胡汉才编著《理论力学》课后习题答案第3章习题解答(精编文档).doc
- 格式:doc
- 大小:1.07 MB
- 文档页数:17
《理论力学》第三章作业参考答案习题3-9解:力F在x 、y 坐标轴上的投影分别为:)(03.169100050301010222N F x =⨯++=)(09.507100050301030222N F y =⨯++=力F作用点的坐标为1500.15x m m m =-=-,(10050)0.15y mm m =+=。
所以,0.15507.090.15169.09101.4(.)Z y x M xF yF N m =-=-⨯-⨯≈-答: 力F对z 轴的力矩为-101.4Nm .习题3-11解:力F在x 、y 、z 坐标轴上的投影分别为:00cos 60cos 304x F F F ==1cos 60sin 304y F F F=-=-FF F Z 2360sin 0-=-=力F的作用点C 的坐标为1sin 302o x r r==,cos 302o y r ==,z h =。
所以,()Fr h F h F r zF yF My z X341412323-=⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=-=()F r h F r F h xF zF Mz x y+=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=-=4323243rF F r F r yF xF Mxy Z214323412-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=-=答:力F对x 、y 、z 轴的矩分别为:()134h r F -,)4h r F +,12rF-。
习题3-12解:以整个支架为研究对象。
由于各杆为二力杆,球铰链A 、B 、C 处的约束力A F 、B F 、C F 沿杆件连线汇交于D 端球铰链,与物块的重力P构成一空间汇交力系,其受力情况如图所示。
以O 为原点建立坐标系,列平衡方程,我们有⎪⎪⎩⎪⎪⎨⎧===∑∑∑000z y x F F F⎪⎩⎪⎨⎧=-++=++=-015sin 30sin 45sin 30sin 45sin 015cos 30cos 45sin 30cos 45sin 045cos 45cos 000000000000P F F F F F F F F C B A C B A B A 解之得:()()()cos1526.39()2sin 45sin 3015cos1526.39()2sin 45sin 3015cos 3033.46()sin 3015o A o o ooB o o ooC o o P F kN P F kN F P kN ⎧⎪==-⎪⎪⎪==⎨-⎪⎪⎪=-=-⎪-⎩答:铰链A 、B 的约束力均等于26.39kN ,方向与图示相同,即为压力,铰链C 的约束力等于-33.46 kN ,方向与图示相反,即为拉力。
理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。
.求图示平面力系的合成结果,长度单位为m1习题4-习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
A点的矩是:(1) 解:平行力系对O(1) 解:取点为简化中心,求平面力系的主矢:B取点为简化中心,平行力系的主矢是:求平面力系对点的主矩:O 点的主矩是:B 平行力系对B RB向点简化的结果是一个力,且:M和一个力偶合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力(2) B.理论力学教科书课后习题及解析A,且:M向A点简化的结果是一个力如图所示;R和一个力偶A如图所示;将,使满足:d R向下平移一段距离B的大小等于载荷分布的其几何意义是:。
R最后简化为一个力R,大小等于R B,使满足:d R将向右平移一段距离A矩形面积,作用点通过矩形的形心。
A(2) 取点为简化中心,平行力系的主矢是:的大小等于载荷分布的R。
其几何意义是:RR最后简化为一个力,大小等于A三角形面积,作用点通过三角形的形心。
点的主矩是:A平行力系对.理论力学教科书课后习题及解析列平衡方程:。
.求下列各梁和刚架的支座反力,长度单位为习题4-4m解方程组:反力的实际方向如图示。
校核:解:(1) 研究AB杆,受力分析,画受力图:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:理论力学教科书课后习题及解析(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。
校核:解方程组:结果正确。
.理论力学教科书课后习题及解析反力的实际方向如图示。
校核:结果正确。
的约束反力A.重物悬挂如图,已知习题4-5G=1.8kN,其他重量不计;求铰链和杆BC所受的力。
列平衡方程:解方程组:BC是二力杆),画受力图:研究整体,受力分析((1) 解:反力的实际方向如图示。
EDF DDBF Fα(a)αCBF BDBF 'ABF (b)习题3-3图第3章 静力学平衡问题3-1 图示两种正方形结构所受荷载F 均已知。
试求其中1,2,3各杆受力。
解:图(a ):045cos 23=-︒F FF F 223=(拉) F 1 = F 3(拉) 045cos 232=︒-F F F 2 = F (受压) 图(b ):033='=F F F 1 = 0F 2 = F (受拉)3-2 图示为一绳索拔桩装置。
绳索的E 、C 两点拴在架子上,点B 与拴在桩A 上的绳索AB 连接,在点D 加一铅垂向下的力F ,AB 可视为铅垂,DB 可视为水平。
已知α= 0.1rad.,力F = 800N 。
试求绳AB 中产生的拔桩力(当α很小时,tan α≈α)。
解:0=∑y F ,F F ED =αsin αsin FF ED = 0=∑x F ,DB ED F F =αcos F FF DB 10tan ==α由图(a )计算结果,可推出图(b )中:F AB = 10F DB = 100F = 80 kN 。
3-3 起重机由固定塔AC 与活动桁架BC 组成,绞车D 和E 分别控制桁架BC 和重物W 的运动。
桁架BC 用铰链连接于点C ,并由钢索AB 维持其平衡。
重物W = 40kN 悬挂在链索上,链索绕过点B 的滑轮,并沿直线BC 引向绞盘。
长度AC = BC ,不计桁架重量和滑轮摩擦。
试用角ϕ=∠ACB 的函数来表示钢索AB 的张力F AB 以及桁架上沿直线BC 的压力F BC 。
AF3F 2F 1F(b-1)习题3-1图F3F451F A 13(a-1)3F 2F D'3F(a-2)D3F '3F(b-2)习题3-2图ABF WBCF ϕW x2θyϕ习题3-5图习题3-4图 解:图(a ):0=∑x F ,0sin 2cos=-ϕϕW F AB ,2sin2ϕW F AB =0=∑y F ,02sin cos =---ϕϕAB BC F W W F即 2sin 2cos 2ϕϕW W W F BC ++=W W W W 2)cos 1(cos =-++=ϕϕ3-4 杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。
【最新整理,下载后即可编辑】
3-3在图示刚架中,已知kN/m
3
=
m
q,2
6
=
F kN,m
kN
10⋅
=
M,不计刚架自重。
求固定端A处的约束力。
m
kN
12
kN
6
0⋅
=
=
=
A
Ay
Ax
M
F
F,
,
3-4杆AB及其两端滚子的整体重心在G点,滚子搁置在倾斜的光滑刚性平面上,如图所示。
对于给定的θ角,试求平衡时的β角。
A
θ
3
l
G
β
G
θ
B
B
F
A
R
F3
2l
O
解:解法一:AB为三力汇交平衡,如图所示ΔAOG中
β
sin
l
AO=,θ-︒
=
∠90
AOG,β-︒
=
∠90
OAG,β
θ+
=
∠AGO
由正弦定理:
)
90
sin(
3
)
sin(
sin
θ
β
θ
β
-
︒
=
+
l
l,
)
cos
3
1
)
sin(
sin
θ
β
θ
β
=
+
l
即β
θ
β
θ
θ
βsin
cos
cos
sin
cos
sin
3+
=
即θ
βtan
tan
2=
)
tan
2
1
arctan(θ
β=
解法二::
=
∑
x
F,0
sin
R
=
-θ
G
F A(1)
=
∑
y
F,0
cos
R
=
-θ
G
F B(2)
)(=∑F A M ,0
sin )sin(3
R =++-β
βθl F l
G B (3)
解(1)、(2)、(3)联立,得
)tan 2
1
arctan(θβ=
3-5 由AC 和CD 构成的组合梁通过铰链C 连接。
支承和受力如图所示。
已知均布载荷强度kN/m 10=q ,力偶矩m kN 40⋅=M ,不计梁重。
kN 15kN 5kN 40kN 15===-=D C B A F F F F ;;;
解:取CD 段为研究对象,受力如图所示。
0)(=∑F C M ,024=--q M F D ;kN 15=D F 取图整体为研究对象,受力如图所示。
0)(=∑F A M ,01682=--+q M F F D B ;kN 40=B F 0=∑y F ,04=+-+D B Ay F q F F ;kN 15-=Ay F 0=∑x F ,0=Ax F
3-6如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。
已知起重机重P1 = 50kN ,重心在铅直线EC 上,起重载荷P2 = 10kN 。
如不计梁重,求支座A 、B 和D 三处的约束反力。
解:(1)取起重机为研究对象,受力如图。
0)(=∑F F M ,0512P R =--W F F G ,kN 50R =G F
(2)取CD 为研究对象,受力如图
0)(=∑F C M ,016'R R =-G D F F ,kN 33.8R =D F
(3)整体作研究对象,受力图(c ) 0)(=∑F A M ,0361012R P R =+--B D F F W F ,kN 100R =B F
0=∑x F ,0=Ax F
0=∑y F ,kN 33.48-=Ay F
3-7 构架由杆AB,AC和DF铰接而成,如图所示。
在DEF杆上作用一矩为M的力偶。
不计各杆的重量,求AB杆上铰链A,D 和B所受的力。
3-8 图示构架中,物体P 重1200N ,由细绳跨过滑轮E 而水平系于墙上,尺寸如图。
不计杆和滑轮的重量,求支承A 和B 处的约束力,以及杆BC 的内力F BC 。
解:(1)整体为研究对象,受力图(a ),W F =T 0=∑A M ,0)5.1()2(4T R =--+-⋅r F r W F B ,N 1050R =B F 0=∑x F ,N 1200T ===W F F Ax 0=∑y F ,N 501=Ay F
(2)研究对象CDE (BC 为二力杆),受力图(b ) 0=∑D M ,0)5.1(5.1sin T =-+⋅+⨯r F r W F BC θ
N 15005
41200
sin -=-=-=
θ
W F BC (压力)
3-9 图示结构中,A 处为固定端约束,C 处为光滑接触,D 处为铰链连接。
已知
N
40021==F F ,m N 300⋅=M ,mm 400==BC AB ,
mm 300==CE CD ,︒=45α,不计各构件自重,求固定端A 处与铰链
D 处 的约束
力。
3-10 图示结构由直角弯杆DAB与直杆BC、CD铰接而成,并在A 处与B处用固定铰支座和可动铰支座固定。
杆DC受均布载荷q 的作用,杆BC受矩为2qa
M 的力偶作用。
不计各构件的自重。
求铰链D受的力。
3-11 图示构架,由直杆BC,CD及直角弯杆AB组成,各杆自重
不计,载荷分布及尺寸如图。
在销钉B上作用载荷P。
已知q、a、
M、且2qa
M 。
求固定端A的约束力及销钉B对BC杆、AB杆的作用力。
3-12无重曲杆ABCD有两个直角,且平面ABC与平面BCD垂直。
杆的D端为球铰支座,A端为轴承约束,如图所示。
在曲杆的AB、BC和CD上作用三个力偶,力偶所在平面分别垂直于AB、BC和CD三线段。
已知力偶矩M
2
和M3 ,求使曲杆处于平衡的力偶矩
M
1和D
A、处的约束力。
解:如图所示:ΣF x = 0,F Dx = 0
ΣM y = 0,012=⋅-d F M Az ,1
2d M F
Az
=
ΣF z = 0,1
2d M F
Dz
-
=
ΣM z = 0,013=⋅+d F M Ay ,1
3
d
M F Ay -= ΣF y = 0,1
3
d M F
Dy
=
ΣM x = 0,0231=⋅+⋅--d F d F M Az Ay ,21
231
3
1M d
d M d d M += 3-13在图示转轴中,已知:Q=4KN ,r=0.5m ,轮C 与水平轴AB 垂直,自重均不计。
试求平衡时力偶矩M 的大小及轴承A 、B 的约束反力。
解:Σm Y =0, M -Qr=0, M=2KN ·m
ΣY=0, N AY =0
Σmx=0, N Bz ·6-Q ·2=0, N BZ =4/3KN
Σmz=0, N BX =0 ΣX=0, N AX =0
ΣZ=0, N AZ +N Bz -Q=0,N AZ =8/3KN
3-14匀质杆AB 重Q 长L ,AB 两端分别支于光滑的墙面及水平地板上,位置如图所示,并以二水平索AC 及BD 维持其平衡。
试求(1)墙及地板的反力;(2)两索的拉力。
解:ΣZ=0 N B =Q
Σmx=0
N B ·BDsin30°-Q ·2
1BDsin30°-Sc ·BDtg60°=0
Sc=0.144Q Σm Y =0
-N B ·BDsin60°+Q ·2
1BDsin60°+N A ·BDtg60°=0
N A =0.039Q
ΣY=0 -S B cos60°+Sc=0 S B =0.288Q
3-15 平面悬臂桁架所受的载荷如图所示。
求杆1,2和3的内力。
3-16 平面桁架的支座和载荷如图所示。
ABC为等边三角形,E,
F为两腰中点,又AD=DB。
求杆CD的内力
F。
CD
解:ED 为零杆,取BDF 研究,F CD =-0.866F
3-17 桁架受力如图所示,已知kN 101=F ,kN 2032==F F 。
试求桁
架4,5,7,10各杆的内力。
3-18 平面桁架的支座和载荷如图所示,求杆1,2和3的内力。
3-19 均质圆柱重P、半径为r,搁在不计自重的水平杆和固定斜面之间。
杆端A为光滑铰链,D端受一铅垂向上的力F,圆柱上作用一力偶。
如图所示。
已知P
F=,圆柱与杆和斜面间的静滑动摩擦系数皆为f S=0.3,不计滚动摩阻,当︒
α时,AB=BD。
求
=45
此时能保持系统静止的力偶矩M的最小值。
3-20 如图所示,A块重500N,轮轴B重1000N,A块与轮轴的轴以水平绳连接。
在轮轴外绕以细绳,此绳跨过一光滑的滑轮D,在绳的端点系一重物C。
如A块与平面间的摩擦系数为0.5,轮轴与平面间的摩擦系数为0.2,不计滚动摩阻,试求使系统平衡时物体C的重量P的最大值。