阶线性非齐次方程。
伯努利(Bernoulli )方程:形如 n y x f y x p xy)()(d d =+ (1,0≠n ) 的方程,称为伯努利方程。
全微分方程:如果微分形式的一阶方程0d ),(d ),(=+y y x N x y x M (1.1)的左端恰好是一个二元函数),(y x U 的全微分,即y y x N x y x M y x U d ),(d ),(),(d += (1.2)则称方程(1.1)是全微分方程或恰当方程,而函数),(y x U 称为微分式(1.2)的原函数。
积分因子:假如存在这样的连续可微函数0),(≠y x μ,使方程0d ),(),(d ),(),(=+y y x N y x x y x M y x μμ成为全微分方程,我们就把),(y x μ称为方程(1.1)的一个积分因子。