模式识别-总结
- 格式:ppt
- 大小:2.16 MB
- 文档页数:47
小班数学教案模式识别一、引言在小班数学教学中,模式识别是一个非常重要的概念和技能。
通过教育者的引导,学生可以逐步发展并完善模式识别的能力,从而提高其数学解决问题的能力。
本文将讨论小班数学教案中的模式识别,包括定义、重要性以及如何在教学活动中应用模式识别。
二、什么是模式识别?模式识别是指人类的一种认知能力,通过观察和分析一系列具有相同或相似特征的事物,从中发现规律和共性。
在数学教学中,模式识别是指学生通过观察和分析数学问题、算式或数列等,从中寻找规律和模式,进而应用于解决其他类似问题。
三、模式识别在小班数学教学中的重要性1. 培养学生的观察力和思维能力通过模式识别,学生需要观察和分析问题,培养了他们的观察力。
在观察的过程中,学生需要运用逻辑思维,推理和判断,从而提高了他们的思维能力。
2. 帮助学生理解和应用数学概念通过观察和分析问题的模式和规律,学生能够更好地理解数学概念,并将这些概念应用于解决其他类似的问题。
模式识别有助于学生建立起数学知识的联系,培养他们的数学思维。
3. 提高学生的问题解决能力模式识别是问题解决的关键环节之一。
通过观察和分析问题的模式,学生可以找到问题的规律并提出解决方案。
通过培养学生的模式识别能力,可以提高他们的问题解决能力,培养他们的创造力和创新思维。
四、如何在小班数学教案中应用模式识别1. 设计富有模式的教学活动在小班数学教案中,教育者可以设计一系列富有模式的教学活动,帮助学生进行模式识别。
例如,可以使用图形、图表、数列等形式呈现问题,引导学生观察并发现其中的规律和模式。
2. 引导学生进行观察和分析在教学活动中,教育者需要引导学生进行观察和分析。
通过提出问题、鼓励学生提出假设、引导学生寻找规律和模式,帮助学生发展模式识别的能力。
教育者可以提供一些提示,如问学生数列中的数字是否有规律,或者观察图形的边数和面数的关系等。
3. 提供多样化的学习资料和资源为了培养学生的模式识别能力,教育者需要提供多样化的学习资料和资源。
模式:存在于时间,空间中可观察的事物,具有时偶尔空间分布的信息; 模式识别:用计算机实现人对各种事物或者现象的分析,描述,判断,识别。
模式识别的应用领域: (1)字符识别; (2) 医疗诊断; (3)遥感; (4)指纹识别 脸形识别; (5)检测污染分析,大气,水源,环境监测; (6)自动检测; (7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。
(1) 信息的获取:是通过传感器,将光或者声音等信息转化为电信息;(2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理; (3) 特征抽取和选择: 在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征; (4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。
把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。
(1)模式(样本)表示方法: (a )向量表示; (b )矩阵表示; (c )几何表示; (4)基元(链 码)表示; (2)模式类的紧致性:模式识别的要求:满足紧致集,才干很好地分类;如果不满足紧 致集,就要采取变换的方法,满足紧致集(3)相似与分类; (a)两个样本x i ,x j 之间的相似度量满足以下要求:① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的单调函数 (b) 用各种距离表示相似性(4)特征的生成:特征包括: (a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化; (b)方差标准化二维情况: (a )判别函数: g(x) = w x + w x + w ( w 为参数, x , x 为坐标向量)1 12 23 1 2(b )判别边界: g(x)=0;(c )判别规则: (> 0, Xg i(x) =〈< 0, X1 n 维情况: (a )判别函数: g(x) = w 1x 1 + w2 x 2 + ...... + w n x n + w n +1也可表示为: g(x) = W T XW = (w , w ,..., w , w )T 为增值权向量,1 2 n n +1X =(x , x ,..., x ,x +1)T 为增值模式向量。
模式识别与数据挖掘期末总结第一章概述1.数据分析是指采用适当的统计分析方法对收集到的数据进行分析、概括和总结,对数据进行恰当地描述,提取出有用的信息的过程。
2.数据挖掘(Data Mining,DM) 是指从海量的数据中通过相关的算法来发现隐藏在数据中的规律和知识的过程。
3.数据挖掘技术的基本任务主要体现在:分类与回归、聚类、关联规则发现、时序模式、异常检测4.数据挖掘的方法:数据泛化、关联与相关分析、分类与回归、聚类分析、异常检测、离群点分析、5.数据挖掘流程:(1)明确问题:数据挖掘的首要工作是研究发现何种知识。
(2)数据准备(数据收集和数据预处理):数据选取、确定操作对象,即目标数据,一般是从原始数据库中抽取的组数据;数据预处理一般包括:消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换。
(3)数据挖掘:确定数据挖掘的任务,例如:分类、聚类、关联规则发现或序列模式发现等。
确定了挖掘任务后,就要决定使用什么样的算法。
(4)结果解释和评估:对于数据挖掘出来的模式,要进行评估,删除冗余或无关的模式。
如果模式不满足要求,需要重复先前的过程。
6.分类(Classification)是构造一个分类函数(分类模型),把具有某些特征的数据项映射到某个给定的类别上。
7.分类过程由两步构成:模型创建和模型使用。
8.分类典型方法:决策树,朴素贝叶斯分类,支持向量机,神经网络,规则分类器,基于模式的分类,逻辑回归9.聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性就可以完成聚类任务。
划分的原则是保持最大的组内相似性和最小的组间相似性10.机器学习主要包括监督学习、无监督学习、半监督学习等1.(1)标称属性(nominal attribute):类别,状态或事物的名字(2):布尔属性(3)序数属性(ordinal attribute):尺寸={小,中,大},军衔,职称【前面三种都是定性的】(4)数值属性(numeric attribute): 定量度量,用整数或实数值表示●区间标度(interval-scaled)属性:温度●比率标度(ratio-scaled)属性:度量重量、高度、速度和货币量●离散属性●连续属性2.数据的基本统计描述三个主要方面:中心趋势度量、数据分散度量、基本统计图●中心趋势度量:均值、加权算数平均数、中位数、众数、中列数(最大和最小值的平均值)●数据分散度量:极差(最大值与最小值之间的差距)、分位数(小于x的数据值最多为k/q,而大于x的数据值最多为(q-k)/q)、说明(特征化,区分,关联,分类,聚类,趋势/跑偏,异常值分析等)、四分位数、五数概括、离群点、盒图、方差、标准差●基本统计图:五数概括、箱图、直方图、饼图、散点图3.数据的相似性与相异性相异性:●标称属性:d(i,j)=1−m【p为涉及属性个数,m:若两个对象匹配为1否则p为0】●二元属性:d(i,j)=p+nm+n+p+q●数值属性:欧几里得距离:曼哈顿距离:闵可夫斯基距离:切比雪夫距离:●序数属性:【r是排名的值,M是排序的最大值】●余弦相似性:第三章数据预处理1.噪声数据:数据中存在着错误或异常(偏离期望值),如:血压和身高为0就是明显的错误。
实际观测数据分析及总结1.引言本文旨在分析和总结实际观测数据的相关结果和发现。
我们对一系列观测数据进行了综合性的分析,以揭示其中的规律和趋势。
通过深入研究这些数据,我们可以获得对相关问题的更深入了解,并为进一步的决策提供支持。
2.数据分析我们收集了大量的实际观测数据,并对其进行了统计和分析。
以下是我们的分析结果:- 数据来源:我们从多个渠道获取了观测数据,包括实地观测、传感器采集等。
数据来源:我们从多个渠道获取了观测数据,包括实地观测、传感器采集等。
- 变量分析:我们针对观测数据中的各个变量进行了分析,包括时间、地点、温度、湿度等。
通过比较这些变量的相关性和趋势,我们发现了一些有意义的信息。
变量分析:我们针对观测数据中的各个变量进行了分析,包括时间、地点、温度、湿度等。
通过比较这些变量的相关性和趋势,我们发现了一些有意义的信息。
- 模式识别:通过应用数据挖掘和机器研究技术,我们识别出了一些观测数据中的模式和规律。
这些模式可以帮助我们预测未来发展趋势,并为相关决策制定提供依据。
模式识别:通过应用数据挖掘和机器学习技术,我们识别出了一些观测数据中的模式和规律。
这些模式可以帮助我们预测未来发展趋势,并为相关决策制定提供依据。
- 异常检测:我们使用统计学方法和异常检测算法来识别观测数据中的异常点。
这些异常点可能指示着潜在的问题或意外情况,需要进一步分析和处理。
异常检测:我们使用统计学方法和异常检测算法来识别观测数据中的异常点。
这些异常点可能指示着潜在的问题或意外情况,需要进一步分析和处理。
3.结果和发现通过对实际观测数据的分析,我们得出了一些重要结果和发现:- 变量相关性:我们发现某些变量之间存在明显的相关性。
例如,温度和湿度之间存在正相关关系,随着温度升高,湿度也会增加。
变量相关性:我们发现某些变量之间存在明显的相关性。
例如,温度和湿度之间存在正相关关系,随着温度升高,湿度也会增加。
- 季节趋势:观测数据显示明显的季节性变化。
人工智能知识点总结
一、AI技术的分类
1、模式识别
模式识别是人工智能的基础,主要处理有形实体及其模式之间的关系,大致可分为结构模式识别与表示模式识别。
结构模式识别以特征提取作为
基础,其拟合方式通常包括统计模型、模板匹配、算法拼接等,表示模式
识别则基于抽象表示,其研究关注如何用可以有效计算的抽象表示实体以
及它们之间的关系,包括深度学习、半监督学习、概率图模型等。
2、机器学习
机器学习是人工智能的重要研究领域,主要关注如何让机器通过数据
发现规则,从而做出智能化决策和推理。
它包括规则学习、学习、聚类学习、联合学习及其他未知学习方法,在机器学习的基础上,还有生成式模型、强化学习等方法。
3、计算机视觉
计算机视觉是人工智能的重要研究分支,它的目标是使计算机能够理
解图像和视频信息,大致可以归纳为图像分类与识别、图像检索、目标检
测与跟踪、图像分割、视频识别、视觉导航等。
4、自然语言处理
自然语言处理主要关注如何让计算机能够理解自然语言文本,主要包
括文本分析、语义分析、情感分析、语音识别等。
5、机器人技术。
ai案例知识点总结人工智能(Artificial Intelligence,简称AI)是近年来颇受关注的领域,其涉及的应用场景也日渐丰富。
通过AI技术,人们可以实现智能化的自动化处理,提高工作效率、降低成本,解决一些传统方法难以解决的问题。
在以下的案例中,我们将介绍一些典型的AI应用案例,并总结其中的知识点。
一、智能客服系统智能客服系统是利用人工智能技术来模拟人类进行客户服务的一种系统,主要通过聊天机器人、语音识别和自然语言处理等技术来实现客户问题的智能回答。
这种系统可以通过不断学习优化自身的回答和解决问题的能力,提高客户满意度,降低人力成本。
知识点总结:1. 自然语言处理(NLP):NLP是一种通过计算机对人类自然语言进行处理和分析的技术,其核心是语义理解和语言生成。
在智能客服系统中,NLP技术可以帮助系统理解客户的问题,并给出准确的答案。
2. 机器学习:智能客服系统通过机器学习算法不断学习客户的问题和对应的解答,从而提高自身的智能水平。
常见的机器学习算法包括决策树、神经网络、支持向量机等。
3. 语音识别:语音识别技术可以将客户的语音信息转换成文字信息,便于系统进行处理和回答。
语音识别技术在智能客服系统中可以提高系统的用户友好性和便利性。
4. 聊天机器人:聊天机器人是指利用人工智能技术模拟真人进行对话的程序,可以通过自然语言理解和生成技术进行智能回答。
聊天机器人可以在智能客服系统中扮演重要的角色,满足用户多样化的需求。
二、智能交通系统智能交通系统利用人工智能技术对交通流量进行监控、管理和优化,旨在提高交通效率、降低交通事故率,改善城市交通拥堵问题。
该系统通常通过视频监控、智能信号灯、交通管制系统等技术来实现对交通状况的实时监控和调度。
知识点总结:1. 计算机视觉:计算机视觉是人工智能技术的一个重要应用领域,主要用于处理和分析图像和视频信息。
在智能交通系统中,计算机视觉技术可以通过视频监控实时捕获交通状况,从而进行交通流量的分析和预测。
人工智能与模式识别人工智能(Artificial Intelligence,简称AI)是计算机科学的一个重要分支,旨在使机器能够模拟和执行人类智能的各种任务。
而模式识别(Pattern Recognition)是人工智能领域中的一个关键技术,其目的是从大量的数据中寻找和学习规律和模式,以便进行预测、分类和决策。
一、人工智能的概念与发展人工智能是研究计算机如何模拟人类智能的学科。
它的发展历程可以追溯到二战期间,随着计算机技术的迅速进步,人工智能领域也取得了长足的发展。
现如今,人工智能已经应用于各个领域,包括医疗、金融、交通等,对社会产生了重要影响。
二、模式识别的基本原理模式识别通过分析和学习数据中的模式,从而能够进行分类、预测和决策。
其基本原理包括特征提取、模式匹配和模型训练三个步骤。
首先,通过提取特征,将数据转换为可供机器学习的形式;然后,通过模式匹配,将数据与已有的模式进行对比和匹配;最后,通过模型训练,优化模式识别系统的性能。
三、人工智能与模式识别的联系人工智能与模式识别是紧密相关的概念,二者相辅相成,互相促进。
人工智能通过使用模式识别技术,能够从海量数据中获取有价值的信息,并进行智能化的预测和分析。
而模式识别作为人工智能的重要组成部分,为机器提供了处理和理解复杂数据的能力。
四、人工智能与模式识别的应用人工智能与模式识别在各个领域的应用不断扩展和深化。
在医疗领域,人工智能和模式识别技术可以辅助医生进行疾病诊断和预测,提高诊断准确率和效率。
在金融领域,人工智能可以通过模式识别技术进行风险评估和交易预测,提升投资决策的准确性。
在交通领域,人工智能可以通过模式识别技术识别交通状况和驾驶行为,从而实现智能交通管理和自动驾驶。
五、人工智能与模式识别的挑战与展望人工智能与模式识别的发展面临着诸多挑战和困难,如大数据的处理、算法的改进、数据安全性等问题。
然而,随着科技的不断进步和创新,人工智能与模式识别的应用前景依然广阔。
模式识别试题及总结一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3) (4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A ? 0A1 , A ? 1A0 , B ? BA , B ? 0}, A) (2)({A}, {0, 1}, {A?0, A ? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A ? 0A1, A ? 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
语音现象知识点归纳总结语音现象的研究对象主要包括语音的产生、传播和感知等方面的内容。
语音的产生主要涉及到声带的振动、气流等物理过程,而语音的传播则涉及到声音的传播、共振等声学过程。
而语音的感知则包括了听觉系统对语音的感知,以及大脑对语音的认知和理解。
语音现象的研究方法主要包括了实验研究和分析研究两种。
实验研究主要通过实验手段来观察和分析语音现象的发生和演变规律,而分析研究则主要通过对语音现象的理论分析和描述来揭示语音现象的特点和规律。
语音现象的特点主要包括了多样性、动态性和模糊性三个方面。
语音现象的多样性主要指的是语音现象本身的差异性和多样性,而语音现象的动态性则指的是语音现象的发展和变化规律。
而语音现象的模糊性则是指语音现象的界限和边界不够清晰和明晰。
语音现象的产生机制主要包括了呼吸、声带振动、共振和口腔构造等方面的内容。
呼吸是语音产生的基础,而声带振动则是语音的基本声源。
共振是语音的主要形成机制,而口腔构造则是语音的最终输出器官。
语音现象的感知过程主要包括了听觉感知和认知加工两个层面。
听觉感知主要是指听觉系统对语音信号的接受和解码过程,而认知加工则是指大脑对语音信号的加工和理解过程。
语音现象的认知过程主要包括了特征提取、模式识别和理解三个方面。
特征提取主要是指大脑通过对语音信号的特征进行提取,以便下一步的模式识别。
模式识别则是指大脑通过对语音信号的模式进行识别和匹配。
而理解则是指大脑对语音信号意义的理解和解释。
语音现象的障碍主要包括了发声障碍、听觉障碍和认知障碍三个方面。
发声障碍主要是指声带、气道等部位的功能障碍,而听觉障碍则是指听觉系统的功能障碍。
而认知障碍则是指大脑对语音信号的加工和理解过程中出现的障碍。
语音现象的性别差异主要包括了声音频率、共振器官和声音特征三个方面。
声音频率是指男性和女性声带振动的频率不同,而共振器官则是指男性和女性口腔和喉咙的结构不同。
声音特征则是指男性和女性声音在音色、音高等方面的差异。
一、实验背景随着科技的发展,机器视觉技术已经广泛应用于工业、医疗、农业、交通等多个领域。
为了更好地掌握这一技术,我们开展了为期一个月的机器视觉实验实训。
本次实训旨在通过理论学习和实际操作,深入了解机器视觉的基本原理、应用领域及实验方法,提高我们的实践操作能力和创新能力。
二、实验目的1. 理解机器视觉的基本原理,包括图像采集、图像处理、图像分析和模式识别等环节。
2. 掌握常用的机器视觉软件和硬件,如MATLAB、OpenCV、Halcon等。
3. 通过实际操作,提高对机器视觉系统的搭建、调试和优化能力。
4. 培养团队协作精神,提高创新思维和解决问题的能力。
三、实验内容本次实训主要包括以下内容:1. 理论课程:介绍了机器视觉的基本概念、发展历程、应用领域及常用算法等。
2. 实验课程:- 图像采集:学习如何搭建机器视觉系统,包括光源、镜头、相机等硬件设备的选型和配置。
- 图像处理:掌握图像预处理、图像增强、图像分割、特征提取等基本操作。
- 图像分析:学习图像分类、目标检测、物体跟踪等算法。
- 模式识别:了解机器学习、深度学习等在机器视觉领域的应用。
四、实验过程1. 前期准备:查阅相关资料,了解机器视觉的基本原理和应用领域,熟悉实验设备。
2. 理论学习:参加理论课程,学习机器视觉的基本知识,为实验操作打下基础。
3. 实验操作:- 图像采集:搭建实验平台,进行图像采集,观察图像质量,调整设备参数。
- 图像处理:运用MATLAB、OpenCV等软件,对采集到的图像进行处理,提取特征。
- 图像分析:实现图像分类、目标检测、物体跟踪等功能,验证算法效果。
- 模式识别:尝试使用机器学习、深度学习等方法,提高图像识别的准确率。
五、实验成果1. 成功搭建了多个机器视觉实验平台,包括图像采集、图像处理、图像分析和模式识别等环节。
2. 掌握了MATLAB、OpenCV等常用软件的使用方法,能够独立完成图像处理和分析任务。
1.什么是模式及模式识别?模式识别的应用领域主要有哪些?模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。
模式识别的应用领域:(1)字符识别;(2) 医疗诊断;(3)遥感; (4)指纹识别 脸形识别;(5)检测污染分析,大气,水源,环境监测;(6)自动检测;(7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。
2.模式识别系统的基本组成是什么?(1) 信息的获取:是通过传感器,将光或声音等信息转化为电信息;(2) 预处理:包括A \D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理;(3) 特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征;(4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。
把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。
3.模式识别的基本问题有哪些?(1)模式(样本)表示方法:(a)向量表示;(b)矩阵表示;(c)几何表示;(4)基元(链码)表示;(2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集(3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数(b)用各种距离表示相似性 (4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化4.线性判别方法(1)两类:二维及多维判别函数,判别边界,判别规则 二维情况:(a)判别函数: ( )(b)判别边界:g(x )=0; (c)判别规则:n 维情况:(a)判别函数:也可表示为:32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值权向量,T T n n w w w w W ),,...,,(121=+(b)判别边界:g1(x ) =W TX =0 (c)判别规则:(2)多类:3种判别方法(函数、边界、规则)(A )第一种情况:(a)判别函数:M 类可有M 个判别函数(b) 判别边界:ωi (i=1,2,…,n )类与其它类之间的边界由 g i(x )=0确定(c)(B)第二种情况:(a)判别函数:有 M (M _1)/2个判别平面(b) 判别边界: (c )判别规则:(C)第三种情况:(a)判别函数: (b) 判别边界:g i (x ) =gj (x ) 或g i (x ) -gj (x ) =0(c)判别规则:5.什么是模式空间及加权空间,解向量及解区? (1)模式空间:由 构成的n 维欧氏空间;(2)加权空间:以为变量构成的欧氏空间; (3)解向量:分界面为H,W 与H 正交,W称为解向量; (4)解区:解向量的变动范围称为解区。
监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
1、写出K-均值聚类算法的基本步骤,算法:第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。
聚类中心的向量值可任意设定,例如可选开始的K个模式样本的向量值作为初始聚类中心。
第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K个聚类中心中的某一个zj(1)。
假设i=j时,,则,其中k为迭代运算的次序号,第一次迭代k=1,Sj表示第j个聚类,其聚类中心为zj。
第三步:计算各个聚类中心的新的向量值,zj(k+1),j=1,2,…,K求各聚类域中所包含样本的均值向量:其中Nj为第j个聚类域Sj中所包含的样本个数。
以均值向量作为新的聚类中心,可使如下聚类准则函数最小:在这一步中要分别计算K个聚类中的样本均值向量,所以称之为K-均值算法。
第四步:若,j=1,2,…,K,则返回第二步,将模式样本逐个重新分类,重复迭代运算;若,j=1,2,…,K,则算法收敛,计算结束。
线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有(1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
马尔科夫随机场在模式识别中的实际应用案例总结一、马尔科夫随机场的基本概念马尔科夫随机场是一种用于描述随机变量之间关系的概率图模型。
它可以用来建模多维随机变量之间的相互作用和依赖关系,从而实现对复杂系统的建模和分析。
马尔科夫随机场的基本概念包括节点、边和势函数。
节点对应于随机变量,边表示节点之间的关系,而势函数则描述了节点之间的相互作用。
二、马尔科夫随机场在自然语言处理中的应用马尔科夫随机场在自然语言处理中有着广泛的应用。
例如,在文本分类中,可以利用马尔科夫随机场模型来建立文本之间的关系,从而实现对文本的分类和分析。
此外,在命名实体识别、句法分析和语义分析等领域,马尔科夫随机场也被广泛应用。
通过对自然语言进行建模,马尔科夫随机场可以帮助我们更好地理解和处理自然语言数据。
三、马尔科夫随机场在计算机视觉中的应用在计算机视觉领域,马尔科夫随机场同样具有重要的应用价值。
例如,在图像分割中,可以利用马尔科夫随机场模型来描述图像像素之间的依赖关系,从而实现对图像的分割和识别。
此外,在目标检测、图像标注和图像生成等领域,马尔科夫随机场也被广泛应用。
通过对图像进行建模,马尔科夫随机场可以帮助我们更好地理解和处理图像数据。
四、马尔科夫随机场在生物信息学中的应用生物信息学是一个涉及生物学、计算机科学和数学等多个学科领域的交叉学科,而马尔科夫随机场在生物信息学中有着重要的应用。
例如,在蛋白质结构预测中,可以利用马尔科夫随机场模型来描述蛋白质序列之间的相互作用和依赖关系,从而实现对蛋白质结构的预测和分析。
此外,在基因识别、蛋白质互作网络分析和序列比对等领域,马尔科夫随机场也被广泛应用。
通过对生物数据进行建模,马尔科夫随机场可以帮助我们更好地理解和处理生物信息数据。
五、结语马尔科夫随机场作为一种概率图模型,在模式识别中有着广泛的应用。
通过对复杂系统进行建模和分析,马尔科夫随机场可以帮助我们更好地理解和处理各种类型的数据,从而实现对数据的分类、预测和分析。