无意义;
二、指数函数的图象和性质
1.指数函数的图象和性质
a>1
图象
0<a<1
(1)定义域:R
(2)值域:(0,+∞)
(3)过定点(0,1),即x=0时,y=1
(4)当x<0时,0<y<1;
当x>0时,y>1
性质
(5)在R上是增函数
当x值趋近于正无穷大时,函数值
趋近于正无穷大;
当x值趋近于负无穷大时,函数值
方部分,并保留y=f(x)的图象在x轴上及其上方部分即可得到函数y=|f(x)|的
图象.
②将函数y=f(x)的图象在y轴右侧的部分沿y轴翻折到y轴左侧,替代原y轴左
侧部分,并保留y=f(x)的图象在y轴上及其右侧的部分即可得到函数y=f(|x|)
的图象.
(3)利用变换作图法作图要注意以下两点:
①选择哪个指数函数作为起始函数;
数函数既不是奇函数,也不是偶函数.
2.指数函数的图象永远在x轴的上方.底数越大,图象越高,简称“底大图高”.
微判断
判断下列说法是否正确,正确的在后面的括号内画“ ”,错误的画“×”.
(1)指数函数y=mx(m>0,且m≠1)是R上的增函数.(
)
(2)指数函数y=ax(a>0,且a≠1)既不是奇函数,也不是偶函数.(
是
.
解析∵当x+1=0,即x=-1时,f(-1)=a0+3=4恒成立,故函数f(x)=ax+1+3的图象
恒过点(-1,4).
答案(-1,4)
反思感悟 指数型函数图象过定点问题的解法
因为函数y=ax(a>0,且a≠1)的图象恒过点(0,1),所以对于函数