raman光谱 简介
- 格式:ppt
- 大小:453.50 KB
- 文档页数:21
拉曼光谱定义
拉曼光谱(Raman Spectroscopy)是一种非破坏性的分子特征检测手段。
它通过对激发后的分子进行检测,来识别分子中的原子或分子组成部分。
它具有高灵敏度、高准确性和非破坏性,广泛应用于有机/无机化学、生物化学、物理化学等多个学科领域。
拉曼散射是一种被激发光分子而发生的光谱效应,它是物理学家里昂·拉曼在1928年发现的,以他的名字命名。
它的本质是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱就是拉曼散射效应的可视化图形表示,它可以显示出物体内不同原子或分子的激发状态,从而反映出物体的结构和性质。
拉曼光谱的基本原理是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱的基本原理是根据物质的不同结构,被激发的分子状态不同,由此产生出不同的散射光谱来反映它们的特性。
拉曼光谱是一种高灵敏度、高准确性的分子特征检测手段,它可以直接检测分子中的原子或分子组成部分,从而反映物体的结构和性质。
由于它的非破坏性、精确性和
高灵敏度,拉曼光谱已经广泛应用于有机/无机化学、生物化学、物理化学、食品分析、环境分析等诸多领域。
拉曼光谱定义,就是表示一种利用拉曼散射原理来检测物质结构特征的方法,即通过测量拉曼散射光谱,来鉴定和识别物体中不同原子或分子组成部分的特性。
它可以提供客观准确的数据,为研究者提供重要的参考信息,从而更好的了解物质的结构、性质和功能。
拉曼光谱法0421拉曼光谱法1拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差及化合物振动频率、转动频率间关系的分析方法。
与红外光谱类似,拉曼光谱是一种振动光谱技术。
所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐射。
拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。
这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以cm-1 为单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。
频率不变的散射称为弹性散射,即所谓瑞利散射。
如果产生的拉曼散射频率低于入射频率,则称之为斯托克散射。
反之,则称之为反斯托克散射。
实际上,几乎所有的拉曼分析都是测量斯托克散射。
用散射强度对拉曼位移作图得到拉曼光谱图。
由于功能团或化学键的拉曼位移与它们在红外光谱中的吸收波数相一致,所以谱图的解析也与红外吸收光谱相同。
然而,通常在拉曼光谱中出现的强谱带在红外光谱中却成为弱谱带甚至不出现,反之亦然。
所以,这两种光谱技术常互为补充。
拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或气体),样品制备简单甚至不需样品制备。
谱带信号通常处在可见或近红外光范围,可以有效地和光纤联用;这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃,塑料内)或将样品溶于水中获得。
现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。
因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准)。
除常规的拉曼光谱外,还有一些较为特殊的拉曼技术。
它们是共振拉曼光谱,表面增强拉曼光谱,拉曼旋光,相关-反斯托克拉曼光谱,拉曼增益或减失光谱以及超拉曼光谱等。
其中,在药物分析应用相对较多的是共振拉曼和表面增强拉曼光谱法。
一二三四五六192219281928德国物理学家印度物理学家拉曼苏联人曼迭利斯20世纪50年代1960年基本处于停顿状态,被红外随激光技术的迅速发展,人们很快把激光用作拉曼光谱2.拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。
1)由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。
2)拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。
相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。
3)拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。
在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。
4)因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。
这是拉曼光谱相对常规红外光谱一个很大的优势。
而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。
5)共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。
43. 基本原理当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数目、位移的大小和谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
511纵坐标是散射强度,可用任何单位表示,横坐标是拉曼位移,通常用相对于瑞利线的位移表示其数值,单位为波数(cm -1)。
拉曼光谱介绍范文拉曼光谱是一种非常重要的分析技术,它利用了分子振动引起的光散射现象来提供关于分子结构和化学键的信息。
拉曼光谱的应用广泛,可以用于分析固体、液体和气体样品,以及生物分子和纳米材料等。
拉曼散射效应最早由印度物理学家C.V.拉曼于1928年发现,并因此获得1930年的诺贝尔物理学奖。
拉曼散射是一种物质与激发光发生相互作用后,散射光中产生的频移与激发光频率之间的差异。
这种散射光中频移的差异称为拉曼频移,它是由于分子振动引起的光的频率和波长的微小变化所产生的。
拉曼光谱通常由强入射激光和散射光组成。
入射激光一般使用可见光或近红外光,具有高单色性和窄带宽,以增强拉曼信号的检测。
散射光分为两个主要部分:一个是各向同性的爱曼散射,具有与入射光相同的波长和频率,而另一个是拉曼散射,具有频移的特性。
这些散射光经过光谱仪的分析,可以得到拉曼光谱图。
拉曼光谱图的横轴表示拉曼频移,纵轴表示散射光的强度。
拉曼光谱图中的峰对应于特定的分子振动模式,这些模式与分子中的化学键和键角有关。
通过对各峰的位置、强度和形状进行分析,可以推断出分子的结构和化学性质。
例如,在红外光谱中,通常只能检测到非极性的结构,而拉曼光谱可以提供关于极性结构的更多信息。
拉曼光谱的应用非常广泛。
在石油和化工行业,拉曼光谱可以用于燃料和原油的质量控制,以及对催化剂和聚合物材料的分析。
在药物领域,拉曼光谱可以用于药物的质量控制和结构表征。
在环境科学中,拉曼光谱可以用于水体和土壤中的有机污染物的检测和监测。
此外,拉曼光谱还常用于生物领域的研究,例如细胞和蛋白质的表征。
近年来,随着技术的发展,拉曼光谱已经得到了很大的改进。
例如,表面增强拉曼光谱(SERS)可以大大提高拉曼信号的灵敏度,使其可以检测到更低浓度的物质。
此外,激光共振拉曼光谱(LRS)可以通过共振增强效应提高拉曼信号的灵敏度。
这些改进使得拉曼光谱在更多领域中有了更广泛的应用。
总之,拉曼光谱是一种重要的分析技术,可以提供关于分子结构和化学键的信息。
拉曼光谱灵敏度摘要:1.拉曼光谱简介2.拉曼光谱灵敏度的定义3.拉曼光谱灵敏度的影响因素4.拉曼光谱灵敏度的提高方法5.拉曼光谱灵敏度在各领域的应用正文:一、拉曼光谱简介拉曼光谱是一种非线性光学现象,当光束照射到物质上时,物质会吸收光能,使物质内部发生振动。
这种振动会以拉曼散射的形式释放出能量,形成拉曼光谱。
拉曼光谱能够提供关于物质结构、组成和物理性质的重要信息,因此在科学研究和工业检测等领域具有广泛应用。
二、拉曼光谱灵敏度的定义拉曼光谱灵敏度是指拉曼光谱测量中,光谱信号与物质浓度之间的比例关系。
灵敏度越高,表示在相同条件下,物质浓度越低时仍能被准确检测。
因此,提高拉曼光谱灵敏度有助于提高检测的准确性和可靠性。
三、拉曼光谱灵敏度的影响因素1.激光光源:激光光源的强度、波长和稳定性都会影响拉曼光谱灵敏度。
一般来说,激光光源的强度越高、波长越接近物质的拉曼峰,灵敏度越高。
2.物质的性质:物质的摩尔吸光系数、浓度、拉曼峰的宽度和形状等因素都会影响拉曼光谱灵敏度。
摩尔吸光系数越大、浓度越高、拉曼峰越窄,灵敏度越高。
3.光学系统:光学系统的质量、分辨率和信噪比等性能参数也会影响拉曼光谱灵敏度。
光学系统性能越好,灵敏度越高。
4.检测器:检测器的灵敏度、信噪比和动态范围等参数直接影响拉曼光谱灵敏度。
检测器性能越高,灵敏度越高。
四、拉曼光谱灵敏度的提高方法1.选择合适的激光光源:根据物质的特性选择合适的激光光源,提高激光光源的强度和稳定性。
2.优化光学系统:提高光学系统的分辨率和信噪比,减小光谱测量误差。
3.选择高性能的检测器:提高检测器的灵敏度和信噪比,增加检测范围。
4.控制实验条件:适当提高物质浓度、减小测量时间,降低环境干扰等因素,提高灵敏度。
五、拉曼光谱灵敏度在各领域的应用1.生物医学:拉曼光谱在生物医学领域的应用包括疾病诊断、药物输送和生物成像等。
高灵敏度的拉曼光谱有助于提高检测的准确性和早期诊断能力。