Meta分析简介与实例
- 格式:pptx
- 大小:3.98 MB
- 文档页数:37
Meta分析方法当今医学研究飞速发展,在全球范围内对于同一个研究问题所进行的医学研究往往有很多,但往往研究对象、设计方案、干预措施、结局变量、样本含量、随访时间等多个方面并不完全相同,研究结果也不完全一致。
除了传统的系统文献综述(review)和述评(editorial)等研究外,一些研究者希望对综述的各个研究的结果进行定量综合统计学分析——Meta分析。
本文将举例介绍Meta分析的基本概念和常用的Meta分析方法。
Meta分析中的基本概念例1 为了研究Aspirin预防心肌梗塞(MI)后死亡的发生,美国在1976年-1988年间进行了7个关于Aspirin预防MI后死亡的研究,其结果见表16.1,其中6次研究的结果表明Aspirin组与安慰剂组的MI后死亡率的差别无统计意义,只有一个研究的结果表明Aspirin在预防MI后死亡有效并且差别有统计意义。
具体结果如表1所示。
表1 Aspirin预防心肌梗塞后死亡的研究结果研究Aspirin组安慰剂组编号观察人数死亡人数死亡率P E(%) 观察人数死亡人数死亡率P C(%) P值OR*1 615 49 7.97 624 67 10.74 0.094 0.7202 758 44 5.80 771 64 8.30 0.057 0.6813 832 102 12.26 850 126 14.82 0.125 0.8034 317 32 10.09 309 38 12.30 0.382 0.8015 810 85 10.49 406 52 12.81 0.229 0.7986 2267 246 10.85 2257 219 9.70 0.204 1.1337 8587 1570 18.28 8600 1720 20.00 0.004 0.895在例1中,涉及到的主要概念如下:1、研究人群:对每个研究而言,在干预前,根据研究者在设计时,考虑确定研究人群为某地区的心肌梗死患者,通过干预上述研究人群分为两个研究人群:该地区服用Aspirin的心肌梗死人群和该地区服用安慰剂的心肌梗死人群。
举例说明近10种常见类型的Meta分析Meta分析有很多种类型常见的几种如下1.常规Meta分析这种Meta分析以合并随机对照试验、非随机对照试验、队列研究、病例对照研究的效应量为主。
这类Meta分析的方法最成熟,发文量也最多。
举例:钠-葡萄糖协同转运体2(SGLT-2)抑制剂对2型糖尿病患者心血管结局的影响。
(From: Wu JH, et al. Lancet Diabetes Endocrinol. 2016;4:411-9.)2.个体数据Meta分析个体数据Meta分析被称为系统综述的金标准。
它不是利用已经发表的研究结果的总结数据进行Meta分析,而是从原始研究的作者处获取每个研究对象的原始数据,并对这些数据进行Meta分析。
然而此类文章非一般研究者可以完成,适合于学科带头人领衔操作。
举例:BMI和全死因死亡的关系。
(From: Global BMI Mortality Collaboration. Lancet. 2016;388:776-86.)3.单组率的Meta分析Meta分析还可以对单组率进行合并。
这类Meta分析的结局指标多为发病率、患病率、病死率、检出率、知晓率、感染率等,原始研究多为横断面研究。
对单组率的Meta分析而言,难点在于控制异质性。
亚组分析和Meta回归分析是处理异质性的重要方法。
举例:在残疾儿童中,有多大比例的人遭受过性暴力?(From:Jones L, et al. Lancet 2012;380:899-907.)4.诊断试验Meta分析评价某项措施对疾病的诊断价值,主要评价灵敏度、特异度、ROC曲线下面积等。
举例:选择性结直肠手术的患者中,降钙素原和C反应蛋白对早期腹腔感染的诊断价值。
(From: Cousin F, et al. Ann Surg. 2016;264:252-6.)5.累积Meta分析累积Meta分析是将各个纳入的研究按照一定的次序(如发表时间、样本量、研究质量评分等),序贯地添加到一起,进行多次的Meta分析。
Meta分析系列之二Meta分析的软件一、本文概述随着医学和科研领域的快速发展,越来越多的研究者在面对大量的研究数据时,需要一种有效且科学的方法来进行综合分析和评价。
Meta 分析作为一种重要的统计学方法,能够通过整合多个独立研究的结果,提供更可靠、更有说服力的证据。
然而,要进行Meta分析,除了掌握其基本原理和方法外,还需要合适的软件工具来辅助实现。
本文将详细介绍几种常用的Meta分析软件,包括其特点、适用场景以及操作步骤,帮助读者更好地选择和应用这些软件,提高Meta分析的效率和准确性。
二、Meta分析软件概览随着统计软件和计算机技术的不断发展,越来越多的专业软件被开发出来用于执行Meta分析。
这些软件不仅提高了Meta分析的效率和精度,也使得复杂的数据处理和分析过程变得相对简单和直观。
以下是对一些常用的Meta分析软件的概览。
Stata:Stata是一款功能强大的统计软件,其内置的meta命令可以方便地进行Meta分析。
Stata提供了多种Meta分析方法,包括固定效应模型、随机效应模型等,同时也支持对异质性、发表偏倚等进行检验和处理。
Stata的图形化界面使得操作更加直观,适合初学者使用。
RevMan:RevMan(Review Manager)是由Cochrane协作网开发的一款免费的Meta分析软件。
它提供了全面的Meta分析功能,包括数据输入、数据分析、图形生成等。
RevMan还支持对研究质量进行评估,提供了一系列工具和指南帮助研究者进行高质量的Meta分析。
R语言:R语言是一款开源的统计软件,其强大的编程能力和丰富的包资源使得它在Meta分析领域具有广泛的应用。
通过安装相应的包,如“metafor”“meta”等,可以轻松进行各种复杂的Meta分析。
R 语言的灵活性使得研究者可以根据需要进行自定义分析,但同时也需要一定的编程基础。
SAS:SAS是一款商业统计软件,其PROC MIED和PROC GLM过程可以用于执行Meta分析。
meta-analysis指南Meta - Analysis指南。
一、Meta - Analysis简介。
Meta - analysis(元分析)是一种对多个独立研究结果进行综合统计分析的方法。
它旨在通过整合相关研究的数据,增大样本量,提高统计效能,从而更精确地估计研究效应,解决单个研究可能存在的样本量小、结果不稳定等问题。
二、Meta - Analysis的步骤。
(一)提出研究问题。
1. 明确研究目的。
- 确定想要探究的总体效应,例如某种治疗方法对特定疾病的疗效、某个风险因素与疾病发生的关联等。
- 问题应该具有明确的研究对象、干预措施(如果有)、对照(如果有)和结局指标。
例如:“不同类型的运动干预对肥胖青少年体重减轻的效果比较”。
2. 检索相关研究。
- 选择数据库。
- 常用的数据库包括PubMed、Embase、Web of Science等。
根据研究领域的不同,可能还需要检索专业数据库,如Cochrane图书馆(在循证医学领域非常重要)、PsycINFO(心理学领域)等。
- 制定检索策略。
- 确定关键词和检索词的组合。
例如,对于上述运动干预的研究问题,可以使用“运动干预”、“肥胖青少年”、“体重减轻”等关键词,通过逻辑运算符(如“AND”、“OR”)构建检索式。
同时,要注意不同数据库的检索语法可能有所差异。
- 检索的全面性。
- 除了电子数据库,还应考虑检索灰色文献(如未发表的研究报告、学位论文等),以减少发表偏倚。
可以通过搜索特定机构的知识库、联系相关领域的专家获取未发表的研究。
(二)文献筛选。
1. 初筛。
- 根据题目和摘要,排除明显不相关的文献。
例如,如果研究题目中未涉及研究问题中的关键要素,如运动干预和肥胖青少年,就可以初步排除。
2. 复筛。
- 获取初筛后可能相关文献的全文,仔细阅读并根据预先设定的纳入和排除标准进行筛选。
纳入标准可能包括研究类型(如随机对照试验、队列研究等)、研究对象的特征(如年龄范围、疾病严重程度等)、干预措施的具体细节、结局指标的测量方法等。
例1 黄芪注射液辅助治疗肾病综合征RCT疗效META分析研究目的:评价黄芪注射液辅助肾病综合征治疗疗效研究类型:干预性RCT;人群:肾病综合征患者;实验组:黄芪注射液+地塞米松;对照组:地塞米松;观察指标:有效率;24h尿蛋白定量;尿微量白蛋白;其他:血液生化指标(尿素氮;肌酐;胆固醇;尿酸)文献筛选:15篇,共涉及患者1238例。
提取结果:1、有效率Study 文献质量Year 实验组对照组case1 tot1 case0 tot0Chen 1 2001 32 35 20 32 Tom 1 2002 23 25 22 39 Zhu 1 2003 31 35 21 32 John 1 2004 27 30 17 25Hill 3 2005 51 58 28 54Lu 3 2006 64 68 11 27Chin 3 2007 25 26 17 35Tang 1 2008 31 32 25 28Niu 1 2009 23 25 17 25Jams 3 2017 29 30 27 30JIN 1 2015 29 63 27 322、24h尿蛋白定量(mg/24 h)Study 实验组对照组m1 sd1 n1 m2 sd2 n2Chen 2001 15.1 2.3 56 61.5 5.6 189Tom 1999 25.3 2.9 355 59.6 2.9 155Zhu 2012 16.3 5.3 261 58.3 6.9 162John 2016 13.6 2.6 89 56.8 6.6 136Hill 2017 18.5 2.3 102 55.1 6.9 2113、尿微量白蛋白(mg/L)Study 实验组对照组n1 m1 sd1 n2 m2 sd2Chen 2001 56 7.5 0.3 189 55 1.6Tom 1999 355 25 1.2 155 69 2.9Zhu 2012 231 16 1.3 162 85 1.9Jams 2016 9 13 0.9 136 59 2.6Jin 2015 102 18 1 211 58 6问题:计算合并的有效率RR值,24h尿蛋白定量、尿微量白蛋白SMD等指标,并观察异质性。
系统评价Meta分析详细介绍目录一、系统评价Meta分析的基本概念 (2)1.1 系统评价的定义 (3)1.2 Meta分析的定义 (4)二、系统评价Meta分析的目的和意义 (4)三、系统评价Meta分析的流程 (5)3.1 明确研究问题 (6)3.2 检索文献 (7)3.3 筛选文献 (8)3.4 数据提取 (9)3.5 整理数据 (10)3.6 进行Meta分析 (11)3.7 结果解释 (12)3.8 评估偏倚风险 (13)3.9 结果的综合评价 (14)四、系统评价Meta分析中的统计方法 (15)4.1 基本统计方法 (16)4.2 元分析统计方法 (17)五、系统评价Meta分析的质量评价 (19)5.1 文献质量评价 (20)5.2 结果的一致性评价 (21)5.3 可靠性评价 (22)六、系统评价Meta分析的结果解释和应用 (24)6.1 结果的解释 (25)6.2 结果的应用 (26)6.3 对未来研究的启示 (27)七、系统评价Meta分析的局限性 (28)7.1 样本选择偏差 (29)7.2 数据质量问题 (31)7.3 不同研究结果间的异质性 (32)八、系统评价Meta分析的伦理问题 (33)8.1 保护受试者隐私 (35)8.2 避免学术不端行为 (36)九、系统评价Meta分析的未来发展趋势 (37)9.1 技术的发展 (38)9.2 方法学的创新 (39)一、系统评价Meta分析的基本概念系统评价(Systematic Review,简称SR)是一种多学科研究方法,旨在通过收集、整理和分析大量关于某一主题的独立研究结果,以便得出全面、准确和可靠的结论。
Meta分析(Metaanalysis)是系统评价的一种扩展和深化,它通过对多个独立研究的统计分析,对原始研究结果进行加权汇总,以提高研究结果的可靠性和推广性。
系统评价的目的是对现有的研究进行全面、客观和公正的评估,从而为实践提供有价值的指导。
Meta分析方法及RevMan软件使用一、综述亲爱的读者们,你是否曾经遇到过这样的问题:在研究某个课题时,觉得需要参考大量的文献,但又不知道如何有效地整理和分析这些资料?今天我要给大家介绍一种非常有用的方法Meta分析方法,以及一款强大的辅助工具RevMan软件。
当我们面对众多文献时,常常会觉得无所适从。
这时Meta分析方法就像一位智慧的向导,帮助我们梳理出文献中的关键信息,从而更深入地理解研究问题。
简单地说Meta分析就是把我们手中的文献当作一个个“证据”,通过整合和分析这些证据,得出更全面的结论。
这种方法的神奇之处在于,它能让我们从宏观的角度,对已有的研究进行一个全面、深入的扫描,就像是在已有的知识地图上添加新的路标。
在这个过程中,我们可以避免重复劳动,更重要的是,我们可以避免遗漏某些重要的信息或者陷入一些误区。
这对于我们的研究工作来说,无疑是一大福音。
接下来我要给大家介绍的是RevMan软件。
这款软件可以说是Meta分析的得力助手。
有了它我们可以轻松地进行数据分析、图表制作等操作。
想象一下以前可能需要花费大量时间进行手动操作的工作,现在只需要轻轻一点就能完成。
使用RevMan软件就像拥有了一把神奇的钥匙,打开了我们通往知识宝库的大门。
它不仅方便易用,而且功能强大。
无论是新手还是专业人士,都可以轻松上手。
有了它我们的研究工作将会更加高效、准确。
Meta分析方法和RevMan软件就像是一把利剑和一把盾牌,帮助我们更好地面对研究中的挑战。
在接下来的内容中,我会给大家详细介绍这两种方法和软件的具体使用方法和技巧。
让我们一起踏上这个充满智慧和乐趣的旅程吧!XXX分析简介接下来我们会详细聊聊Meta分析是怎么一回事儿,还会介绍一款非常实用的软件RevMan软件。
有了它进行Meta分析就像打游戏一样轻松。
别担心我会尽量用简单易懂的语言来解释,让大家都能快速上手。
咱们这就开始吧!XXX分析的目的与重要性你是否曾经遇到过这样的情况:在阅读文献时,发现不同的研究得出了不同的结论,让你感到困惑?这时Meta分析就像是一位智者,帮助你解决这种困惑。
Meta分析在医学研究中,绝大多数的医学现象都呈一定的随机性,因此医学研究的结果都受随机抽样误差影响而有所差异。
所以对于同一研究问题的多个研究结果往往不全相同,有些研究的结论甚至相反。
因此如何从结果不一的同类研究中综合出一个较为可靠的结论是医学研究中常常需要面临的问题。
Meta分析就是研究如何综合同类研究结果的一种统计分析方法。
Meta分析就是把相同研究问题的多个研究结果视为一个多中心研究的结果,运用多中心研究的统计方法进行综合分析。
Meta统计分析可以分为确定性模型分析方法和随机模型分析方法。
较常用的确定性模型Meta分析有Mantel-Haeszel统计方法(仅适用于效应指标为OR)和General-V ariance-Based统计方法。
然而所有的确定性模型统计方法都要求Meta分析中的各个研究的总体效应指标(如:两组均数的差值等)是相等的,并称为齐性的(Homogeneity),而随机模型对效应指标没有齐性要求。
因此Meta分析可以采用下列分析策略:1)如果各个研究的效应指标是齐性的,则选用确定性模型统计方法:●效应指标为OR,则采用Mantel-Haeszel统计方法●效应指标为两个均数的差值、两个率的差值、回归系数、对数RR等近似服从正态分布的效应指标,则采用General-V ariacne-Based方法进行Meta统计分析。
2)如果各个研究的效应指标不满足齐性条件或者研究背景无法用确定性模型进行解释的,则采用随机模型进行Meta 统计分析。
为了使读者较容易地掌握Meta 分析方法,以下将结合STA TA 软件的Meta 分析操作命令,通过实例介绍Meta 分析步骤和软件操作以及相应的统计分析结果解释,然后对Meta 分析中所涉及的统计公式进行分类汇总小结。
确定性模型的Meta 分析方法例1:为了研究Aspirin 预防心肌梗塞(MI)后死亡的发生,美国在1976年-1988年间进行了7个关于Aspirin 预防MI 后死亡的研究,其结果见表1,其中6次研究的结果表明Aspirin 组与安慰剂组的MI 后死亡率的差别无统计意义,只有一个研究的结果表明Aspirin 在预防MI 后死亡有效并且差别有统计意义。