传热学-导热数值计算
- 格式:ppt
- 大小:5.87 MB
- 文档页数:44
传热系数与导热系数换算公式
传热系数与导热系数之间存在换算关系,具体如下:
热传导率 = 导热系数 / (物质的密度× 物质的比热容)
根据这个公式,我们可以将导热系数和传热系数进行相互换算。
例如,假设某物质的导热系数为W/(m·K),密度为1000 kg/m³,比热容为1000
J/(kg·K),我们可以先计算出该物质的热传导率:
热传导率= / (1000 × 1000) = 5 × 10^-7 m²·K/W
然后,通过热传导率可以计算出该物质的传热系数:
传热系数 = 1 / 热传导率= 1 / (5 × 10^-7) = 2 × 10^6 W/(m²·K)
通过以上计算,我们得知了该物质的传热系数为2 × 10^6 W/(m²·K)。
以上内容仅供参考,建议查阅传热学或物理学书籍获取更全面和准确的信息。
一维稳态导热的数值计算1.1物理问题一个等截面直肋,处于温度=80的流体中。
肋表面与流体之间的对流换热系数为t ∞,肋基处温度,肋端绝热。
肋片由铝合金制成,其导热系数为ℎ=45W/(m 2∙℃)t w =300℃,肋片厚度为,高度为H=0.1m 。
试计算肋内的温度分布及肋λ=110W/(m ∙℃)δ=0.01m 的总换热量。
1.2数学描述及其解析解引入无量纲过余温度,则无量纲温度描述的肋片导热微分方程及其边界θ=t ‒t ∞t w ‒t ∞条件:2220d m dxθθ-=x=0,θ=θw =1x=H,0xθ∂=∂其中 m =上述数学模型的解析解为:[()]()()w ch m x H t t t t ch mH ∞∞--=-⋅ ()()w hp t t th mH m∞∅=-1.3数值离散1.3.1区域离散计算区域总节点数取N 。
1.3.2微分方程的离散对任一借点i 有:2220i d m dx θθ⎛⎫-= ⎪⎝⎭用θ在节点i 的二阶差分代替θ在节点i 的二阶导数,得:211220i i i i m x θθθθ+--+-=V 整理成迭代形式: (i=2,3……,N-1)()112212i i i m x θθθ+-=++V1.3.3边界条件离散补充方程为:11w θθ==右边界为第二类边界条件,边界节点N 的向后差分得:,将此式整理为10N N x θθ--=V 迭代形式,得:N 1N θθ-=1.3.4最终离散格式11w θθ== (i=2,3……,N-1)()112212i i i m x θθθ+-=++V N 1N θθ-=1.3.5代数方程组的求解及其程序假定一个温度场的初始发布,给出各节点的温度初值:,,….,。
将这些初01θ02θ0N θ值代入离散格式方程组进行迭代计算,直至收敛。
假设第K 步迭代完成,则K+1次迭代计算式为:K 11wθθ+= (i=2,3……,N-1)()11112212i i K K K i m x θθθ+-++=++V 111N K K N θθ-++=#include<stdio.h>#include<math.h>#define N 11main(){int i;float cha;/*cha 含义下面用到时会提到*/float t[N],a[N],b[N];float h,t1,t0,r,D,H,x,m,A,p; /*r 代表λ,x 代表Δx ,D 代表δ*/printf("\t\t\t 一维稳态导热问题\t\t");printf("\n\t\t\t\t\t\t----何鹏举\n");printf("\n 题目:补充材料练习题一\n");printf("已知:h=45,t1=80, t0=200, r=110, D=0.01, H=0.1 (ISO)\n");/*下面根据题目赋值*/h=45.0; t1=80.0; t0=300.0; r=110.0; D=0.01; H=0.1;x=H/N; A=3.1415926*D*D/4; p=3.1415926*D; m=sqrt((h*p)/(r*A));/*x代表步长,p代表周长,A代表面积*/printf("\n请首先假定一个温度场的初始分布,即给出各节点的温度初值:\n");for(i=0;i<N;i++){scanf("%f",&t[i]);a[i]=(t[i]-t1)/(t0-t1);b[i]=a[i];/*这里b[i]用记录一下a[i],后面迭代条件及二阶采用温度初场要用到*/ }/*采用一阶精度的向后差分法数值离散*/cha=1;while(cha>0.0001){a[0]=1;for(i=1;i<N;i++)a[i]=(a[i+1]+a[i-1])/(2+m*m*x*x);a[N-1]=a[N-2];cha=0;for(i=0;i<N;i++)cha=cha+a[i]-b[i];cha=cha/N;/*cha代表每次迭代后与上次迭代各点温度差值的平均值*/}for(i=0;i<N;i++)t[i]=a[i]*(t0-t1)+t1;printf("\n\n经数值离散(一阶精度的向后差分法)计算得肋片的温度分布为:\n");for(i=0;i<N;i++)printf("%4.2f\t",t[i]);printf("\n\n");getchar();/*采用二阶精度的元体平衡法数值离散(温度初值还用设定的初场,便于比较)*/ for(i=0;i<N;i++)a[i]=b[i];cha=1;while(cha>0.0001){a[0]=1;for(i=1;i<N;i++)a[i]=(a[i+1]+a[i-1])/(2+m*m*x*x);a[N-1]=a[N-2]/(1+0.5*m*m*x*x);cha=0;for(i=0;i<N;i++)cha=cha+a[i]-b[i];cha=cha/N;}for(i=0;i<N;i++)t[i]=a[i]*(t0-t1)+t1;printf("\n\n经数值离散(二阶精度的元体平衡法)计算得肋片的温度分布为:\n"); for(i=0;i<N;i++)printf("%4.2f\t",t[i]);printf("\n\n");getchar();}。
热传递热量计算公式
热传递是指热量从一个物体传递到另一个物体的过程。
热传递的计算可以通过多种公式来实现,具体取决于热传递的方式。
以下是一些常见的热传递计算公式:
1. 热传导(导热)的计算公式:
热传导是指热量通过物质内部传递的过程。
其计算公式可以用傅立叶定律来表示:
Q = -kAΔT/Δx.
其中,Q表示传导热量,k表示热导率,A表示传热面积,ΔT表示温度差,Δx表示传热距离。
2. 热对流的计算公式:
热对流是指热量通过流体(气体或液体)对流传递的过程。
其计算公式可以用牛顿冷却定律来表示:
Q = hAΔT.
其中,Q表示对流热量,h表示对流换热系数,A表示传热面积,ΔT表示温度差。
3. 热辐射的计算公式:
热辐射是指热量通过辐射传递的过程。
其计算公式可以用斯特藩-玻尔兹曼定律来表示:
Q = εσA(T₁^4 T₂^4)。
其中,Q表示辐射热量,ε表示发射率,σ表示斯特藩-玻尔兹曼常数,A表示辐射面积,T₁和T₂分别表示两个物体的绝对温度。
以上是一些常见的热传递计算公式,它们分别适用于不同的热传递方式。
在实际问题中,需要根据具体情况选择合适的公式进行计算。
计算重点公式传热学传热学是研究热能在物质之间传递的学科,涵盖了热传导、热对流和热辐射三种传热方式。
在工程和科学领域中,计算传热是非常重要的,可以用来优化和设计各种热能设备和系统。
下面将介绍一些重要的传热计算公式。
1.热传导计算公式热传导是通过分子间的相互作用传递热能的方式。
对于常见的一维热传导问题,可以使用傅里叶热传导定律进行计算:q = -kA(dT/dx)其中,q是单位时间内通过物体的热量流率,k是物质的热导率,A 是传热截面积,dT/dx是温度梯度。
如果传热是在不同的材料之间进行,还需要考虑热传导的界面热阻。
界面热阻的计算公式为:R=1/(hA)其中,R是界面热阻,h是对流传热系数。
2.热对流计算公式热对流是通过流体的对流传递热能的方式。
对于流体中的对流传热,可以使用牛顿冷却定律进行计算:q=hAΔT其中,q是单位时间内通过物体的热量流率,h是对流传热系数,A 是传热表面积,ΔT是流体和物体之间的温度差。
对流传热系数h可以通过实验测量或者经验公式进行估算,常用的计算公式有Nusselt数和普朗特数。
3.热辐射计算公式热辐射是通过物体表面的电磁辐射传递热能的方式。
对于黑体辐射,可以使用斯特藩—玻尔兹曼定律进行计算:q=σAε(T^4)其中,q是单位时间内通过物体的热量流率,σ是斯特藩—玻尔兹曼常数,A是物体的表面积,ε是物体的辐射率,T是物体的温度。
对于非黑体的辐射传热,还需要考虑辐射率和视觉系数等因素。
4.综合传热计算在实际问题中,常常会有多种传热方式同时存在。
此时,需要将不同传热方式的热流量进行累加,得到总的传热量。
根据能量守恒定律,可以得到以下综合传热公式:q_total = q_conduction + q_convection + q_radiation其中,q_total是总的热量流率,q_conduction是热传导的热量流率,q_convection是热对流的热量流率,q_radiation是热辐射的热量流率。
数值传热学的通用方程数值传热学的通用方程引言:传热学是研究热量在物体内传递的学科,它在实际生活中具有广泛的应用。
数值传热学是传热学的一个重要分支,借助数值计算方法和计算机模拟,能够更准确地预测和模拟热量的传递过程。
在数值传热学中,通用方程是一种重要的工具,它能够描述和计算物体内热量的传递方式。
本文将以数值传热学的通用方程为主题,通过分析其深度和广度,以全面评估和解释这一概念。
一、数值传热学的基础概念1.1 热量传递的三种方式热量传递有三种方式:传导、对流和辐射。
传导是指热量通过物质的直接接触和振动传递,对流是指热量通过流体的传输,辐射是指热量通过电磁波辐射传递。
这三种方式在不同的情况下起着不同的作用,同时它们也相互影响和耦合。
1.2 数值计算方法在传热学中的应用数值计算方法是数值传热学的核心工具,它可以通过数学模型和离散计算,模拟和预测物体内热量的传递过程。
常用的数值计算方法有有限元法、有限差分法和有限体积法等。
通过这些方法,我们可以更准确地计算和研究热量的传递规律。
二、数值传热学的通用方程2.1 传热方程的基本形式传热方程是描述热量传递过程的数学方程,它以物体内部的温度分布、热流和热导率等参数为基础,通过各种数学方法和推导,得到不同传热方式下的通用方程。
2.2 热传导方程热传导方程是描述热量通过传导方式传递的方程。
在传热过程中,热量会从高温处传向低温处,而传热率又与温度梯度和材料的热导率成正比。
热传导方程能够计算和描述热量在物体内部的传递过程,为热传导问题的分析和计算提供了基础。
2.3 流体传热方程流体传热方程是描述热量通过对流方式传递的方程。
流体传热过程中,流体的流动状态和温度梯度会影响热量的传递速率。
流体传热方程能够计算和描述流体内部的热量传递过程,对于流体传热问题的研究和分析具有重要意义。
2.4 辐射传热方程辐射传热方程是描述热量通过辐射方式传递的方程。
辐射传热过程中,热量通过电磁波的辐射传输,与物体的温度和辐射特性有关。
5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。
首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT ke w w e (5-2)图5.1 控制体和网格然后进行离散化。
如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。
式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。
进行计算时,物理参数值存储在节点的位置上。
为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。
常用的方法由两种,即算术平均法与调和平均法。
1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeEe e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6) 2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。
控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。
5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。
首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT k e w w e (5-2)图5.1 控制体和网格然后进行离散化。
如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。
式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。
进行计算时,物理参数值存储在节点的位置上。
为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。
常用的方法由两种,即算术平均法与调和平均法。
1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeE e e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6)2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。
控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。
传热系数的计算
1. 对流传热系数的计算
对流传热系数主要取决于流体的性质、流动状态和物体的几何形状。
对于强制对流,常采用经验相关公式计算对流传热系数,如著名的牛顿公式。
对于自然对流,则可使用相似理论推导出的无因次相关公式。
2. 导热传热系数的计算
导热传热系数主要取决于固体材料的导热性能。
对于一维稳态导热,可根据傅里叶定律计算导热传热系数。
对于复杂的几何形状和非稳态情况,则需要采用数值计算方法求解。
3. 辐射传热系数的计算
辐射传热系数与物体的表面性质和温度有关。
通常可根据斯蒂芬-波尔兹曼定律计算辐射传热系数。
对于复杂的几何形状和环境,则需要考虑视因子的影响。
4. 综合传热系数的计算
在实际传热过程中,往往同时存在对流、导热和辐射等多种传热方式。
这种情况下需要综合考虑各种传热方式,计算总的传热系数。
传热系数的准确计算对于设计和优化传热设备、评估传热性能等具有重要意义。
同时,传热系数的计算也是传热学研究的一个重要内容。
第四章 导热问题的数值解法1、重点内容: ① 掌握导热问题数值解法的基本思路;② 利用热平衡法和泰勒级数展开法建立节点的离散方程。
2、掌握内容:数值解法的实质。
3、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。
由前述3可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。
但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。
随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1) 有限差分法 (2)有限元方法 (3)边界元方法数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。
如:几何形状、边界条件复杂、物性不均、多维导热问题。
分析解法与数值解法的异同点:1、 相同点:根本目的是相同的,即确定① t=f(x ,y ,z);② ),,,(τz y x g Q =。
2、 不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。
§4—1 数值求解的基本思路及稳态导热内节点离散方程的建立一、 解法的基本概念1、 实质对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
该方法称为数值解法。
这些离散点上被求物理量值的集合称为该物理量的数值解。
2、基本思路:数值解法的求解过程可用框图4-1表示。
由此可见:1)物理模型简化成数学模型是基础; 2)建立节点离散方程是关键;3)一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。
传热学数值计算大作业传热学是研究物体内部和之间热量传递的科学,其应用范围广泛,例如在工程领域中,传热学的数值计算被广泛用于优化热传递过程,提高能源利用效率。
本文将介绍传热学数值计算的大作业,主要内容包括问题陈述、计算方法和结果分析等。
问题陈述:本次大作业的问题是研究一个热管的热传递特性。
具体来说,热管由内外两个半圆形的金属管组成,内管壁与外管壁之间是一种导热的传热介质。
问题要求计算热管内外壁的温度分布,并分析传热过程的效率和优化热管的设计。
计算方法:计算热传递过程需要运用一些热传导定律和传热方程。
首先,根据Fourier 热传导定律,可得到内外壁的温度梯度。
然后,使用热传导方程来描述热传递过程,其中包括热扩散项和传热源项。
在计算热传导时需要注意材料的热导率、导热介质的热传导性质等参数。
在计算中,可以使用一些数值方法来离散化热传导方程,例如有限差分法、有限元法等。
其中,有限差分法是一种常见的数值方法。
通过将热传导方程中的导数用差分表达式替代,可以将偏微分方程转化为代数方程。
然后,可以使用迭代方法求解代数方程,得到温度分布的数值解。
结果分析:通过数值计算,可以得到热管内外壁的温度分布。
根据温度分布,可以分析热传递过程中的热流分布和传热效果。
例如,可以计算内外壁之间的热传导率,评估热管的热传递效率。
同时,可以对热管的设计进行优化。
例如,可以通过改变热导率高低、加大导热介质的厚度等方式,来提高热传递效果。
此外,对于热管的材料选择和导热介质的设计,还可以进行参数敏感性分析。
通过改变各个参数的数值,可以研究其对热传递过程的影响程度。
这有助于优化热管的设计,并提供一些实际应用方面的建议。
总结:传热学的数值计算是研究热传递现象的重要工具,可以帮助我们深入了解传热过程,优化传热装置的设计。
通过本次大作业,我们可以学习和练习传热学数值计算的方法和技巧,提升对传热现象的理解和分析能力。
希望通过这次大作业,能够更好地应用所学知识,解决实际问题。