中点画线算法
- 格式:doc
- 大小:203.00 KB
- 文档页数:7
《图形学》实验四:中点Bresenham算法画直线VC++6.0,OpenGL使⽤中点Bresenham算法画直线。
1//中点Bresenham算法⽣成直线2 #include <gl/glut.h>3 #include <math.h>45#define WIDTH 500 //窗⼝宽度6#define HEIGHT 500 //窗⼝⾼度7#define DRAWLINE1 MidpointBresenham(100,200,200,100); //画直线8#define DRAWLINE2 MidpointBresenham(200,100,450,400); //画直线910#pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"") //取消控制台1112void Init() //初始化13 {14 glClearColor(1.0f,1.0f,1.0f,1.0f); //设置背景颜⾊,完全不透明15 glColor3f(1.0f,0.0f,0.0f); //设置画笔颜⾊1617 glMatrixMode(GL_PROJECTION); //设置投影18 gluOrtho2D(0.0, WIDTH, 0.0, HEIGHT); //设置投影区域19 }2021void MidpointBresenham(int x0,int y0,int x1,int y1) //中点Bresenham算法画线22 {23int dx,dy,d,UpIncre,DownIncre,x,y;24if(x0>x1){25 x=x1;x1=x0;x0=x;26 y=y1;y1=y0;y0=y;27 }28 x = x0,y = y0;29 dx = x1-x0;30 dy = y1-y0;31if(dy>0&&dy<=dx){ //0<k<=132 d = dx-2*dy;33 UpIncre = 2*dx-2*dy;34 DownIncre = -2*dy;35while(x<=x1){36 glBegin(GL_POINTS);37 glVertex2i(x,y);38 glEnd();39 x++;40if(d<0){41 y++;42 d+=UpIncre;44else45 d+=DownIncre;46 }47 }48else if((dy>=(-dx))&&dy<=0) //-1<=k<=049 {50 d=dx-2*dy;51 UpIncre=-2*dy;52 DownIncre=-2*dx-2*dy;53while(x<=x1)54 {55 glBegin(GL_POINTS);56 glVertex2i(x,y);57 glEnd();58 x++;59if(d>0)60 {61 y--;62 d+=DownIncre;63 }64else d+=UpIncre;65 }66 }67else if(dy<(-dx)) //k<-168 {69 d=-dy-2*dx;70 UpIncre=2*dx+2*dy;71 DownIncre=2*dx;72while(y>=y1)73 {74 glBegin(GL_POINTS);75 glVertex2i(x,y);76 glEnd();77 y--;78if(d<0)79 {80 x++;81 d-=UpIncre;82 }83else d-=DownIncre;84 }85 }8687else//k>1和k不存在88 {89 d=dy-2*dx;90 UpIncre=2*dy-2*dx;91 DownIncre=-2*dx;92while(y<=y1)93 {94 glBegin(GL_POINTS);95 glVertex2i(x,y);96 glEnd();97 y++;98if(d<0)99 {100 x++;101 d+=UpIncre;103else d+=DownIncre;104 }105 }106 }107108void Display() //显⽰函数109 {110 glClear(GL_COLOR_BUFFER_BIT); //清空颜⾊堆栈111112 DRAWLINE1 //画直线113 DRAWLINE2 //画直线114115 glFlush(); //清空缓冲区指令116 }117118int main(int argc,char** argv)119 {120 glutInit(&argc,argv);121 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); //初始化显⽰模式122 glutInitWindowSize(WIDTH,HEIGHT); //设置窗⼝尺⼨123 glutInitWindowPosition(200,100); //设置窗⼝位置124 glutCreateWindow("画直线"); //创建窗⼝125126 glutDisplayFunc(Display); //注册显⽰函数127 Init(); //初始化128 glutMainLoop(); //进⼊程序循环129return0;130 }Freecode :。
直线段的扫描转换算法数值微分(DDA)法设过端点P0(x0 ,y0)、P1(x1 ,y1)的直线段为L(P0 ,P1),那么直线段L的斜率L的起点P的横坐标x0向L的终点P1的横坐标x1步进,取步长=1(个象素),用L的直线方程y=kx+b计算相应的y坐标,并取象素点(x,round(y))作为当前点的坐标。
因为:y= kx i+1+bi+1= k1x i+b+k x= y i+k x因此,当x =1; y i+1 = y i+k。
也确实是说,当x每递增1,y递增k(即直线斜率)。
依照那个原理,咱们能够写出DDA画线算法程序。
DDA画线算法程序void DDALine(int x0,int y0,int x1,int y1,int color){ int x;float dx, dy, y, k;dx = x1-x0; dy=y1-y0;k=dy/dx,;y=y0;for (x=x0;x< x1;x++){ drawpixel (x, int(y+, color);y=y+k;}}注意:咱们那个地址用整型变量color表示象素的颜色和灰度。
举例:用DDA方式扫描转换连接两点P0(0,0)和P1(5,2)的直线段。
x int(y+ y+0 0 01 0 +2 1 +3 1 +4 2 + 图2.1.1 直线段的扫描转换注意:上述分析的算法仅适用于|k| ≤1的情形。
在这种情形下,x每增加1,y最多增加1。
当|k| 1时,必需把x,y地位互换,y每增加1,x相应增加1/k。
在那个算法中,y与k必需用浮点数表示,而且每一步都要对y进行四舍五入后取整,这使得它无益于硬件实现。
中点画线法假定直线斜率k在0~1之间,当前象素点为(x p,y p),那么下一个象素点有两种可选择点P1(x p+1,y p)或P2(x p+1,y p+1)。
假设P1与P2的中点(x p+1,y p+)称为M,Q为理想直线与x=x p+1垂线的交点。
扫描转换算法——DDA、中点画线画圆、椭圆我的理解:在光栅图形学中,由于每⼀个点的表⽰都只能是整数值,所以光栅图形学实际只是对对实际图形的近似表⽰。
数值微分法(DDA):以下PPT截图来⾃北京化⼯⼤学李辉⽼师代码实现:import matplotlib.pyplot as pltimport matplotlib.patches as patchesfrom pylab import *def init(ax):#将主标签设置为1的倍数majorLocator = MultipleLocator(1);#设置主刻度标签的位置,标签⽂本的格式ax.xaxis.set_major_locator(majorLocator);ax.yaxis.set_major_locator(majorLocator);ax.grid(True);if__name__ == '__main__':x0, y0, x1, y1 = map(int, input("请输⼊直线的起点与终点: ").split('')) ax = subplot(title='DDA');ax.plot([x0, x1], [y0, y1], 'r');delta_x = x1-x0;delta_y = y1-y0;#画坐标轴if x1>y1:ax.axis([x0-1, x1+1, y0-1, x1+1]);init(ax);else:ax.axis([x0-1, y1+1, y0-1, y1+1]);init(ax);#计算斜率k的值if delta_x == 0:k = 999999999;else:k = delta_y / delta_x;#如果|k|<=1if k>-1 and k<1:while x0<=x1:x = round(x0);y = round(y0);ax.plot(x, y, 'b.');x0 += 1;y0 = y0+k;else:while y0<=y1:x = round(x0);y = round(y0);ax.plot(x, y, 'b.');x0 += 1/k;y0 += 1;plt.show();运⾏截图:中点画线:以下PPT截图来⾃北京化⼯⼤学李辉⽼师代码实现:wimport matplotlib.pyplot as pltimport matplotlib.patches as patchesfrom pylab import *def init(ax):#将主标签设置为1的倍数majorLocator = MultipleLocator(1);#设置主刻度标签的位置,标签⽂本的格式ax.xaxis.set_major_locator(majorLocator);ax.yaxis.set_major_locator(majorLocator);ax.grid(True);if__name__ == '__main__':x0, y0, x1, y1 = map(int, input("请输⼊直线的起点与终点: ").split('')) ax = subplot(title='Midpoint');ax.plot([x0, x1], [y0, y1], 'r');a = y0-y1;b = x1-x0;d = 2*a+b;d1 = 2*a;d2 = 2*(a+b);#画坐标轴if x1>y1:ax.axis([x0-1, x1+1, y0-1, x1+1]);init(ax);else:ax.axis([x0-1, y1+1, y0-1, y1+1]);init(ax);x = x0;y = y0;ax.plot(x, y, 'r.');while(x < x1):if d<0:x += 1;y += 1;d += d2;else:x += 1;d += d1;ax.plot(x, y, 'r.');plt.show()中点画圆法:以下PPT截图来⾃北京化⼯⼤学李辉⽼师import matplotlib.pyplot as pltimport matplotlib.patches as patchesfrom pylab import *def init(ax):#将主标签设置为1的倍数majorLocator = MultipleLocator(1);#设置主刻度标签的位置,标签⽂本的格式ax.xaxis.set_major_locator(majorLocator);ax.yaxis.set_major_locator(majorLocator);ax.grid(True);if__name__ == '__main__':r = int(input("请输⼊半径: "));plt.figure(figsize=(r*0.1, r*0.1));ax = subplot(title='MidPointCircle');d = 1-r;ax.axis([-r-1, r+1, -r-1, r+1]);init(ax);x = 0;y = r;ax.plot(x, y, 'r.');while(x <= y):if d<0:d += 2*x+3;else:d += 2*(x-y)+5;y -= 1;x += 1;ax.plot(x, y, 'r.');ax.plot(y, x, 'r.');ax.plot(x, -y, 'r.');ax.plot(-y, x, 'r.');ax.plot(-x, y, 'r.');ax.plot(y, -x, 'r.');ax.plot(-x, -y, 'r.');ax.plot(-y, -x, 'r.');plt.show()椭圆的扫描转换:以下PPT截图来⾃北京化⼯⼤学李辉⽼师代码实现:import matplotlib.pyplot as pltimport matplotlib.patches as patchesimport mpl_toolkits.axisartist as axisartistfrom pylab import *def init(ax):#设置x轴:空⼼箭头、数值在下⽅ax.axis["x"] = ax.new_floating_axis(0, 0);ax.axis["x"].set_axisline_style("->", size = 1.0);ax.axis["x"].set_axis_direction("bottom");#设置y轴:空⼼箭头、数值在右⽅ax.axis["y"] = ax.new_floating_axis(1, 0);ax.axis["y"].set_axisline_style("->", size = 1.0);ax.axis["y"].set_axis_direction("right");if__name__ == '__main__':a, b = map(int, input("请输⼊椭圆的长、短半径: ").split('')); fig = plt.figure(figsize=(5, 7))#初始化画布ax = axisartist.Subplot(fig, 111, title='MidpointElipse');#将绘图区对象添加到画布中fig.add_axes(ax)init(ax);x = 0;y = b;d1 = b*b+a*a*(-b+0.25); #增量初值ax.plot(x, y, 'r.');ax.plot(x, -y, 'r.');while(b*b*(x+1)<a*a*(y-0.5)): #法向量的x、y不⼀样⼤时if d1<0:d1 += b*b*(2*x+3);x += 1;else:d1 += b*b*(2*x+3)+a*a*(-2*y+2);x += 1;y -= 1;#画四个对称点ax.plot(x, y, 'r.');ax.plot(x, -y, 'r.');ax.plot(-x, y, 'r.');ax.plot(-x, -y, 'r.');#画到了法向量的x=y,即椭圆弧的下半部分d2 = b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b;while y>0: #终结条件y>0if d2<0:d2 += b*b*(2*x+2)+a*a*(-2*y+3);x += 1;y -= 1;else:d2 += a*a*(-2*y+3);y -= 1;ax.plot(x, y, 'r.');ax.plot(x, -y, 'r.');ax.plot(-x, y, 'r.');ax.plot(-x, -y, 'r.');plt.show()。
实验1中点画线和Bresenham画线算法的实现计算机图形学实验报告实验1 使用画线算法,绘制直线段一.实验目的及要求(1)掌握图形学中常用的三种画线算法:数值微分法、中点画线法和Bresenham画线算法。
(2)掌握绘制直线的程序设计方法。
(3)掌握使用文件来保存直线段的方法。
(4)掌握从文本文件中恢复出直线的方法。
二.实验内容使用VC++ 6.0开发环境,分别实现中点画线算法和Bresenham 画线算法,绘制直线(注意,不能使用VC中已有的绘制直线的函数),并以文本文件的形式保存绘制的结果,可以从文本文件中恢复出以前绘制过的直线。
三.算法设计与分析Bresenham算法绘制直线的程序(仅包含整数运算)。
void MidBresenhamLine(int x0,int y0,int x1,int y1,int color) {int dx,dy,d,UpIncre,DownIncre,x,y;if(x0>x1){x=x1;x1=x0;x0=x;y=y1;y1=y0;y0=y;}x=x0;y=y0;dx=x1-x0;dy=y1-y0;d=dx-2*dy;UpIncre=2*dx-2*dy;DownIncre=-2*dy;while(x<=x1){putpixel(x,y,color);X++;if(d<0){y++;d+=UpIncre;}else d+=DownIncre;}}四.程序调试及运行结果的自我分析与自我评价// testView.cpp : implementation of the CT estView class#include "stdafx.h"#include "test.h"#include "testDoc.h"#include "testView.h"#include // ifstream、ofstream等位于其中#include#include // string类型需要#include "DlgInput.h" //CDlgInput类的头文件using namespace std;#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif// CTestViewIMPLEMENT_DYNCREATE(CTestView, CView)BEGIN_MESSAGE_MAP(CTestView, CView)//{{AFX_MSG_MAP(CTestView)ON_COMMAND(ID_MENUITEM32771, OnMenuitem32771)ON_COMMAND(ID_MENUBRESENHAMLINE, OnMenubresenhamline) ON_COMMAND(ID_MENUCLEARVIEW, OnMenuclearview)ON_COMMAND(ID_FILE_OPEN, OnFileOpen)ON_COMMAND(ID_FILE_SA VE, OnFileSave)//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint) ON_COMMAND(ID_FILE_PRINT_PREVIEW,CView::OnFilePrintPreview) END_MESSAGE_MAP()// CTestView construction/destructionCTestView::CTestView(){// TODO: add construction code herem_nFlag = -1; // 不是任何绘图类型}CTestView::~CT estView(){}BOOL CTestView::PreCreateWindow(CREATESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying// the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}// CTestView drawingvoid CTestView::OnDraw(CDC* pDC){CTestDoc* pDoc = GetDocument();ASSERT_V ALID(pDoc);// TODO: add draw code for native data hereif(1==m_nFlag) // 中点画线{MidPointLine(m_X0, m_Y0, m_X1, m_Y1, RGB(255,0,0) );}else if(2==m_nFlag) // Bresenham画线{BresenhamLine(m_X0, m_Y0, m_X1, m_Y1, RGB(0,255,0) );}}// CTestView printingBOOL CTestView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CTestView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CTestView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}// CTestView diagnostics#ifdef _DEBUGvoid CTestView::AssertValid() const{CView::AssertValid();}void CTestView::Dump(CDumpContext& dc) const{CView::Dump(dc);}CTestDoc* CTestView::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CT estD oc)));return (CT estDoc*)m_pDocument;}#endif //_DEBUG// CTestView message handlersvoid CTestView::OnMenuitem32771(){// TODO: Add your command handler code herem_nFlag = 1; // 中点画线CDlgInput dlg;if(IDOK==dlg.DoModal()){m_X0=dlg.m_nX0;m_Y0=dlg.m_nY0;m_X1=dlg.m_nX1;m_Y1=dlg.m_nY1;RedrawWindow(); //重绘窗口}}void CTestView::OnMenubresenhamline(){// TODO: Add your command handler code herem_nFlag = 2; // Bresenham画线CDlgInput dlg;if(IDOK==dlg.DoModal()){m_X0=dlg.m_nX0;m_Y0=dlg.m_nY0;m_X1=dlg.m_nX1;m_Y1=dlg.m_nY1;RedrawWindow(); //重绘窗口}}// 算法: 中点画线// 输入: 起点(x0,y0),终点(x1,y1);// 输入要求x0<=x1;void CTestView::MidPointLine( int x0, int y0, int x1, int y1, int color ){CDC * pDC=GetDC();int a,b,d0,d1,d2,d3,d4,d5,d,x,y;a=y0-y1;b=x1-x0; // 之前的设置已经保证始终有x1>=x0d=2*a+b;d0=2*a-b;d1=2*a;d2=2*(a+b);d3=2*b;d4=2*(a-b);d5=a-2*b;x=x0;y=y0;pDC->SetPixel(x,y,color);if(x==x1) // 斜率k为无穷大{if(y<=y1){while(y<=y1){pDC->SetPixel(x,y,color);y++;}}else{while(y>=y1){pDC->SetPixel(x,y,color);y--;}}}// if 斜率k为无穷大else // 斜率k为有限值{// double k=-a/b;// if( k+1>1e-6 && k-1<1e-6 || fabs(k-1)<1e-6 || fabs(k+1)<1e-6) // |k|<=1(即:-1<= k <=1),与1e-6比较是浮点数比较方法if( -b<=-a && -a<=b ) // 用浮点数比较在|k|=1.0f时容易出问题,所以直接用整数比较(将斜率k转换为a与b的比较;之前的设置已经保证b为正数){if(y<=y1){while(x<x1)< p="">{if(d<0){x++;y++;d+=d2;}else{x++;d+=d1;}pDC->SetPixel(x,y,color);}}else{while(x<x1)< p="">{if(d0<0){ x++;d0+=d1;}else{ x++;y--; d0+=d4; }pDC->SetPixel(x,y,color);}}}// if( |k|<=1 )else // |k|>1{if(y<=y1){while(x<x1)< p="">{if(d<0){y++;d+=d3;}else{y++;x++;d+=d2;}pDC->SetPixel(x,y,color);}}else{while(x<x1)< p="">{if(d5<0){ x++;y--; d5+=d4;}else{y--; d5+=-2*b;}pDC->SetPixel(x,y,color);}}}// else( |k|>1 )}// else 斜率k为有限值ReleaseDC(pDC);}// 算法: Bresenham画线// 输入: 起点(x0,y0),终点(x1,y1);// 输入要求x0<=x1;void CTestView::BresenhamLine( int x0, int y0, int x1, int y1, int color ){ CDC * pDC=GetDC();int x,y,dx,dy,e;dx=x1-x0;dy=y1-y0;e=-dx;x=x0;y=y0;while(x<=x1){ pDC->SetPixel(x,y,color);x++;e=e+2*dy;if(e>0){y++;e=e-2*dx;}}}void CTestView::OnMenuclearview(){// TODO: Add your command handler code here m_X0=0;m_Y0=0;m_X1=0;m_Y1=0;RedrawWindow();//重绘窗口}// 打开过去保存的文件,该文件包含直线的端点坐标void CTestView::OnFileOpen(){// TODO: 在此添加命令处理程序代码if( m_nFlag!=1 && m_nFlag!=2 ){MessageBox("请先在菜单中选择绘制直线的方法!","提示",MB_ICONWARNING);return;}CFileDialog dlgFile (TRUE, _T("txt"), _T(""),OFN_FILEMUSTEXIST| OFN_HIDEREADONL Y, _T("线段端点坐标文件(*.txt)|*.txt||"), this);if( IDOK == dlgFile.DoModal()){CString fileName = dlgFile.GetFileName();ifstream rFile;rFile.open(fileName,ios::in);if ( ! rFile.is_open() ){MessageBox("文件打开失败!","提示",MB_ICONW ARNING);return;}CString strLine0;string strLine;int nX,nY;// 起点、终点,两个坐标rFile>>strLine;strLine0 = strLine.c_str();nX = atoi( strLine0.Left( strLine0.Find(",") ) ); // 解析文件,如“220,221”表示一个点的x、y坐标nY = atoi( strLine0.Mid( strLine0.Find(",")+1 ) );m_X0 = nX;m_Y0 = nY;rFile>>strLine;strLine0 = strLine.c_str();nX = atoi( strLine0.Left( strLine0.Find(",") ) );nY = atoi( strLine0.Mid( strLine0.Find(",")+1 ) );m_X1 = nX;m_Y1 = nY;RedrawWindow();rFile.close();}}// 保存当前视图上绘制的所有直线的端点坐标void CTestView::OnFileSave(){// TODO: 在此添加命令处理程序代码CFileDialog dlgFile(FALSE, _T("txt"), _T(""), OFN_OVERWRITEPROMPT, _T("线段端点坐标文件(*.txt)|*.txt||"), this);if( IDOK == dlgFile.DoModal()) // 保存文件{CString strFileName = dlgFile.GetFileName(); // 包含完整路径的文件名称ofstream wFile;wFile.open(strFileName,ios::out|ios::ate|ios::app);if ( ! wFile.is_open() ){MessageBox(strFileName+"文件创建失败!","提示",MB_ICONW ARNING);return;}wFile<<m_x0<<","<<m_y0<<="">wFile<<m_x1<<","<<m_y1<<="">五.实验心得及建议实验心得:Bresenham算法是一种很方便很实用很简单的算法,它对任意斜率的直线段具有通用性。
先标明这转载自/xxxxxx91116/article/details/6295714直线扫描算法之---bresenham改进算法(任何斜率,任何方向)by zxx图形学神马的全都是数学,看来以后我不能搞这个,伤脑筋,所以先把我现在懂得先记录下来吧。
不过呢,我的水平实在有限,对于算法这种东西实在难以说明白,请大家包涵。
书上讲的实在是太过简略,所以这里我把一些简单的推导过程都记录下来:1.重温bresenham未改进算法(斜率在0-1之间的直线)我想要记录的是bresenham改进算法,所以在讲解改进算法之前,我先用一个简单的例子说明一下未改进算法的思想:这是一个斜率k在0-1之间的一条直线,我就用斜率为0-1之间的直线来重温:首先,如图1所示,假设x列的像素已定,其坐标为(x,y),那么下一个坐标一定是:(x+1,y+1)或者(x+1,y)。
而是哪一个取决于d的值,如果d>0.5那么就是(x+1,y+1),如果d<0.5,那么就是(x+1,y),而d是什么呢?当然是斜率了。
(原因如下:y=kx+b当x增加1时:y=kx+k+b所以当x增加1是,y方向的增量是d。
)所以每次我们只需要让d=d+k(k是斜率)即可,当d>=1时,就让d减一,这样就保证了d在0-1之间。
当d>0.5,下一个点取(x+1,y+1)当d<0.5,下一个点取(x+1,y)然后呢,我们为了判断的方便,让e=d-0.5,这样就变成了:当e>0,下一个点取(x+1,y+1)当e<0,下一个点取(x+1,y)2.过渡,重温之后,我们就想要改进,为什么要改进呢?因为我们这里面有0.5,还有k,k里面有dx/dy,这些除法和小数都不是我们想要的,我们想要的是,只有整数,且只有加法的算法,下面就全面讨论一下改进算法。
3.改进算法篇(不同斜率,不同方向)这里,我们主要分为4个角度来说明:A.斜率在0-1只间B.斜率在1-无穷之间C.斜率在0-(-1)之间D.斜率在(-1)-负无穷之间E.两种特殊情况,两条直线。
计算机图形学(三种画线算法)第⼆章:光栅图形学算法1、光栅显⽰器:光栅扫描式图形显⽰器简称光栅显⽰器,是画点设备,可看作是⼀个点阵单元发⽣器,并可控制每个点阵单元的亮度2、由来:随着光栅显⽰器的出现,为了在计算机上处理、显⽰图形,需要发展⼀套与之相适应的算法。
3、研究内容:1>直线段的扫描转换算法2>多边形的扫描转换与区域填充算法3>裁剪算法4>反⾛样算法5>消隐算法⼀、直线段的扫描转换算法1.为了显⽰⼀条直线,就在光栅显⽰器上⽤离散的像素点逼近直线,所以我们就要知道这些像素点的坐标已知P0和P1,利⽤斜截式⽅程,y=kx+b,求出k=(y1-y0)/(x1-x0),b为截距现在k,b已知,x,y未知,现在假设⼀个像素距离为y,即可求出y的值。
因为像素的坐标是整数,所以y值还要进⾏取整处理2.在计算机中加法的运算更快,乘法较慢,故可以把上述⽅法优化来提⾼效率1>数值微分法(DDA)2>中点划线法3>Bresenham算法数值微分法(DDA)-----增量算法(只有⼀个加法)这个式⼦的含义是:当前步的y值等于前⼀步的y值加上斜率k(增量)例⼦:思考:x递增1,y递增k,是否适合任意的k?可改进的点:1>⼀般情况下,k都是⼩数,且每⼀步均要对y四舍五⼊,唯⼀改进的途径是把浮点运算变为整数加法!2>⽅程还有两点式,⼀般式当|k|<=1时,伪代码如下:voidDDALine(int x0,int y0,int x1,int y1,int color){Int x;Float dx,dy,y,k;dx=x1-x0;dy=y1-y0;K=dy/dx;y=y0;For(x=x0,x<=x1;x++){Drawpixel(x,int(y+0.5),color);//drawpixel(x, y, color)在(x, y)像素点绘制颜⾊为color的点Y=y+k;}}中点画线法采⽤直线的⼀般式⽅程:Ax+By+C=0 F(x,y)=0,其中a = y0 - y1, b = x1 - x0,c = x0y1 - x1y0令F(x, y)=0则得出直线⽅程,代⼊ (x0, y0)和(x1, y1),便可得到三个⽅程,可求出a,b,c的值⼀条直线把平⾯分成了三个部分,直线上⽅,直线上,直线下⽅x⽅向上+1,y⽅向上加不加1需判断如何判断Q在M的上⽅还是下⽅?把M点的坐标带⼊⽅程,其中a = y0 - y1, b = x1 - x0分析计算量?两个乘法,四个加法,推导出d的增量公式d的初始值包含⼩数,因此可以⽤2d来代替d实现整数加法,所以d=2a+b伪代码如下:Void MidPointLine(int x0,int y0,int x1,int y1,int color){Int a,b,delta1,delta2,d,x,y;a=y0-y1;b=x1-x0;d=2*a+b;Delta1 = 2*a;Delta2 =2*(a+b);X = x0;Y=y0;//在对应的x,y像素点着⾊putpixel(x,y,GREEN);while(x<x1){if(d<0){x++;y++;d+=delta2;}else{x++;d+=delta1;}//在对应的x,y像素点着⾊putpixel(x,y,GREEN);}Bresenham算法每步的进化:DDA把算法效率提⾼到每步只做⼀个加法中点算法进⼀步把效率提⾼到每步只做⼀个整数加法Bresenham算法提供了⼀个更⼀般的算法,该算法不仅有好的效率,⽽且有更⼴泛的适⽤范围如何把算法的效率也提⾼到整数加法?改进⼀:令e=d-0.5因为d的初值为0,所以e的初值为-0.5,e=e+k,如果e>0,e=e-1改进⼆:在计算e值的情况下还是关于浮点数的计算,所以把浮点数化为整数。
上机实验⑴的题目和要求一、实验目的掌握直线和圆的生成算法思想,并能上机编程实现相应的算法。
二、实验要求(Direction)1.每个学生单独完成。
2.开发语言规定为C语言。
3.请在自己的实验报告上写明姓名、学号、班级。
4.每次交的实验报告内容包括:试验目的和意义、题目、程序制作步骤、主程序(包括源代码注释)。
三、实验题目实验题1:用中点画线法在屏幕上画两条直线段L1和L2,如下图所示:#include"graphics.h"#include"stdio.h"void Mid_Line_Two(int xO,int yO,int x1,int y1,int color){ int dx,dy,incrE,incrNE,d,x,y,m;/* &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/dx=x1-x0;if(x0>x1)dx=-dx;dy=y1-y0;if(yO>y1)dy=-dy;m=dy/dx;d=dx-2*dy;incrE=-2*dy;incrNE=2*(dx-dy);x=x0;y=y0;putpixel(x,y,color);/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/if(m<=1 &&m>=-1){/*画斜率在-1到1之间的,包括水平直线*/ if(x0<x1){ while(x<x1){ if(d>0) d +=incrE; else { d +=incrNE; y++;}x++;if(y0<y1) putpixel(x,y,color);if(y0>=y1) putpixel(x,(2*y0-y),color);}} if(x0>=x1){ while(x>x1){ if(d>0) d +=incrE;else{d +=incrNE;y++;}x--; if(y0<y1) putpixel(x,y,color); if(y0>=y1) putpixel(x,(2*y0-y),color);}}}/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/if(m<-1&&m>1) {/*画斜率不在-1 到1 之间的,不包括垂直直线*/ dx=x1-x0;if(x0>x1) dx=-dx;dy=y1-y0;if(y0>y1)dy=-dy;/* 与画直线在-1 到1 之间的直线相比,下面的代码块只是将dx 与dy 交换一下位置*/ d=dy-2*dx;incrE = 2*dx;incrNE = 2*(dy-dx);x=x0;y=y0;if(y0<y1){while(y<y1){if(d>0){d +=incrNE;x++;}y++;if(x0<x1)putpixel(x,y,color);if(x0>=x1)putpixel((2*x0-x),y,color);}}if(y0>=y1){while(y>y1){if(d>0)d +=incrE;else{d += incrNE;x++ ;}y--;if(x0<x1)putpixel(x,y,color);if(x0>=x1)putpixel((2*x0-x),y,color) ;}}}}/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&*/main(){int i,gdriver,gmode; gdriver=DETECT; initgraph(&gdriver,&gmode,"");Mid_Line_Two(0,50,400,200,8); /* 画水平直线*/Mid_Line_Two(0,0,400,200,2);Mid_Line_Two(500,100,0,0,6);Mid_Line_Two(0,300,400,20,3);getch();closegraph();}。
中点Bresenham算法是一种用于绘制直线的光栅化算法,它可以在计算机图形学中高效地绘制直线,尤其适用于嵌入式系统和低性能设备。
本文将介绍中点Bresenham算法的基本原理和递推公式。
一、中点Bresenham算法的基本原理1.1 数值方式直线的差值算法在了解中点Bresenham算法之前,我们需要先了解数值方式直线的差值算法。
通过计算两个端点的坐标差值,可以得到直线的斜率和步长,从而在光栅化的像素网格上绘制直线。
然而,这种算法需要进行浮点数运算,对于嵌入式系统和低性能设备来说,性能较差。
1.2 中点Bresenham算法的优势中点Bresenham算法通过整数运算和递推公式来高效地绘制直线,避免了浮点数运算的开销,因此在嵌入式系统和低性能设备上具有很高的应用价值。
它利用了直线的对称性和整数坐标的特点,通过逐个像素的递推计算来实现直线的绘制。
1.3 算法的基本思想中点Bresenham算法的基本思想是从直线的起点到终点,在每一步选择最接近直线的像素作为下一个像素,从而逐步绘制整条直线。
通过比较像素的位置和理想直线的位置关系,选择最接近直线的像素进行绘制,从而得到了中点Bresenham算法的递推过程。
二、中点Bresenham算法的递推公式2.1 直线斜率的计算我们需要计算直线的斜率m。
对于给定的两个端点P1(x1, y1)和P2(x2, y2),直线的斜率可以通过以下公式计算得到:m = (y2 - y1) / (x2 - x1)2.2 中点Bresenham算法的关键递推公式中点Bresenham算法通过比较像素的位置和理想直线的位置关系,选择最接近直线的像素进行绘制。
其关键递推公式如下:对于斜率0 ≤ m ≤ 1的直线:d = 2 * (y - y0) - (x - x0)若d < 0,则选择(x, y)为下一个像素,d = d + 2 * (y1 - y0)若d ≥ 0,则选择(x, y)为下一个像素,d = d + 2 * (y1 - y0) - 2 * (x1 - x0)对于斜率m > 1的直线:d = 2 * (x - x0) - (y - y0)若d < 0,则选择(x, y)为下一个像素,d = d + 2 * (x1 - x0)若d ≥ 0,则选择(x, y)为下一个像素,d = d + 2 * (x1 - x0) - 2 * (y1 - y0)2.3 递推过程通过以上递推公式,我们可以在每一步选择最接近直线的像素进行绘制,从而逐步绘制整条直线。
中点画线算法(任意斜率)基本原理在画直线段的过程中,当前像素点为(xp ,yp ),下⼀个像素点有两种可选择点P1(xp +1,yp )或P2(xp +1,yp +1)。
若M=(xp +1,yp +0.5)为P1与P2之中点,Q为P理想直线与x=xp +1垂线的交点。
当M在Q的下⽅,则P2应为下⼀个像素点;M在Q的上⽅,应取P1为下⼀个像素点。
在斜率0<=k<=1的时候,实现代码如下(书本代码):void MidpointLine(int x0,int y0,int x1,int y1,int color){int a,b,d1,d2,d,x,y;a=y0-y1,b=x1-x0,d=2*a+b;d1=2*a,d2=2*(a+b);x=x0,y=y0;Drawpixel(x,y,color);while (x<x1){if (d<0){ x++,y++,d+=d2;}else{ x++,d+=d1; }Drawpixel(x,y,color);}}对于其他斜率,我们可以推出如下关系:实现代码如下:void MidpointLine(int x0,int y0,int x1,int y1,int color){int a,b,d1,d2,d,x,y;float m;if (x1<x0){d=x0,x0=x1,x1=d;d=y0,y0=y1,y1=d;}a=y0-y1,b=x1-x0;if (b==0) m=-1*a*100;else m=(float)a/(x0-x1);x=x0,y=y0;Drawpixel(x,y,color);if (m>=0 && m<=1){d=2*a+b;d1=2*a,d2=2*(a+b);while (x<x1){ if (d<=0) { x++,y++,d+=d2;}else { x++,d+=d1; }Drawpixel(x,y,color);}}else if (m<=0 && m>=-1){d=2*a-b;d1=2*a-2*b,d2=2*a;while (x<x1){ if (d>0) { x++,y--,d+=d1;}else { x++,d+=d2; }Drawpixel(x,y,color);} }else if (m>1){d=a+2*b;d1=2*(a+b),d2=2*b;while (y<y1){ if (d>0) { x++,y++,d+=d1;}else { y++,d+=d2; }Drawpixel(x,y,color);} }else{d=a-2*b;d1=-2*b,d2=2*(a-b);while (y>y1){ if (d<=0) { x++,y--,d+=d2;}else { y--,d+=d1; }Drawpixel(x,y,color);}}}备注:Drawpixel(x,y,color);是pDC->SetPixel(x,y,crColor);的意思。
中点画线算法中点画线算法(Midpoint Line Drawing Algorithm)是通过在每列像素中确定与理想直线最靠近的像素来进⾏扫描转换的。
步骤实现斜率: 0<=k<=1直线端点:(x1,y1),(x2,y2)1) 初始化。
令 a=y1-y2, b=x2-x1, d=2*a+b, deta1=2*a, deta2=2*(a+b), x=x1, y=y1.2) ⽤颜⾊color画像素(x,y)。
3) 判断x是否⼩于x2。
如果x代码实现(基于VC 6.0) 斜率: 任意1#define ROUND(a) ((int)(a+0.5))2/* 中点直线⽣成算法 */3void CDrawDC::LineMP(int x1, int y1, int x2, int y2, COLORREF color)4 {5int a,b,x,y,d,da1,da2;67if(x1<x2 && y1<y2){8 a=y1-y2;9 b=x2-x1;10 x=x1,y=y1;11 d=2*a+b;12 da1=2*a;13 da2=2*(a+b);1415 SetPixel(ROUND(x),ROUND(y),color);16for(;x<x2;){17if(d<0){18 x++;19 y++;20 d+=da2;21 }else{22 x++;23 d+=da1;24 }25 SetPixel(ROUND(x),ROUND(y),color);26 }27 }else if(x1>x2 && y1>y2){28 a=y2-y1;29 b=x1-x2;30 x=x2,y=y2;31 d=2*a+b;32 da1=2*a;33 da2=2*(a+b);3435 SetPixel(ROUND(x),ROUND(y),color);36for(;x<x1;){37if(d<0){38 x++;39 y++;40 d+=da2;41 }else{42 x++;43 d+=da1;44 }45 SetPixel(ROUND(x),ROUND(y),color);46 }47 }else if(x1>x2 && y1<y2){48 a=-y2;49 b=x1-x2;50 x=0,y=0;51 d=2*a+b;52 da1=2*a;53 da2=2*(a+b);5455 SetPixel(ROUND(x1-x),ROUND(y+y1),color);56for(;x<b;){57if(d<0){58 x++;59 y++;60 d+=da2;61 }else{62 x++;63 d+=da1;64 }65 SetPixel(ROUND(x1-x),ROUND(y+y1),color);66 }67 }else if(x1<x2 && y1>y2){68 a=-y1;69 b=x2-x1;70 x=0,y=0;71 d=2*a+b;72 da1=2*a;73 da2=2*(a+b);7475 SetPixel(ROUND(x2-x),ROUND(y+y2),color);76for(;x<b;){77if(d<0){78 x++;79 y++;80 d=d+da2;81 }else{82 x++;83 d+=da1;84 }85 SetPixel(ROUND(x2-x),ROUND(y+y2),color);86 }87 }88 }参考来源: 《计算机图形学实⽤教程(第三版)· 苏⼩红编著》。
XX大学实验报告
学院:计信学院专业:班级:姓名学号实验组实验时间20112-03-22 指导教师成绩实验项目名称中点画线算法
实
理解并掌握中点画线算法,利用相关软件实现中点画线算法。
验
目
的
实
验
了解中点画线算法思想。
要
求
实
见教材。
验
原
理
实
验
Windows 7 、Visual Studio 2010
环
境
实
验
根据算法实现中点画线算法。
步
骤
实
验内容(1)编写0<k<1中点画线算法,k为斜率;
(2)利用相关软件测试调试中点画线算法保证正确。
实
验
数
据
程序设计截图如下:
实
验总结通过这次试验,使我对中点画线算法的思想有了更深的理解(该程序的图形界面参考了网上资料),同时也对计算机图形学产生了更多的兴趣。
指导教
师
意
见签名:年月日。