(word完整版)八年级下册数学一次函数
- 格式:doc
- 大小:295.06 KB
- 文档页数:5
八年级数学下册第十九章一次函数知识点总结归纳完整版单选题1、已知函数y=2x−1x+2,当x=a时的函数值为1,则a的值为()A.3B.-1C.-3D.1答案:A分析:当x=a时的函数值为1,把x=a代入函数式中,得2a−1a+2=1求解a=3.∵函数y=2x−1x+2中,当x=a时的函数值为1,∴2a−1a+2=1,∴2a−1=a+2,∴a=3.故答案为A小提示:此题考查函数值, 令y=1,解分式方程,即可求出2、在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=4答案:A分析:过点D作DE⊥x轴于点E,先证明△ABO≅△DAE(AAS),再由全等三角形对应边相等的性质解得D(7,3),最后由待定系数法求解即可.解:正方形ABCD中,过点D作DE⊥x轴于点E,∵∠ABO+∠BAO=∠BAO+∠DAE=90°∴∠ABO=∠DAE∵∠BOA=∠AED=90°,AB=AD∴△ABO≅△DAE(AAS)∴AO=DE=3,OB=AE=4∴D(7,3)设直线BD所在的直线解析式为y=kx+b(k≠0),代入B(0,4),D(7,3)得{b=47k+b=3∴{k=−1 7b=4∴y=−17x+4,故选:A.小提示:本题考查待定系数法求一次函数的解析式,涉及正方形性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=−m(x−1)−n的图象与x轴的交点坐标是()A.(2,0)B.(3,0)C.(0,2)D.(0,3)答案:B分析:直线y=mx+n与x轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y=mx+n的图象与x轴的交点为(2,0),进而得到一次函数y=-mx-n的图象与x轴的交点为(2,0),由于一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,即可求得一次函数y=-m(x-1)-n的图象与x轴的交点坐标.解:∵方程的解为x=2,∴当x=2时mx+n=0;∴一次函数y=mx+n的图象与x轴的交点为(2,0),∴一次函数y=-mx-n的图象与x轴的交点为(2,0),∵一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,∴一次函数y=-m(x-1)-n的图象与x轴的交点坐标是(3,0),故选:B.小提示:本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.4、如图所示,一次函数y=kx+b(k≠0)的图象经过点P(3,2),则方程kx+b=2的解是()A.x=1B.x=2C.x=3D.无法确定答案:C分析:将点P(3,2)代入直线解析式,然后与方程对比即可得出方程的解.解:一次函数y=kx+b(k≠0)的图象经过点P(3,2),∴2=3k+b,∴x=3为方程2=kx+b的解,故选:C.小提示:题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.5、现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y的值为()A.3.2米B.4米C.4.2米D.4.8米答案:A分析:先利用待定系数法求出两个蓄水池的函数解析式,再联立求出交点坐标即可得.解:设甲蓄水池的函数解析式为y=kx+b,由题意,将点(3,0),(0,4)代入得:{3k+b=0b=4,解得{k=−43b=4,则甲蓄水池的函数解析式为y=−43x+4,同理可得:乙蓄水池的函数解析式为y=2x+2,联立{y=−43x+4y=2x+2,解得{x=0.6y=3.2,即当甲、乙两池中水的深度相同时,y的值为3.2米,故选:A.小提示:本题考查了一次函数的实际应用,熟练掌握待定系数法是解题关键.6、在函数y=2x−3中,当自变量x=5时,函数值等于()A.1B.4C.7D.13答案:C分析:把x=5代入y=2x−3求解即可.解:把x=5代入y=2x−3得y=2×5-3=7,故选:C.小提示:本题考查求函数值,属基础题目,难度不大.7、若y=(m﹣1)x+m2﹣1是y关于x的正比例函数,则该函数图象经过的象限是()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限答案:D分析:根据正比例函数的定义知,m2−1=0且m−1≠0,由此可求得m的值,从而可知正比例函数图象所经过的象限.由题意知:m2−1=0且m−1≠0由m2−1=0得:m=±1由m−1≠0得:m≠1∴m=-1此时正比例函数解析式为y=-2x∵-2<0∴函数图象经过第二、四象限故选:D.小提示:本题考查了正比例函数的概念,把形如y=kx(k≠0)的函数称为正比例函数,掌握正比例函数概念是解题关键.特别注意一次项系数不为零.8、在平面直角坐标系中,直线l1与l2关于直线y=1对称,若直线l1的表达式为y=−2x+3,则直线l2与y轴的交点坐标为()A.(0,12)B.(0,23)C.(0,0)D.(0,−1)答案:D分析:先求解y=−2x+3与x,y轴的交点B,A坐标,再求解A关于y=1的对称点A′的坐标即可得到答案.解:如图,∵y=−2x+3,令x=0,y=3,令y=0,x=32,∴A(0,3),B(3,0),2作A,B关于直线y=1对称的点A′,B′,∵直线l1与l2关于直线y=1对称,即上图中的直线AB与直线A′B′关于直线y=1对称,∴x A=x A′=0,y A−1=1−y A′,∴y A′=−1,∴A′(0,−1),所以直线l2与y轴的交点坐标为:(0,−1).故选:D.小提示:本题考查的是求解一次函数与坐标轴的交点的坐标,坐标与图形,轴对称的坐标变化,掌握数形结合的方法是解题的关键.9、直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.﹣1D.24答案:A分析:由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k的一元一次方程,解之即可得出k值.解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.小提示:本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题的关键.10、如图,已知A(1,3),B(5,1),若直线y=kx+1与线段AB有公共点,则k的取值范围是()A.k≠0B.k>1C.0≤k≤1D.0≤k≤2答案:D分析:先求出直线过点A、B的k值,再结合图象即可求得k的取值范围.解:当直线y=kx+1过点A(1,3)时,则k+1=3,解得:k=2,当直线y=kx+1过点B(5,1)时,则5k+1=1,解得:k=0,当x=0时,y=1,则直线经过定点(0,1),∵直线y=kx+1与线段AB有公共点,∴0≤k≤2,故选:D.小提示:本题考查一次函数的图象与性质,熟练掌握一次函数的性质是解答的关键.填空题11、如图,A(−2,1),B(2,3)是平面直角坐标系中的两点,若一次函数y=kx−1的图象与线段AB有交点,则k 的取值范围是_______.答案:k<-1或k>2分析:将A、B点坐标分别代入计算出对应的k值,然后利用一次函数图象与系数的关系确定k的范围.解:当直线y=kx-1过点A时,得-2k-1=1,解得k=-1,当直线y=kx-1过点B时,得2k-1=3,解得k=2,∵一次函数y=kx−1的图象与线段AB有交点,∴k<-1或k>2,所以答案是:k<-1或k>2.小提示:此题考查了一次函数图象与系数的关系:当k>0时,图象过第一、三象限,y随x的增大而增大,越靠近y轴正半轴k值越大;当k<0时,图象过二、四象限,y随x的增大而减小越靠近y轴正半轴k值越小.12、某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为______.答案: 3 y=4x+2##y=2+4x分析:根据题意列出一元一次方程,函数解析式即可求解.解:∵14>10,∴超过2千克,设购买了a千克,则2×5+(a−2)×0.8×5=14,解得a=3,设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为:y=2×5+(x−2)×5×0.8=10+4x−8=4x+2,所以答案是:3,y=4x+2.小提示:本题考查了一元一次方程的应用,列函数解析式,根据题意列出方程或函数关系式是解题的关键.13、张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.答案: 10+5x(x为正整数), 235分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.根据题意可知y=5x+10.当x=45时,y=45×5+10=235元.故答案为5x+10;235.小提示:解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:总费用=成人票用钱数+学生票用钱数.14、已知一次函数y =(2m +1)x +m ﹣3的图象不经过第二象限,则m 的取值范围为______.答案:−12<m ⩽3 分析:根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 解:∵一次函数y =(2m +1)x +m −3的图象不经过第二象限,∴该图象经过第一、三象限或第一、三、四象限,{2m +1>0m −3≤0,解得:﹣12<m ≤3. 所以答案是:﹣12<m ≤3.小提示:本题考查了一次函数的性质及解不等式组,解题的关键是熟知一次函数的性质并正确的应用.15、正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .答案:y =23x 或y =-23x分析:根据题意确定A 点纵坐标是2或者-2,设出正比例函数解析式,然后分情况将A 点坐标代入解析式即可求出.根据题意可得A 点坐标(3,2)或(3,-2),设正比例函数解析式为:y=kx ,代入解析式可得:k=23或-23,∴函数解析式是y =23x 或y =-23x .所以答案是:y =23x 或y =-23x .小提示:本题主要考查了正比例函数解析式,根据题意确定点A 的坐标是解题的关键.解答题16、已知函数y=(5m−3)x2−n+(m+n),(1)当m、n为何值时,此函数是一次函数?(2)当m、n为何值时,此函数是正比例函数?答案:(1)n=1,m≠35(2)n=1,m=-1分析:(1)根据一次函数的定义知2−n=1,且5m−3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2−n=1,m+n=0,据此可以求得m、n的值.(1)解:当函数y=(5m−3)x2−n+(m+n)是一次函数时,2−n=1,且5m−3≠0,解得,n=1,m≠35;(2)解:当函数y=(5m−3)x2−n+(m+n)是正比例函数时,{2−n=1 m+n=05m−3≠0,解得,n=1,m=−1.小提示:本题考查了一次函数、正比例函数的定义,解题的关键是掌握正比例函数是一次函数的一种特殊形式.17、今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.答案:(1)这一批树苗平均每棵的价格是20元;(2)购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.分析:(1)设这一批树苗平均每棵的价格是x元,分别表示出两种树苗的数量,根据“每捆A种树苗比每捆B种树苗多10棵”列方程即可求解;(2)设购进A种树苗t棵,这批树苗的费用为w,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.解:(1)设这一批树苗平均每棵的价格是x元,根据题意,得6300.9x −6001.2x=10,解之,得x=20.经检验知,x=20是原分式方程的根,并符合题意.答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A种树苗每棵价格为20×0.9=18元,种树苗每棵价格为20×1.2=24元,设购进A种树苗t棵,这批树苗的费用为w,则w=18t+24(5500−t)=−6t+132000.∵w是t的一次函数,k=−6<0,w随着t的增大而减小,t≤3500,∴当t=3500棵时,w最小.此时,B种树苗有5500−3500=2000棵,w=−6×3500+132000=111000.答:购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.小提示:本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.18、某市出租车的计费标准如下:行驶路程不超过5 km时,收费8元,行驶路程超过5 km的部分,按每千米1.5元计费.(1)求出租车收费y(元)与行驶路程x(km)之间的函数关系式;(2)若某人一次乘出租车付出了车费11元,求他这次乘坐了多少千米的路程?答案:(1)y={8(0<x≤5)1.5x+0.5(x>5);(2)若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程.分析:(1)要先根据行驶路程的距离是否超出5千米来进行分类讨论,然后分别列出函数解析式即可;(2)先根据车费判断出此人的大概行驶路程,然后根据(1)中得出的不同的函数,看符合哪种情况,然后代入其中求出此人乘坐的路程.解:(1)由题意得:当0<x≤5时,y=8当x>5时,y=8+1.5(x-5)=1.5x+0.5∴出租车收费y元与行驶路程x(km)之间的函数关系式为y={8(0<x≤5)1.5x+0.5(x>5)(2) ∵11元>8元.∴y=11时,1.5x+0.5=11,解得x=7,∴若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程..小提示:本题主要考查一次函数关系式的应用问题.注意自变量的取值范围不能遗漏,不同的取值要进行分类讨论.。
2.2.1 一次函数的性质与图象【学习目标】1.理解一次函数的概念,掌握一次函数的性质.(重点)2.会用一次函数的图象和性质解题.(难点) 【重点】会用一次函数的图象和性质解题 【难点】会用一次函数的图象和性质解题1.一次函数的概念函数 叫做一次函数,它的定义域为R ,值域为R .一次函数的图象是直线,其中k 叫做该直线的斜率,b 叫做该直线在y 轴上的 .一次函数又叫 .2.一次函数的性质(1)平均变化率:即为直线的斜率k ;设(x 1,y 1),(x 2,y 2)为直线上任意两点,则 . (k 与两点在直线上的位置无关).(2)单调性:k >0时,y =kx +b 为增函数,k <0时,y =kx +b 为 .(3)奇偶性:b =0时,y =kx +b 为奇函数(此时为正比例函数),b ≠0时既不是奇函数也不是偶函数. (4)直线y =kx +b 与坐标轴的交点:与x 轴的交点坐标为⎝ ⎛⎭⎪⎪⎫-b k ,0,与y 轴的交点坐标为(0,b ).1.思考辨析(1)函数y =7x是一次函数.( )(2)函数y =2x +3是单调递增函数.( )(3)一次函数y =x -1的图象过第一、二、三象限.( ) 2.设函数f (x )=(2a -1)x +b 在R 上是增函数,则有( ) A .a ≥12 B .a ≤12 C .a >-12 D .a >123.一次函数y =-2x +3的图象与两坐标轴的交点坐标是( )A .(0,3),⎝ ⎛⎭⎪⎪⎫32,0 B .(1,3),⎝ ⎛⎭⎪⎪⎫32,1 C .(3,0),⎝ ⎛⎭⎪⎪⎫0,32 D .(3,1),⎝ ⎛⎭⎪⎪⎫1,32 4.已知一次函数y 1=x 2+2,y 2=x3+3,当x ∈________时,y 1>y 2.【情境引入】(1)已知y =(α+1) x α-1+2是一次函数,则α=______.(2)已知函数y =3mx +2m +1,试求m 为何值时,①这个函数为正比例函数;②这个函数为一次函数;③函数值y随x的增大而减小.[跟踪训练]1.下列函数:①y=-2x,②y=15-6x,③c=7t-35,④y=1x+2,⑤y=13x,⑥y=x2x,其中正比例函数是________,一次函数是________.(填序号)画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解集;(3)图象与坐标轴的两个交点间的距离.母题探究:(变结论)本例中已知条件不变,求(1)当-3≤y≤3时,x的取值范围?(2)图象与坐标轴围成的三角形的面积.[探究问题]已知函数y=x+1,y=2x,y=-x+1,图2211.上述函数的图象有何特点?2.观察以上图象,试说明函数的单调性.已知函数y=(2m-1)x+1-3m,当m为何值时:(1)这个函数为一次函数;(2)函数值y随x的增大而减小;(3)此函数为奇函数;(4)此函数图象与直线y=x+1的交点在y轴上.[跟踪训练]2.已知f(x)为一次函数且满足4f(1-x)-2f(x-1)=3x+18,求函数f(x)在[-1,1]上的最大值,并比较f(2 017)和f(2 018)的大小.1.过点(3,m)、(m,-4)的一次函数解析式y=25x+b,则实数m的值是( )A.2 B.-4 C.0 D.-22.函数y=kx-1与y=-kx在同一坐标系中的大致图象可能是下图中的( )3.对于函数y=5x+6,y的值随x的值减小而________.4.若一次函数y=(3a-8)x+a-2的图象与两坐标轴都交于正半轴,则a的取值范围是________.5.已知y=(m-1)xm2-3m+3+2是一次函数,且为增函数,求m的值.【课堂小结】【总结反思】一、选择题1.一次函数y=kx+b(k>0,b<0)的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.函数y=kx+k2-k过点(0,2)且是减函数,则k的值为( )A.-2 B.-1C .-1,2D .1,-23.若函数y =ax 2+x b -1+2表示一次函数,则a ,b 的值分别为( )A.⎩⎪⎨⎪⎧a =1,b =1B.⎩⎪⎨⎪⎧a =0,b =1C.⎩⎪⎨⎪⎧a =0,b =2D.⎩⎪⎨⎪⎧a =1,b =24.一个水池有水60 m 3,现将水池中的水排出,如果排水管每小时排水量为3 m 3,则水池中剩余水量Q 与排水时间t 之间的函数关系是( )A .Q =60-3tB .Q =60-3t (0≤t ≤20)C .Q =60-3t (0≤t <20)D .Q =60-3t (0<t ≤20)5.两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是下图中的( )二、填空题6.已知点A (-4,a ),B (-2,b )都在直线y =12x +k (k 为常数)上,则a 与b 的大小关系是a ________b (填“>”“<”或“=”).7.一次函数f (x )=(1-m )x +2m +3在[-2,2]上总取正值,则m 的取值范围是________.8.一次函数y =(3a -7)x +a -2的图象与y 轴的交点在x 轴上方,且y 随x 的增大而减小,则a 的取值范围是________.三、解答题9.某航空公司规定乘客所携带行李的质量x (kg)与其运费y (元)由如图222所示的一次函数确定,求乘客可免费携带行李的最大质量.图22210.已知函数y =(2m +1)x +2-3m ,m 为何值时: (1)这个函数为正比例函数;(2)这个函数为一次函数;(3)函数值y 随x 的增大而增大;(4)这个函数图象与直线y =x +1的交点在x 轴上.[冲A 挑战练]一、选择题1.已知kb <0,且不等式kx +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x >-bk ,则函数kx +b >0的图象大致是( )2.过点A (-1,2)作直线l ,使它在x 轴,y 轴上的截距相等,则这样的直线有( )A .1条B .2条C .3条D .4条二、填空题3.已知一次函数y =f (x )的图象过点(0,-3),不等式f (x -1)>0的解集为{x |x >2},则f (x )=________. 4.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为________. 三、解答题5.对于每个实数x ,设f (x )取y =x -3,y =-x -4,y =-2三个函数中的最大者,用分段函数的形式写出f (x )的解析式,并求f (x )的最小值.答案1.思考辨析[解析] (1)× 函数y =7x是反比例函数(2)√ 函数y =2x +3的斜率k =2>0,所以函数是单调递增函数.(3)× 一次函数y =x -1的斜率k >0,b <0所以其图象过一、三、四象限. [答案] (1)× (2)√ (3)×2.D [∵y =f (x )为R 上的增函数,∴2a -1>0,∴a >12.]3.A [当x =0时,y =3,过点(0,3);当y =0时,x =32,过点⎝ ⎛⎭⎪⎫32,0,故选A.]4.(6,+∞) [由y 1>y 2可得x 2+2>x3+3,解得x >6,所以x ∈(6,+∞).]解](1)由题意得⎩⎨⎧α+1≠0,α-1=1,解得⎩⎨⎧α≠-1,α=2,即α=2.[答案] 2(2)①若y =3mx +2m +1是正比例函数,则m 应满足⎩⎨⎧m ≠0,2m +1=0.解得m =-12.∴当m =-12时,这个函数是正比例函数.②当m ≠0时,这个函数为一次函数.③根据一次函数性质可知,当m <0时,y 随x 的增大而减小.[规律方法] 对于函数y =kx a +b ,当a =1,k ≠0时,为一次函数;当a =1,k ≠0,b =0时,为正比例函数.[跟踪训练]1.[答案] ①⑤ ①②③⑤轴交点B ⎝ ⎛⎭⎪⎫-12,0,过A 、B 作直线,直线AB 就是函数[解] 因函数y =2x +1的图象与y 轴交点A (0,1),与xy =2x +1的图象.如图所示:(1)直线AB 与x 轴的交点为B ⎝ ⎛⎭⎪⎫-12,0,所以方程2x +1=0的根为x =-12.(2)从图象上可以看到,射线BA 上面的点的纵坐标都不小于零,即y =2x +1≥0.因为射线BA 上点的横坐标满足x ≥-12,∴不等式2x +1≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xx ≥-12.(3)图象与x 轴的交点为B ⎝ ⎛⎭⎪⎫-12,0,与y 轴交于点A (0,1),因此,|OA |=1,|OB |=12.由勾股定理得:|AB |=|OA |2+|OB |2=12+⎝ ⎛⎭⎪⎫122=52. [规律方法] 解决与图象有关的问题,要做好图,识图分析,注意数形结合思想的应用. 母题探究:[解] (1)过(0,-3)点作平行于x 轴的直线,交直线AB 于点D (-2,-3).过点(0,3)作平行于x 轴的直线,交直线AB 于点C (1,3).从图象中可见,线段DC 上的点的纵坐标满足-3≤y ≤3,而横坐标满足-2≤x ≤1. ∴当-3≤y ≤3时,x 的取值范围为-2≤x ≤1. (2)∵△AOB 是直角三角形, ∴S △AOB =12|OB |·|OA |=12×12×1=14.[探究问题]1.提示:图象都为直线.2.提示:函数y =x +1,y =2x 为增函数,函数y =-x +1为减函数.[思路探究] 本题主要考查一次函数的概念、奇偶性与单调性,第(1)(2)(3)问易求,对于第(4)问要重视方程组的作用.[解] (1)当2m -1≠0,即m ≠12时,此函数为一次函数.(2)根据一次函数的性质,可知当2m -1<0,即m <12时,函数值y 随x 的增大而减小.(3)当2m -1≠0,且1-3m =0,即m =13时,此函数为奇函数.(4)在y =x +1中,令x =0,y =1,∴(0,1)是在y =(2m -1)x +1-3m 的图象上,∴m =0,∴当m =0时,两直线的交点在y 轴上. [规律方法] 一次函数的值域或一次函数的最大值、最小值,常利用一次函数的单调性来求解. [跟踪训练]2.[解] 设f (x )=kx +b (k ≠0).由已知可得4[k (1-x )+b ]-2[k (x -1)+b ]=3x +18.整理,得-6kx +6k +2b =3x +18.∴⎩⎨⎧-6k =3,6k +2b =18,解得⎩⎪⎨⎪⎧k =-12,b =212.∴f (x )=-12x +212,易得f (x )在[-1,1]上为减函数(在R 上也是减函数).∴函数f (x )在[-1,1]上的最大值为f (-1)=11且f (2 017)>f (2 018).1.D [由Δy Δx =-4-m m -3=25,得m =-2.]2.B [在A 中,直线是上升的,知k >0,由曲线的位置知-k >0,即k <0,矛盾;在B 中,曲线的位置正好使k >0,故选B.] 3.减小 [由于一次函数的斜率5>0,所以一次函数是增函数,所以y 值随x 的减小而减小.]4.⎝ ⎛⎭⎪⎫2,83[由题意,得⎩⎨⎧3a -8<0,a -2>0,解得2<a <83.]5.[解]∵函数为一次函数且单调递增,∴⎩⎨⎧m 2-3m +3=1,m -1>0,∴⎩⎨⎧m =1或m =2,m >1.∴m =2.一、选择题1.B [直线y =kx +b (k >0,b <0)经过点(0,b ),在y 轴的负半轴上,且y 是x 的增函数.]2.B [将点的坐标代入函数关系式,得k 2-k =2,即k 2-k -2=0,所以k =-1或k =2,由于一次函数为减函数,即k <0,所以k =-1,故选B.]3.C[若函数为一次函数,则有⎩⎨⎧a =0,b -1=1,即⎩⎨⎧a =0.b =2.]4.B [∵每小时的排水量为3 m 3,t 小时后的排水量为3t m 3,故水池中剩余水量Q =60-3t ,且0≤3t ≤60,即0≤t ≤20.] 5.A [对于A ,y 1中a >0,b <0,y 2中b <0,a >0,y 1和y 2中的a 、b 符号分别相同,故正确; 对于B ,y 1中a >0,b >0,y 2中b <0,a >0,故不正确; 对于C ,y 1中a >0,b <0,y 2中b <0,a <0,故不正确; 对于D ,y 1中a >0,b >0,y 2中b <0,a <0,故不正确.] 二、填空题6.< [过A 、B 两点的直线的斜率为12,则b -a -2--4=12,即b -a 2=12,所以b =a +1,因此a <b .]7.⎝ ⎛⎭⎪⎫-14,+∞[对于一次函数不论是增函数还是减函数,要使函数值在[-2,2]上总取正值,只需⎩⎨⎧f-2>0,f2>0.即⎩⎨⎧2m -2+2m +3>0,2-2m +2m +3>0.解之得m >-14.]8.2<a <73 [∵关于x 的一次函数的图象与y 轴的交点在x 轴上方,且y 随x 的增大而减小,∴⎩⎨⎧3a -7<0a -2>0,解得2<a <73.]三、解答题9.[解] 设题图中的函数解析式为y =kx +b (k ≠0),其中y ≥0.由题图,知点(40,630)和(50,930)在函数图象上,∴⎩⎨⎧630=40k +b ,930=50k +b ,得⎩⎨⎧k =30,b =-570.∴函数解析式为y =30x -570.令y =0,得30x -570=0,解得x =19. ∴乘客可免费携带行李的最大质量为19 kg.10.[解](1)由⎩⎨⎧2m +1≠0,2-3m =0;得⎩⎪⎨⎪⎧m ≠-12,m =23.即m =23;(2)当2m +1≠0时,函数为一次函数,所以m ≠-12;(3)由题意知函数为增函数,即2m +1>0,所以m >-12;(4)直线y =x +1与x 轴的交点为(-1,0),将点的坐标(-1,0)代入函数表达式,得-2m -1+2-3m =0,所以m =15.[冲A 挑战练]一、选择题1.B[由kb <0,得k 与b 异号,由不等式kx +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-bk ,知k >0,所以b <0,因此选B.] 2.B [当直线在两个坐标轴上的截距都为0时,点A 与坐标原点的连线符合题意,当直线在两坐标轴上的截距相等且都不为0时,只有当直线斜率为-1时符合,这样的直线只有一条,因此共2条.]二、填空题3.3x -3 [设一次函数为y =kx +b (k ≠0),因y =f (x )的图象过点(0,-3),所以b =-3.f (x -1)>0,即kx -k -3>0,由题意知,k +3k=2,所以k =3.]4.f (x )=23x +53或f (x )=-23x +73[设f (x )=kx +b (k ≠0)当k >0时,⎩⎨⎧-k +b =1,2k +b =3,即⎩⎪⎨⎪⎧k =23,b =53.∴f (x )=23x +53.当k <0时,⎩⎨⎧-k +b =3,2k +b =1,即⎩⎪⎨⎪⎧k =-23,b =73,∴f (x )=-23x +73.∴f (x )的解析式为f (x )=23x +53或f (x )=-23x +73.]三、解答题5.对于每个实数x ,设f (x )取y =x -3,y =-x -4,y =-2三个函数中的最大者,用分段函数的形式写出f (x )的解析式,并求f (x )的最小值. [解] 在同一坐标系中作出函数y =x -3,y =-x -4,y =-2的图象,如图所示.由⎩⎨⎧y =-x -4,y =-2,得⎩⎨⎧x =-2,y =-2,即A (-2,-2).由⎩⎨⎧y =x -3,y =-2,得⎩⎨⎧x =1,y =-2,即B (1,-2).根据图象,可得函数f (x )的解析式为f (x )=⎩⎨⎧-x -4,x <-2,-2,-2≤x ≤1,x -3,x >1.由上述过程及图象可知,当-2≤x ≤1时,f (x )均取到最小值-2.。
新新教育1一次函数知识点总结一、函数1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。
注:变量还分为自变量和因变量。
2.常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。
3.函数的定义:一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x?的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数,y 的值称为函数值.4.函数的三种表示法:(1)表达式法(解析式法);( 2)列表法;(3)图象法.a、用数学式子表示函数的方法叫做表达式法(解析式法)。
b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。
c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。
5.求函数的自变量取值范围的方法.( 1)要使函数的表达式有意义: a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;c、含二次根号时,让被开方数≠ 0 。
( 2)对实际问题中的函数关系,要使实际问题有意义。
注意可能含有隐含非负或大于0 的条件。
6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值.7.描点法画函数图象的一般步骤如下:Step1 :列表(表中给出一些自变量的值及其对应的函数值);Step2 :描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step3 :连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).8.判断 y 是不是 x 的函数的题型A、给出解析式让你判断:可给 x 值来求 y 的值,若 y 的值唯一确定,则 y 是 x 的函数;否则不是。
B、给出图像让你判断:过 x 轴做垂线,垂线与图像交点多余一个(≥ 2)时, y 不是 x 的函数;否则 y 是 x 的函数。
二、正比例函数1.正比例函数的定义:一般地,形如 y=kx( k 是常数, k≠0)的函数,叫做正比例函数, ?其中 k 叫做比例系数。
例1:已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。
说明:满足函数关系式的有序数对,在坐标平面内对应的点一定在函数图象上;反之,函数图象上的点,其坐标一定满足函数关系式。
例2:.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 。
例3:.已知一次函数的图象经过点A(—3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.例4:某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.例5:某移动通讯公司开设两种业务:若设某人一个月内市内通话x跳次,两种方式的费用分别为z元和y元.①写出z、y与x之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?例6:如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出该图象的函数关系式; ②某人乘坐2。
5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30。
8元,出租车行驶了多少千米?1.A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(1)设B 市运往C 市机器x 台,•求总运费W (元)关于x 的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?一. 填空题1. (-3,4)关于x 轴对称的点的坐标为_________,关于y 轴对称的点的坐标为__________,关于原点对称的坐标为__________。
中考一次函数应用题近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。
例1已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。
已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。
若设生产N种型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。
y与x的函数关系式,并求出自变量的取值范围;(1)求(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?例2某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
y(元)与通话次数x之间的函数关系式;(1)写出每月电话费(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。
例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。
y(万元),用A型货厢的节数为x(节),试写出y与x之间的(1)设运输这批货物的总运费为函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。
(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?例4 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件。
一次函数MQ= ; E (2, -1), F (2, -8),则EF 两点之间的距离是;已题型一、点的坐标方法:x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b 的范围为;3、已知A(4,b),B(a,-2),若A,B 关于x 轴对称,则a= ,b= ;若A,B 关于y 轴对称,则a= ,b= ;若若A,B 关于原点对称,则a= ,b= ;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB∥x 轴,则A(x A , 0), B(x B , 0) 的距离为x A -x B ;若AB∥y 轴,则A(0, y A ), B(0, y B ) 的距离为y A -y B ;知点G(2,-3)、H(3,4),则G、H 两点之间的距离是;4、两点(3,-4)、(5,a)间的距离是2,则a 的值为;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k≠0),这时,y叫做x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k≠0)1、当k 时,y =(k -3)x2++2x -3 是一次函数;2、当m 时,y =(m - 3)x2m+1+ 4x - 5 是一次函数;3、当m 时,y =(m - 4)x2m+1+ 4x - 5 是一次函数;题型四、函数图像及其性质☆一次函数 y=kx+b(k≠0)中 k、b 的意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y 轴交点的,也表示直线在y 轴上的。
认清分段函数,解决收费问题定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分段函数。
K3x+b3 a2≤x≤a3…………应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。
(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
(四), 一次函数的分段函数是简单的分段函数。
分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,时,y=60则有4010060200k bk b=+⎧⎨=+⎩,解之得1520kb⎧=⎪⎨⎪=⎩所求函数关系式为1205y x=+..(3)把x=280代入关系式1205y x=+,得128020765y∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x 的正比例函数; x≥15时,y是x的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5所以y =2.5x -10.5 图2(2) 当该用户该月用21吨水时,三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ;设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15综上可得0.65(0100)0.815(100)x x y x x ⎧=⎨-⎩≤≤≥ (2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。
初二一次函数与几何题(附答案)1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?A B C O x y xyA B O6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC(1)求△ABC 的面积和点C 的坐标;(2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
佼立教育精品小班课程辅导讲义讲义编号一次函数 知识点 1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.在某一变化过程中,有两个量,如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时称y 是x 的函数. 注意:(1)“y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.(2)判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同.例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.(3)函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.2.数学上表示函数关系的方法通常有三种:(1)解析法:用数学式子表示函数的方法叫做解析法.如:30S t =,2S R π=. (2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3.关于函数的关系式(解析式)的理解:(1)函数关系式是等式.例如4y x =就是一个函数关系式. (2)函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数. (3)函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数.(4)求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.4.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =变量x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥. 在初中阶段,自变量的取值范围考虑下面几个方面: (1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数. (3)分式型:分母不为0. (4)复合型:不等式组(5)应用型:实际有意义即可5.函数图象:函数的图象是由平面直角中的一系列点组成的.6.函数图像的位置决定两个函数的大小关系: (1)图像1y 在图像2y 的上方⇔21y y >(2)图像1y 在图像2y 的下方⇔21y y <(3)特别说明:图像y 在x 轴上方⇔y7.描点法画函数图象的步骤:(1)列表; (2)描点; (3)连线.8.函数解析式与函数图象的关系:(1)满足函数解析式的有序实数对为坐标的点一定在函数图象上; (2)函数图象上点的坐标满足函数解析式.9.验证一个点是否在图像上方法:代入、求值、比较、判断10.一次函数及其性质知识点一:一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.知识点二:一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.知识点三:一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.x知识点四:一次函数y kx b =+的图象、性质与k 、b 的符号倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴图像的平移:b >0时,将直线y =kx 的图象向上平移b 个单位,对应解析式为:y =kx +b b <0时,将直线y =kx 的图象向下平移b 个单位,对应解析式为:y =kx -b口诀:“上+下-”将直线y =kx 的图象向左平移m 个单位,对应解析式为:y =k (x +m ) 将直线y =kx 的图象向右平移m 个单位,对应解析式为:y =k (x -m ) 口诀:“左+右-”知识点五:用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式. 5≤x≤9.求此一次函数的解析式.11.直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b =(4)两直线垂直⇔121-=k k12.一次函数与一元一次方程的关系: 直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解.求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x bk=-,直线y b kx =+交x 轴于(,0)b k -,bk-就是直线y b kx =+与x 轴交点的横坐标.13.一次函数与一元一次不等式的关系:任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.。
青岛版八年级下册数学第10章一次函数含答案一、单选题(共15题,共计45分)1、如图,一次函数的图像经过,两点,则解集是()A. B. C. D.2、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA 的面积为S.当S=12时,则点P的坐标为()A.(6,2)B.(4,4)C.(2,6)D.(12,﹣4)3、已知反比例函数y=(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限()A.一B.二C.三D.四4、若点(a,y1)、(a+1,y2)在直线y=kx+1上,且y1>y2,则该直线所经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5、关于的二元一次方程组的解满足,则直线与双曲线在同一平面直角坐标系中大致图象是()A. B. C. D.6、一次函数y=ax+b和反比例函数在同一直角坐标系中的大致图象是()A. B. C.D.7、下列各图中,表示y是x的函数的是()A. B. C.D.8、小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离(米)与小亮出发的时间(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒;B.小亮出发100秒时到达终点;C.小明出发125秒时到达了终点;D.小亮出发20秒时,小亮在小明前方10米.9、在同一坐标系内,一次函数与二次函数 y=ax2+8x+b 的图象可能是 ( )A. B. C.D.10、在动画片《喜羊羊与灰太狼》中,有一次灰太狼追赶喜羊羊,在距羊村40m处追上了喜羊羊.如图中s表示它们与羊村的距离(单位:m),t表示时间(单位:s).根据相关信息判断,下列说法中错误的是()A.喜羊羊与灰太狼最初的距离是30mB.灰太狼用15s追上了喜羊羊 C.灰太狼跑了60m追上了喜羊羊 D.灰太狼追上喜羊羊时,喜羊羊跑了60m11、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-312、函数y=(k2﹣1)x+3k是一次函数,则k的取值范围是()A.k≠﹣1B.k≠1C.k≠±1D.k为一切实数13、如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.314、甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个15、1﹣7月份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份二、填空题(共10题,共计30分)16、已知一次函数y= x+m﹣1(其中m是常数),如果函数值y随x的增大而减小,且与y轴交于点P(0,t),那么t的取值范围是________.17、复习课中,教师给出关于x的函数y=−2mx+m−1(m≠0).学生们在独立思考后,给出了5条关于这个函数的结论:①此函数是一次函数,但不可能是正比例函数;②函数的值y 随着自变量x的增大而减小;③该函数图象与y轴的交点在y轴的正半轴上;④若函数图象与x轴交于A(a,0),则a<0.5;⑤此函数图象与直线y=4x−3、y轴围成的面积必小于0.5.对于以上5个结论是正确的有________个.18、小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y (元)与买邮票的枚数x(枚)之间的关系式为________.19、已知直线的解析式为y=ax+b,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a、b的值,则直线y=ax+b同时经过第一象限和第二象限的概率是________.20、如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为________.21、一条笔直的公路上依次有A,B,C三地,甲,乙两人同时从A地出发,甲先使用共享单车,经过B地到达停车点C地后再步行返回B地,此时直接步行的乙也恰好到达B地.已知两人步行速度相同,两人离起点A的距离y(米)关于时间x(分)的函数关系如图,则________.22、已知关于x的方程mx+3=4的解为x=1,则直线y=(m-2)x-3一定不经过第________象限.23、函数与的图象如图所示,这两个函数的图象交点在y轴上,则使得的值都大于零的x的取值范围是________.24、如果每盒钢笔有10支,总售价100元,那么购买钢笔的总钱数y(元)与所买支数x之间的关系式为________.25、已知□ABCD的顶点B(1,1),C(5,1),直线BD,CD的解析式分别是y=kx,y=mx-14,则BC=________,点A的坐标是________.三、解答题(共5题,共计25分)26、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.27、已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.28、从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)小明骑车在平路上的速度为多少km/h,他在乙地休息了多少小时.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.29、世界上大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:摄氏温度/℃0 10 20 30 40华氏温度/℉32 50 68 86 104(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x(℃)时对应的华氏温度为y(℉),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0℉时,摄氏温度是多少℃?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能,求出此值;若不可能,请说明理由.30、已知一次函数y1=-2x+1,y2=x-2.⑴当x分别满足什么条件时,y1=y2, y1<y2, y1>y2?⑵在同一直角坐标系中作出这两个函数的图象,并用自己的话归纳出⑴中的答案与函数图象之间的关系.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、E6、A7、C8、D9、C10、D11、A12、C13、D14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、30、。
如图 1,直线 AB :y2x 4 分别与 x 轴、y轴订交于点A、点 B,以 B 为直角极点在第一象限作等腰Rt △ABC 。
(1)求点 A 、 B 两点的坐标;(2)求点 C 的坐标;(3)如图 2,若点 P 为y轴正半轴上一个动点,分别以AP、OP 为腰在第一象限、第二象限作等腰Rt△ APE 和等腰 Rt △ OPD,连结 ED 交y轴于点 M,当点 P 在y轴正半轴上挪动时,求 PM 的长度。
y yCEBMPDO AO A x x图 2图 124 、( 12 分)如图,在△ABC中AD为∠ BAC 的均分线, DG ⊥BC 且均分 BC, DE ⊥ AB于 E, DF⊥ AC 交 AC 的延伸线于 F。
(1)求证: BE=CF A(2)假如 AB=6 , AC=4 ,求 AE , BE 的长。
EG B C FD27.如图,直角坐标系中,点 A 的坐标为( 1,0),以线段 OA 为边在第四象限内作等边△AOB ,点 C 为 x 正半轴上一动点( OC> 1),连结 BC ,以线段 BC 为边在第四象限内作等边△CBD ,直线 DA 交 y 轴于点 E.(1)△ OBC 与△ABD 全等吗?判断并证明你的结论;(2)跟着点 C 地点的变化,点 E 的地点能否会发生变化?若没有变化,求出点 E 的坐标;如有变化,请说明原因.17、如图,△ ABC中,∠ BAC=90°, BG均分∠ ABC,GF⊥ BC 于点于点 E,连结 EF。
(1)、求证:①、 AE=AG。
(2)、若 AD=8, BD=6,求 AE的长。
F,AD⊥ BC于点 D,交 BG CFG DAEB、(分)如图,直线交轴正半轴于点,交轴正半轴于点1AB x A a,0y B 0,b ,且 a ,25 12b 知足 a 3(3 b) 20 ;(1)求 A, B 的坐标;(2)求∠ OBA 的度数;(3)如图 2,在第二象限内的直线AB 上有一动点 D ,在 x 轴的负半轴上一点M ,知足 DM=DO 若 MN ⊥ AB 于 N ,请判断线段AB 与 DN 的数目关系,并说明原因。
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
一次函数中的定点问题知识架构1. 判断点P (a,a+2)不在第几象限,并说明理由。
归纳:若点是以单参数表示的横、纵坐标,可“设元消参”来确定这点在哪条线上。
2. 如图,直线AB 与y 轴交于点A ,与x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示。
(1) 求直线AB 的解析式(2) 过原点O 的直线把ΔABO 分成面积相等的两部分,直接写出这条直线的解析式。
归纳:三角形中线所在直线平分三角形的面积。
变式1.已知平面上点O (0,0),A (3,2),B (4,0),直线y=mx-3m+2将ΔOAB 分成面积相等的两部分,求m 的值。
变式2.如图,在平面直角坐标系中,A (1,4),B (3,2),C (m,-4m+20),若OC 恰好平分四边形OACB 的面积,求点C 的坐标。
归纳:若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点。
3. 如图,在平面直角坐标系中,ABCDA (0,0),C (10,4),直线y=ax-2a-1分成面积相等的两部分,求a 的值。
归纳:平分中心对称图形面积的直线必经过对称中心。
变式:如图,在平面直角坐标系中,多变形OABCDE 的顶点坐标分别是0(0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,求直线l 的函数解析式。
例题分析1. 在平面直角坐标系中,点P 的坐标(0,2),点M 的坐标为⎪⎭⎫ ⎝⎛---4943,1m m (其中m 为实数).当PM 的长最小时,求m 的值2. 已知在平面直角坐标系中,四边形OABC 的顶点分别为O (0,0),A (5,0),B (m,2),C(m-5,2).(1) 问:是否存在这样的m ,使得在BC 边上总存在点P ,使∠OPA=90°?若存在,求出m 的取值范围;若不存在,请说明理由。
一次函数定义与定义式自变量x和因变量y有如下关系:或y=kx+b (k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。
即:y=kx (k为任意不为零实数)一次函数的性质5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k,b都相同时,两条直线重合。
一次函数的图像及性质(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
y=kx+b时:当k>0,b>0, 这时此函数的图象经过一,二,三象限。
当k>0,b<0, 这时此函数的图象经过一,三,四象限。
当k<0,b>0, 这时此函数的图象经过一,二,四象限。
当k<0,b<0, 这时此函数的图象经过二,三,四象限。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。
当k<0时,直线只通过二、四象限,不会通过一、三象限。
4、特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K 值的乘积为-1)常用公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式得到y=y0 则(x0,y0)即为y1=k1x +b1 与y2=k2x+b2 交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b29.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-110.左移X则B+X,右移X则B-X11.上移Y则X项+Y,下移Y则X项-Y应用一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y 随x的增大而减小。
数学八年级下册一次函数
摘要:
一、一次函数的定义与性质
1.一次函数的定义
2.一次函数的性质
二、一次函数的图像与解析式
1.一次函数的图像
2.一次函数的解析式
三、一次函数的应用
1.函数与实际问题的联系
2.一次函数在实际问题中的应用
四、一次函数的学习意义与方法
1.一次函数的学习意义
2.一次函数的学习方法
正文:
数学八年级下册一次函数是初中数学中非常重要的内容。
一次函数是初中学生接触到的第一个基本函数,也是以后学习其他函数的基础。
一次函数的定义是指形如y=kx+b(k≠0,k、b为常数)的函数,其中x叫做自变量,y叫做因变量。
自变量x的取值范围是全体实数,而因变量y的取值范围则是函数的值域。
一次函数的性质包括:函数图像是一条直线,函数的值随着自变量的增大而增大或减小;当x=0时,y=b,即函数图象与y轴的交点
为(0,b)。
一次函数的图像与解析式密切相关。
解析式是函数图像的数学表达式,而图像则是解析式的几何表示。
在数学中,我们可以通过解析式来绘制函数图像,也可以通过函数图像来推导解析式。
一次函数在实际问题中有广泛的应用。
例如,我们可以通过一次函数来描述物体的运动轨迹,也可以通过一次函数来预测未来的发展趋势。
在解决实际问题时,我们需要根据问题的具体情境,选择合适的一次函数模型,并通过计算或测量来确定函数的参数。
学习一次函数不仅可以帮助我们更好地理解数学知识,也可以提高我们的逻辑思维能力和问题解决能力。
第22讲 一次函数的综合应用(1)定义型 (2)点斜型 (3)两点型 (4)图像型 (5)斜截型 (6)平移型 (7) 实际应用型 (8)面积型 (9)比例型(10)对称型知识归纳: 若直线l 与直线y kx b =+关于(1)x 轴对称,则直线l 的解析式为y kx b =--(2)y 轴对称,则直线l 的解析式为y kx b =-+(3)直线y =x 对称,则直线l 的解析式为y k x b k=-1 (4)直线y x =-对称,则直线l 的解析式为y k x b k =+1 (5)原点对称,则直线l 的解析式为y kx b =-公式中的直线方程为Ax+By+C=0,点P 的坐标为(x 0,y 0) 在实际生活中,应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)或不等式(组)或函数性质进行求解.直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y 轴上同一点: b 1=b 2函数的思想、数形结合的思想,分类讨论的思想。
考点1、实际问题的函数解析式例1、某计算器每个定价80元,若购买不超过20个,则按原价付款:若一次购买超过20个,则超过部分按七折付款.设一次购买数量为x (x >20)个,付款金额为y 元,则y与x之间的表达式为()A、y=0.7×80(x-20)+80×20B、y=0.7x+80(x-10)C、y=0.7×80•xD、y=0.7×80(x-10)例2、等腰三角形的周长是40cm,腰长y(cm)是底边长x(cm)的函数解析式正确的是()A、y=-0.5x+20(0<x<20)B、y=-0.5x+20(10<x<20)C、y=-2x+40 (10<x<20)D、y=-2x+40(0<x<20)例3、甲乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m 处,设xs(0≤x≤100)后两车相距ym.那么y关于x的数解析式为.(写出自变量取值范围)例4、平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是.例5、某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,如图,求:(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李的公斤数例6、年级(1)班班委发起为玉树灾区捐款义卖活动,决定在“六一节”当天租用摊位卖玩具筹集善款.已知同学们从批发店按每个7.6元买进玩具,并按每个15元卖出,租用摊位一天的租金为20元.(1)求同学们当天所筹集的善款y(元)与销售量x(个)之间的函数关系式(善款=销售额-成本);(2)若要筹集不少于500元的慰问金,则至少要卖出玩具多少个?1、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系式()A、Q=5tB、Q=5t+40C、Q=40-5t(0≤t≤8)D、以上答案都不对2、如图中各图分别是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案花盆的总数是s.按此规律推出,s与n的关系式是()A、S=3nB、S=3(n-1)C、S=3n-1D、S=3n+13、某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平平方米的售价提高50元,售价y(元/米2)与楼层x(8≤x≤23,x取整数)之间的关系式为.4、一位卖报人每天从报社固定购买100分报纸,每份进价0.6元,然后以每份1元的价格出售.如果报纸卖不完退回报社时,退回的报纸报社只按进价的50%退款给他.如果某一天卖报人卖出的报纸为x份,所获得的利润为y元,试写出y与x的表达式.5、一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?6、水管是圆柱形的物体,在施工中,常常如下图那样堆放,随着的增加,水管的总数是如何变化的?如果假设层数为n,物体总数为y.(1)请你观察图形填写下表,(2)请你写出y与n的函数解析式.7、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬1.5元;超过100个,超过部分每个产品付酬增加0.3元;超过200个,超过部分除按上述规定外,每个产品再增加0.4元.求一个工人:(1)完成100个以内所得报酬y(元)与产品数x(个)之间的函数关系式;(2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函数关系式;(3)完成200个以上所得报酬y(元)与产品数x(个)之间的函数关系式.考点2、一次函数的应用例1、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A、300m2B、150m2C、330m2D、450m2例2、如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A、1元B、2元C、3元D、4元(例1)(例2)例3、如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.例4、甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有______.(在横线上填写正确的序号)(例3)(例4)例5、为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x 的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.例6、某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.1、小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A、4个B、3个C、2个D、1个2、如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时间t(分钟)的变化图象,则()B.放人的长方体的高度为30cmC.该容器注满水所用的时间为21分钟3、设甲,乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关x于的函数关系如图所示,则甲车的速度是_______米/秒.4、某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为.(3)(4)5、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费,小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元。
1.某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x 件,应收货款y 元,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.
2.已知5x +2y -7=0,用含x 的代数式表示y 为______;用含y 的代数式表示x 为______.
3、求出下列函数中自变量x 的取值范围
(1).324-=x x y (2).32+=x y (3).23++=x x y (4).|
2|23-+=x x y 4.已知:等腰三角形的周长为50cm ,若设底边长为x cm ,腰长为y cm ,求y 与x 的函数解
析式及自变量x 的取值范围.
5.图2-2中,表示y 是x 的函数图象是()
6.如图2-4,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t (小时)与山高h (千米)间的函数关系用图象表示是( )
7.星期日晚饭后,小红从家里出去散步,图2-5所示,描述了她散步过程中离家的距离s (m )与散步所用的时间t (min )之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题
图2-5
(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;
(2)小红在公共阅报栏看新闻一共用了______分;
(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;
(4)小红从邮亭走回家用了______分,平均速度是______米/秒.
正比例函数
1.若直线y =kx 经过点A (-5,3),则k =______.如果这条直线上点A 的横坐标x A =4,那么它的纵坐标y A =______.
2.若⎩⎨⎧-=-=6
,4y x 是函数y =kx 的一组对应值,则k =___,并且当x ≥5时,y ____;当y <-2
时,x ____________.
3.下列函数中,是正比例函数的是( )
A .y =2x
B .x y 21=
C .y =x 2
D .y =2x -1
4.如图3-2,函数y =-x (x <0)的图象是()
图3-2
5.函数y =-2x 的图象一定经过下列四个点中的( )
A .点(1,2)
B .点(-2,1)
C .点)1,21(-
D .点)2
1,1(- 6.如果函数y =(k -2)x 为正比例函数,那么( )
A .k >0
B .k >2
C .k 为实数
D .k 为不等于2的实数
7.如果函数|1|)2(--=m x m y 是正比例函数,那么( )
A .m =2或m =0
B .m =2
C .m =0
D .m =1
8.已知z =m +y ,m 是常数,y 是x 的正比例函数,当x =2时,z =1;当x =3时,z =-1,
求z 与x 的函数关系.
一次函数
1.一次函数32
1+-=x y 的图象与y 轴的交点坐标是______,与x 轴的交点坐标是______.一般的,一次函数y =kx +b 与y 轴的交点坐标是______,与x 轴的交点坐标是______.
2.一次函数y =-2x -1的图象不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.已知函数y =kx +b 的图象不经过第二象限,那么k 、b 一定满足( )
A .k >0,b <0
B .k <0,b <0
C .k <0,b >0
D .k >0,b ≤0
4.下列说法正确的是( )
A .直线y =kx +k 必经过点(-1,0)
B .若点P 1(x 1,y 1)和P 2(x 2,y 2)在直线y =kx +b (k <0)上,且x 1>y 2,那么y 1>
y 2
C .若直线y =kx +b 经过点A (m ,-1),B (1,m ),当m <-1时,该直线不经过第
二象限
D .若一次函数y =(m -1)x +m 2+2的图象与y 轴交点纵坐标是3,则m =±1
10如图 4-4所示,直线l 1:y =ax +b 和l 2:y =bx -a 在同一坐标系中的图象大致是( )
图 4-4
11.已知:⎩⎨⎧=-=2,311y x 和⎩⎨⎧-==1,32
2y x 是一次函数y =kx +b 的两组对应值. (1)求这个一次函数;
(2)画出这个函数的图象,并求出它与x 轴的交点、与y 轴的交点;
(3)求直线y =kx +b 与两坐标轴围成的面积.
图4-5
12.依据给定的条件,求一次函数的解析式.
(1)已知一次函数的图象如图4-5所示,求此一次函数的解析式,并判断点(6,5)是否在此函数图象上.
(2)已知一次函数y =2x +b 的图象与y 轴的交点到x 轴的距离是4,求其函数解析式.
拓展、探究、思考
13.已知函数)2()12(232+--=-n x m y m .
(1)当m 、n 为何值时,其图象是过原点的直线;
(2)当m 、n 为何值时,其图象是过(0,4)点的直线;
(3)当m 、n 为何值时,其图象是一条直线且y 随x 的增大而减小.
14.依据给定的条件,求一次函数解析式.
(1)当-1≤x ≤1时,-2≤y ≤4.
(2)y =1与x 成正比例,且x =2时,y =4.
(3)y =ax +7经过一次函数y =4-3x 和y =2x -1的交点.
(4)正比例函数的图象与一次函数的图象交于点(3,4),两图象与y 轴围成的三角形面积为,2
15求这两个函数的解析式.
15.某造纸厂污水处理的剩余污水随着时间的增加而减少,剩余污水量V (万米3)与污水处理时间t (天)的关系如图5-2所示,
(1)由图象求出剩余污水量V (万米3)与污水处理时间t (天)之间的函数解析式;
(2)污水处理连续10天,剩余污水还有多少万立方米?
(3)按照图中的规律,若想将全部污水处理干净,需要连续处理污水多少天?
(4)平均一天可处理污水多少万立方米?
16.某面粉厂有工人20名,为获得更多利润,增设加工面条项目,用本厂生产的面粉加工成面条(生产1kg 面条需用面粉1kg ).已知每人每天平均生产面粉600kg ,或生产面条400kg .将面粉直接出售每千克可获利润0.2元,加工成面条后出售每千克面条可获利0.6元,若每个工人一天只能做一项工作,且不计其他因素,设安排x 名工人加工面条
(1)求一天中加工面条所获利润y 1(元);
(2)求一天中剩余面粉所获利润y 2(元);
(3)当x 为何值时,该厂一天中所获总利润y (元)最大?最大利润为多少元?
17.某村办工厂今年前五个月中,每月某种产品的产量c (件)关于时间t (月)的函数图象如图6-1所示,该厂对这种产品的生产是( )
图6-1
A .1月至3月每月生产量逐月增加,4、5两月每月生产量逐月减少
B .1月至3月每月生产量逐月增加,4、5两月每月生产量与3月持平
C .1月至3月每月生产量逐月增加,4、5两月均停止生产
D .1月至3月每月生产量不变,4、5两月均停止生产
18.如图6-2,圆柱形开口杯底固定在长方体水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h,注水时间为t,则h与t之间的关系大致为下图中的()
图6-2
19.如图6-3所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形.设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()
图6-3
20.一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是()
图6-4
21.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元.
(1)写出应收门票费y(元)与游览人数x(人)之间的函数关系式;
(2)利用(1)中的函数关系计算:某班54名学生去该风景区游览时,为购门票共花了多少元?。