模具表面处理种类与规格
- 格式:ppt
- 大小:858.58 KB
- 文档页数:33
模具表面处理
目的:通过强化模膛工作表面来提高锻模的寿命。
表面处理工艺如下:1.氮化模具经氮化处理后,可在模膛表面上形成一层硬度高、耐磨损、同时又不易和变形金属粘结的氮化层。
它可提高锻模寿命25%。
2.渗硼渗硼的模具有一层坚硬的硼化层。
它除了特别耐磨外,还有较好的耐蚀性和耐热性。
硼化层的厚度通常在0.05至0.35mm的范围内,当钢中的碳和合金元素含量较高时,宜取下限。
3.喷丸处理通过喷丸处理使模膛表面产生一层硬化层,以提高耐磨性。
4.在模膛表面复盖硬质合金保护层在模膛表面熔焊一层硬质合金,以提高其耐磨性和热稳定性。
模具材料及表面处理
1名词解释;
预硬钢:就是供应时已预先进行了热处理,并使之达到模具使用态硬度,该硬度变化范围较大,较低硬度为25~35HRC。
低变形冷作模具钢:是在碳素工具钢基础上加入少量合金元素而发展起来的。
复合强韧化处理(双重淬火):是将模具的断热淬火与最终热处理淬火回火相结合的处理工艺,它是在模具毛胚停段后用高温回火取代原来的球化退火(预备热处理)所以又称双重淬火法。
热锻模:是在高温下通过冲击力或压力使炽热的金属胚料成形的模具。
韧性:是材料在冲击载荷作用下抵抗产生裂纹的一个特性,反应了模具的脆断抗力,常用冲击韧度ak来评定。
喷丸强化:是利用大量的珠丸(直径一般为O0.4~2mm)以高速打击以加工完毕的工件表面,使便面产生冷硬层和残留压应力,可以显著提高零件的疲劳强度。
基体钢:就是具有高速钢正常淬火基体成分的钢。
模具实效:是指模具工作部分发生严重磨损或损坏而不能用一般修复方法(刃磨、抛磨)使其重新服役的现象。
电火花表面强化:是利用工具电极与工件在气体中产生的火花放电作用,把作为电极的导电材料溶渗进工件表层形成合金化的表面强化层。
疲劳抗力:是反映材料在交变载荷下抗疲劳破劳破坏的性能指标。
冷作模具:是指在冷态下完成对金属或非金属材料的塑性变形的模具。
化学热处理:是指将金属或合金工件置于一定的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理工艺。
模具表面处理工艺一、喷涂处理喷涂处理是一种在模具表面喷涂一层耐磨、耐腐蚀、耐高温等涂层的工艺。
该工艺可以改善模具表面的性能,提高模具的使用寿命和精度。
喷涂工艺包括喷锌、喷塑、喷铝等。
二、电镀处理电镀处理是一种利用电解原理,在模具表面电镀一层金属或合金薄膜的工艺。
该工艺可以赋予模具表面耐磨、耐腐蚀、导电等特性,提高模具的表面质量和性能。
电镀工艺包括镀铬、镀镍、镀铜等。
三、激光强化激光强化是一种利用高能激光束对模具表面进行扫描,使表面材料快速熔化、凝结,达到强化表面的工艺。
该工艺可以提高模具表面的硬度、耐磨性等性能,延长模具的使用寿命。
激光强化还可以用于修复模具表面缺陷和损伤。
四、渗氮处理渗氮处理是一种在一定温度和压力下,将氮原子渗入模具表面的工艺。
该工艺可以提高模具表面的硬度和耐腐蚀性,同时可以提高模具的耐磨性和抗疲劳性。
渗氮处理适用于耐磨性要求较高的模具。
五、镀铬处理镀铬处理是一种在模具表面电镀一层金属铬的工艺。
该工艺可以赋予模具表面高度的硬度和耐磨性,同时可以提高模具的抗腐蚀性和抗疲劳性。
镀铬处理适用于耐磨性要求较高的模具。
六、喷丸处理喷丸处理是一种利用高速气流将弹丸喷射到模具表面,使表面材料发生塑性变形的工艺。
该工艺可以改善模具表面的粗糙度和形状精度,同时可以提高模具的抗疲劳性和耐磨性。
喷丸处理适用于各种类型的模具。
七、氧化处理氧化处理是一种将金属表面氧化成氧化膜的工艺。
该工艺可以提高模具表面的硬度和耐磨性,同时可以增强模具的抗腐蚀性和抗氧化性。
氧化处理适用于钢铁、铝合金等金属材质的模具。
八、抛光处理抛光处理是一种利用抛光机械对模具表面进行抛光加工的工艺。
该工艺可以改善模具表面的粗糙度和形状精度,同时可以提高模具的抗腐蚀性和抗疲劳性。
抛光处理适用于各种类型的模具。
九、渗碳处理渗碳处理是一种在高温下将碳原子渗入模具表面的工艺。
该工艺可以提高模具表面的硬度和耐磨性,同时可以增强模具的抗疲劳性和韧性。
目前常用的塑胶模具表面处理方法有氮化、电镀、晒纹及喷砂。
其中氮化与电镀就是一种提高模具寿命的方法,而晒纹与喷砂则就是一种模具表面的装饰方法。
一、氮化氮化分为渗氮与氮碳共渗。
此种工艺的最大优点就是热处理温度低(一般就是500—600℃),热处理后变形小,生成氮化物层很硬,使模具的耐磨性及抗咬合性提高。
模具的耐蚀性耐热性及抗疲劳强度有很大改善。
1.渗氮:渗氮的方法分为气体渗氮、液体渗氮、固体渗氮、离子渗氮等。
我们目前比较常用的就是气体渗氮,就是将氨气(NH3)通入约550℃的炉中,靠氨气分解所得的氮渗入钢中。
氮化时间较长,一般浅层每小时大约在0、015-0、02mm左右,深层渗氮速度每小时约0、005-0、015mm。
而在高合金钢中,由于合金元素含量较多,氮的扩散速度低,渗氮速度会较上述数据低。
气体渗氮的时间(工件小于300X300X50mm)一般为8-9小时,渗层深度为0、1-0、2mm之间,渗氮后的表面硬度为HV850—1200之间(HRC65-72),且表面颜色泛亮。
2.氮碳共渗:即就就是我们所说的软氮化,也称之为液氮。
氮碳共渗温度比渗氮温度稍高,对渗层硬度不会造成很大的影响。
也不会增加渗层脆性,但可增加扩散速度。
氮碳共渗一般采用570℃左右为好,低碳钢可以在600℃以上进行氮碳共渗,以获得较厚的化合物层。
氮碳共渗的最初3小时内渗层深度增加最快,超过6小时后,渗层深度增加不很明显,因而氮碳共渗的时间一般不超过6小时。
氮化层的深度一般为0、05-0、100mm,表面硬度为HV1000(RC68以上)表面颜色呈深灰色。
3.氮化对材料的一些要求:(1)在氮化温度下,只要不发生退火的材料均可进行氮化。
(2)含铬量比较高的金属(如420、S136、2083、M300)等均不可进行气氮(因含铬过高气体难以打入到钢材里面)。
4.氮化以后的一些现象(1)工件氮化后表面会出现一些“肿胀”现象,这就是在工件表面上形成一层很薄(0、02—0、03mm)的白亮层,且比较软,此层必须打磨掉以后工件才能恢复到它原来的尺寸,取掉此层后的硬度也就是最硬的。
通过对模具进行表面处理特别是对模具凸、凹模进行表面超硬化处理是解决工件表面拉伤问题经济而有效有方法。
表面处理方法有多种,比较常用的有:镀层方面有镀硬铬、化学镀镍磷、刷镀特种合金等;化学热处理方面有各类渗氮、渗硼、渗硫等;表面超硬化处理方面有化学气相沉积(CVD)、物理化学气沉积(PVD)、TD覆层处理。
电镀、化学镀、刷镀是通过电化学或化学反应的方法,在工件表面形成合金镀层,工艺不同,合金镀层性能各异。
就耐磨抗咬合用途,目前应用较多的是镀硬铬、化学镀镍磷、刷镀镍钨等合金等。
对于成形负荷较轻或大型模具采和这些方法有时可以取得一定的效果。
这类表面处理存在问题是一方面由于表面硬化层的硬度相对较低,容易出现磨损,而镀层一旦磨损,拉伤又会出现。
另一方面,镀层与基本材料机械结合,在负荷较大的场合,有时使用几次镀层就会剥落,而镀层一旦剥落,其功效也就失去。
化学热处理是将工件放入含某种或某几种化学元素的介质中加热保温,通过工件与介质的物理化学作用,将这种或这几种元素渗入工件表面,然后以适当的方式冷却,从而改变了工件表面的成分和组织结构,并赋予工件不同的物理、化学和机械性能。
化学热处理的种类很多,根据所渗元素不同分类为:各种渗碳、各种渗氮、各种氮碳或碳氮共渗、渗硼、渗硫、渗铝、渗锌、渗其他各金属等。
以耐磨、减磨、抗拉伤为目的的化学热处理目前常用的是:渗碳、渗氮、渗硼、渗硫几种。
采用合适的模具材料辅以渗氮、渗硼等化学热处理往往具有较常规钢制模具高得多的抗拉伤性能。
在缺乏其他表面处理工艺方法的情况下,这不适为一种较好的选择,也是较常用的方法。
就渗氮处理而言,渗氮的化合物层具有很高的抗拉伤性能,但由于其硬化效果有限(一般1200HV以下),且化合物层较薄(10μm左右),其耐磨性有限,而化合物层一旦磨损,拉伤又会出现,所以在大批量生产过程中渗氮处理往往还无法满足生产要求。
就渗硼工艺而言,其硬化层硬度可达1800HV,耐磨性较高,但依据经验,渗硼质量的稳定性和渗硼工件变形较大以及渗硼层抗拉伤性能较差是制约该技术在成形类模具上应用的几个重要因素。
模具表面处理对塑件质量一、模具表面处理技术概述模具表面处理技术是塑料加工行业的一项关键技术,它直接影响到塑料制品的质量和生产效率。
模具表面处理技术主要包括表面抛光、表面涂层、表面硬化处理等。
通过这些处理方式,可以显著提高模具的耐用性、减少生产过程中的摩擦、提高塑件的表面质量等。
模具表面处理技术的发展,不仅能够推动塑料加工行业的进步,还将对整个制造业产生深远的影响。
1.1 模具表面处理技术的核心特性模具表面处理技术的核心特性主要包括以下几个方面:- 耐磨性:通过表面处理,模具表面能够抵抗磨损,延长模具的使用寿命。
- 耐腐蚀性:模具表面处理能够提高模具的耐腐蚀性,减少因腐蚀而导致的模具损坏。
- 表面光洁度:通过表面抛光和涂层处理,模具表面能够达到更高的光洁度,从而提高塑件的表面质量。
- 减少粘附性:表面处理可以减少模具与塑料材料之间的粘附性,降低生产过程中的不良品率。
1.2 模具表面处理技术的应用场景模具表面处理技术的应用场景非常广泛,包括但不限于以下几个方面:- 汽车零部件:汽车零部件对模具的耐磨性和表面光洁度要求极高,模具表面处理技术在这一领域应用广泛。
- 家用电器:家用电器如冰箱、洗衣机等的塑料外壳,需要模具表面处理技术来保证其外观和耐用性。
- 医疗器械:医疗器械的塑料部件需要模具表面处理技术来提高其耐腐蚀性和表面光洁度。
- 包装行业:包装行业的塑料制品如瓶子、盒子等,也需要模具表面处理技术来提高其外观和耐用性。
二、模具表面处理技术的分类与工艺模具表面处理技术的种类繁多,每种技术都有其独特的工艺和应用领域。
以下是几种常见的模具表面处理技术及其工艺。
2.1 表面抛光技术表面抛光技术是通过对模具表面进行物理或化学处理,使其达到所需的光洁度。
常见的表面抛光技术包括:- 机械抛光:通过机械摩擦的方式,去除模具表面的毛刺和不平整,提高表面光洁度。
- 化学抛光:通过化学腐蚀的方式,去除模具表面的氧化物和杂质,提高表面光洁度。