直线运动高中物理知识点
- 格式:docx
- 大小:20.84 KB
- 文档页数:7
手写教案高中物理直线运动
教学内容:直线运动
教学目标:
1. 理解直线运动的基本概念;
2. 掌握直线运动的相关物理量和公式;
3. 能够运用直线运动的知识解决具体问题。
教学重点:
1. 直线运动的基本概念;
2. 直线运动的相关物理量和公式。
教学难点:
1. 运用直线运动的知识解决具体问题。
教学过程:
一、复习
让学生回顾直线运动的基本概念,包括位移、速度、加速度等,并复习相关的物理量和公式。
二、引入
引入直线运动的概念,让学生了解直线运动的特点和规律。
三、讲解
1. 直线运动的物理量和公式:讲解直线运动中的位移、速度、加速度等物理量的定义和相关公式。
2. 直线运动的图像:通过实例展示直线运动的位置-时间图像和速度-时间图像。
四、实例分析
给学生一些直线运动的实例,让他们运用所学知识解决相关问题。
五、练习
布置一些练习题,让学生巩固所学知识和提高解题能力。
六、总结
总结本节课的重点和难点,强化学生对直线运动的理解和掌握。
七、作业
布置作业,让学生在家继续巩固所学知识。
教学反思:
通过这节课的教学,学生应该能够理解直线运动的基本概念,掌握直线运动的相关物理量和公式,并能够运用所学知识解决具体问题。
在教学过程中,要引导学生主动思考和解决问题,培养他们的物理思维能力和实际运用能力。
高考总复习知识网络一览表物理高中物理知识点总结大全一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算.四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FNr}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕5.机械波、横波、纵波〔见第二册P2〕6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕.六、冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mv o {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;00(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;(7)r0为分子处于平衡状态时,分子间的距离;(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕.九、气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=7 6cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K).十、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B 两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P 105〕.十一、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡.(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零.11.伏安法测电阻电流表内接法:电流表外接法:电压表示数:U=UR+UA 电流表示数:I=IR+IVRx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(R ARV)1/2] 选用电路条件Rx分享高中物理知识点大全一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
高一物理直线运动的几个概念人教版【本讲教育信息】一. 教学内容:直线运动的几个概念二. 知识要点:(一)直线运动的几个概念1. 质点:用来代替物体的有质量的点叫质点。
它是一个理想的物理模型。
物体能简化为质点的条件是:在所研究的问题中,物体只做平动或物体的形状和大小可以忽略不计时才可以把物体简化为质点。
2. 位移和路程:位移是做机械运动的物体从初位置指向末位置的有向线段。
路程是物体运动所经实际轨迹的长度。
3. 速度和速率:(1)平均速度:运动物体的位移和所用时间的比值,叫做这段位移(或时间内)的平均速度,即t s v /=,平均速度是矢量,其方向跟位移方向相同。
(2)瞬时速度:运动物体经过某一时刻(或某一位置)的速度,叫做瞬时速度,其大小叫速率。
(3)平均速率:物体在某段时间内通过的路程l 跟通过这段路程所用时间t 的比值,叫做这段路程(或这段时间)的平均速率。
即t l v /=。
它是标量。
值得注意的是它并不是平...........均速度的大小。
.......4. 加速度:在匀变速直线运动中,速度的变化跟发生这些变化所用时间的比值,叫做匀变速直线运动的加速度。
即tv v t v a t ∆-=∆∆=0,加速度的方向跟速度变化的方向相同。
5. 匀变速直线运动规律:(1)基本规律:at v v t +=0 2021at t v S += (2)导出规律:aS v v t 2202=- t v v t v S t ⋅+=⋅=2三. 重难点分析:1. 如何理解质点:在物理学的研究中,为了突出现象中的主要因素,而忽略次要因素,需要建立起理想的“物理模型”。
质点就是研究物体作机械运动时的一种“理想模型”。
2. 物理学中的质点和几何中的“点”是有本质区别的:“质点”具有质量,同时占有位置,能不能把一个物体当“质点”看待,并不是由物体的形状和体积大小来决定,而是由它的形状和体积大小在所研究问题中是否是主要因素来决定的,如果在所研究的问题中,物体的大小和形状不起什么作用,或者所起的作用微不足道,可以忽略不计,那么就可以拿一个只具有质量,而没有大小和形状的点来代替整个物体,这种用来代替物体的“有质量的点”就叫做质点。
高中物理直线运动重要知识点高中物理直线运动是一个重要的学科,它是运动学的基础,牵涉到众多的重要知识点。
以下是高中物理直线运动的重要知识点,以帮助学生更好地掌握这个学科,更好地理解和解决直线运动问题。
1. 直线运动的定义和表示方法直线运动是指物体在直线上的移动过程,可以通过位移-时间图、速度-时间图、加速度-时间图等方法进行表示和描述。
其中,位移表示物体在某一时间内的位移,速度表示物体在某一瞬时的速度大小和方向,加速度表示物体在某一瞬时的加速度大小和方向。
2. 平均速度和瞬时速度的定义和计算方法平均速度是指物体在某一时间段内移动的平均速度,可以分别用位移和时间的比值、路径长度和时间的比值,以及等速直线运动公式v=Δs/Δt来计算;瞬时速度是指物体在某一瞬时的速度大小和方向,可以通过导数计算得到。
3. 平均加速度和瞬时加速度的定义和计算方法平均加速度是指物体在某一时间段内速度变化的平均值,可以用速度变化量和时间的比值,以及等加速直线运动公式a=Δv/Δt来计算;瞬时加速度是指物体在某一瞬时的加速度大小和方向,可以通过导数计算得到。
4. 直线运动的运动规律直线运动的运动规律包括位移-时间规律、速度-时间规律和加速度-时间规律。
其中,位移-时间规律描述了物体在直线上的位移和时间的关系,速度-时间规律描述了物体在直线上的速度和时间的关系,加速度-时间规律描述了物体在直线上的加速度和时间的关系。
5. 合速度和相对速度的概念和计算方法合速度是指物体在两个速度的影响下运动的总速度,可以用合成速度公式vH=(v1+v2)/2来计算;相对速度是指两个物体之间相对速度的大小和方向,可以通过两个物体之间的速度差计算得到。
6. 运动图像和分析方法运动图像是指通过图表或图像的形式来描述和分析物体的直线运动,其中最常用的方法包括位移-时间图、速度-时间图和加速度-时间图。
通过分析和解读不同类型的运动图像,可以得到物体的位移、速度和加速度的大小、方向、变化率等信息。
高中物理直线运动基本概念一. 机械运动:物体相对其他物体(参照物)的位置变化,叫做机械运动。
二. 参考系:为了研究的方便,假定不动的物体,叫做参考系。
1.一个物体是否运动取决于它相对于所选参考系的位置是否变化。
2.同一物体相对于不同的参考系,其运动情况可能不同。
3.参考系的选取是任意的,实际应用中以简化运动为标准。
未强调参考系的运动都是以地球(地面)为参考系。
所有公式里物理量的参考系也都是地球(地面)。
如 W = F·S Ek = mv2/2 S = at2/2三.质点1.定义:有质量而没有形状和大小的点。
(对空间有占有性 )2.能看成质点的条件:①平动的物体一般都可以看成是质点。
(注意区分平动和转动)②转动的物体有时候也可以看成是质点。
(只要物体的尺寸不影响研究的问题。
)研究地球自转时不能看成是质点;研究地球公转时可以看成是质点。
四.运动的分类匀速直线运动直线运动匀加速直线运动匀变速直线运动变速直线运动匀减速直线运动曲线运动非匀变速直线运动五.时间和时刻对应在数轴上,时间是一段,时刻是一个点。
例 1:0 1 2 3 4 5 S(秒)注意:1. 所标数字均表示某时刻末。
(“1”表示第 1 秒末)2.前一秒末即为后一秒初。
(第 2 秒末就是第 3 秒初)3.第几秒表示时间就是 1 秒。
(第 3 秒就是第 3 个 1 秒)FBA图 2- 5794.计时起点不一定是运动的起点 .六. 位移和路程的区别联系1.位移是矢量(有大小和方向,方向是从初位置指向末位置),路程是标量(只有大小)。
位移可以用平行四边形法则合成,路程合成用算术和。
2.位移的大小是指从初位置到末位置间的直线距离,路程是指从初位置到末位置间的轨迹长度。
3.随时间延长(运动物体的)位移不一定增大,而路程一定增大。
4.它们的单位都是米。
5.路程总是大于或等于位移的大小。
(当物体做单方向直线运动时,取等号)例 2:一支长 150m 的队伍匀速前进,通讯兵从队尾前进 300m 赶到队前并立即返回,当通讯兵回到队尾时,队伍已前进 200m,在整个过程中通讯兵的位移大小是▁▁▁,通讯兵的路程是▁▁▁。
高中物理:直线运动知识点1. 质点:不考虑物体的形状和大小,把物体看作是一个有质量的点。
它是运动物体的理想化模型。
注意:质量不可忽略。
哪些情况可以看做质点:1)运动物体上各点的运动情况都相同,那么它任何一点的运动都可以代表整个物体的运动。
2)物体之间的距离远远大于物体本身的大小,即可忽略形状和大小,而看做质点。
(比如:研究地球绕太阳公转时即可看成质点,而研究地球自转时就不能看成质点)2. 位移和路程:从初位置指向末位置的有向线段,矢量.路程是物体运动轨迹的长度,是标量。
路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.3. 速度和速率①平均速度:位移与时间之比,是对变速运动的粗略描述。
而平均速率:路程和所用时间的比值。
v=s/t。
在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧,瞬时速度是对变速运动的精确描述.4. 加速度(1)加速度是描述速度变化快慢的物理量,矢量。
加速度又叫速度变化率.(2)定义:速度的变化Δv跟所用时间Δt的比值,,比值定义法。
(3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致. 注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大.5. 匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.(2)特点:a=0,v=恒量.(3)位移公式:s=vt.匀变速直线运动(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.(2)特点:a=恒量(3)★公式:速度公式:v=v0+at位移公式:速度位移公式:vt2-v02=2as以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.6. 初速度为0的匀加速直线运动的几个比例关系的应用:(一)时间连续等分1) 在T 、2T、3T…nT内的位移之比为12:22:32:……:n2;2) 在第1个T内、第 2个T内、第3个T内……第N个T内的位移之比为1:3:5:……:(2N-1);3) 在T末、2T末、3T末……nT末的速度之比为1:2:3:……:n;(二)位移连续等分1) 在第1个S内、第2个S内、第3个S内……第n个S内的时间之比为7. 重要结论(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Si+l -Si=aT2 =恒量(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:(3)匀变速直线运动的质点,在某段位移中点的瞬时速度(4)无论匀加速还是匀减速直线运动,都是7. 匀减速直线运动至停止:可等效认为反方向初速为零的匀加速直线运动。
匀变速直线运动规律
一、加速度与运动性质:
1.a=0 时,其运动形式为匀速直线运动;
2.a 为恒量时,其运动形式为匀加速直线运动,若 a 与 v 同向,为匀加速直线运动, a 与 v 反向,为匀减速直线运动。
二、匀变速直线运动的公式:
1.匀变速直线运动的速度公式:υt=υ0+a t
2.匀变速直线运动的位移公式:S=υ0 t+1/2a t^2
3.匀变速直线运动的速度位移公式:υt^2=υ0^2+2aS
三、速度时间图像与位移时间图像
1.匀速直线运动的速度时间图像是一条与时间轴平
行的直线。
匀速直线运动的位移时间图像是一条与
倾斜的直线。
2.匀变速直线运动的位移时间图像是一条
抛物线。
匀变速直线运动的速度时间图像
是一条倾斜的直线。
例题一:
用升降机从井底提升物体。
升降机先由静止开始作匀加速运动,经过 5s 达到
10m/s,然后匀速运动 2s 后作匀减速运动,又经过 5s 恰好到达井口而停止, 试画出该
过程的速度图象,并求出井的深度?
例题二:
电车由静止开始作匀加速直线运动,加速度 0.5m/s2,途径相隔 125 米的 AB 两点,共用 10 秒钟,那么,电车经过 B 点的速度是多少?。
第二章匀变速直线运动知识点匀变速直线运动,速度均匀变化的直线运动,即加速度不变的直线运动。
其速度时间图像是一条倾斜的直线,表示在任意相等的时间内速度的变化量都相同,即速度(v)的变化量与对应时间(t)的变化量之比保持不变(加速度不变),这样的运动是变速运动中最简单的运动形式,叫做匀变速直线运动。
[1]基本公式速度时间公式:位移时间公式:速度位移公式:其中a为加速度,;为初速度, 为末速度,t为该过程所用时间,x为该过程中的位移。
V=V0+at条件物体作匀变速直线运动须同时符合下述两条:(1)所受合外力不为零,且保持不变;(2)合外力与初速度在同一直线上。
分类在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
若速度方向与加速度方向相同(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动。
规律推导一、位移公式推导:(1)由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度中间时刻的瞬时速度=平均速度:平均速度公式:(2) 相邻相等时间段内位移差:二、速度公式推导(1)中间位移的速度(2)中间时刻的速度比例关系(1)重要比例关系由,得。
由,得,或。
由,得,或。
(2)基本比例(当初速度为0的匀加速运动)①第1秒末、第2秒末、……、第n秒末的速度之比推导:②前1秒内、前2秒内、……、前n秒内的位移之比推导:③第1个t内、第2个t内、…、第n个t内(相同时间内)的位移之比推导:④通过前1s、前2s、前3s……、前ns的位移所需时间之比推导:,当位移等比例增大时,根号内的比值也等比例增大。
⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比推导:自由落体运动一、概念物体只在重力的作用下从静止开始下落的运动。
1、运动学特点:自由落体运动是初速度为零的匀加速直线运动。
1高中物理-必修一第2章-匀变速直线运动-知识点梳理 1、物体只在重力作用下从静止开始下落的运动称为自由落体运动。
自由落体运动是一个理想模型,当空气阻力对物体下落的影响小到可以忽略不计的时候,可以近似看做自由落体运动。
自由落体运动是速度均匀增加的的变速直线运动,即匀加速直线运动。
2、自由落体运动物体的v-t 图像为一条经过原点的倾斜直线,斜率就是下落物体的加速度大小,直线与时间轴所围成的“面积”就是自由落体运动经过时间t 的位移大小。
自由落体运动的加速度称为重力加速度,用g 表示,方向竖直向下,大小通常取9.8m/s 2。
3、自由落体的物体,下落速度v 与时间t 的关系为:v= gt ,变形式有t= v/g ;下落高度h 和t 的关系:h= 221gt ,变形式有下落速度v 与下落高度h 的关系为:v 2= 2gh ,也即h= g v2 。
4、如果告诉自由落体运动过程中经过中间某一段距离△h 所用的时间△t ,可以假设其前面所经过路程为h ,所用时间为t ,然后列出两个方程⎪⎪⎩⎪⎪⎨⎧∆+=∆+=22)(2121t t g h h gt h ,解方程组即可。
5、对于自由落体运动,某段时间内的末速度如果如果是v ,则这段时间内的平均速度是v/2。
6、自由落体运动等时间的比例规律:①△t 末、2△t 末、3△t 末......n △t 末的速度之比:v 1:v 2:v 3:...:v n =1:2:3:...:n ;②△t 内、2△t 内、3△t 内......n △t 内的位移之比:h 1:h 2:h 3:...:h n =12:22:32:...:n 2;③第一个△t 内、第二个△t 内、第三个△t 内......第n 个△t 内的位移之比:h ①:h ②:h ③:...:h N =1:3:5:...:(2n-1)。
7、自由落体运动中,求某一段时间△t 内的位移:法①,△h=222121初末gt gt -;法②,△h=v ·△t=t t t g ∆⋅+⋅2末始。
高中物理直线运动知识点(6篇)高中物理直线运动知识点1匀变速直线运动重要知识点讲解基本概念:物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
●最核心公式末速度与时间关系:Vt=Vo+at位移与时间关系:x=Vot+at^2/2速度与位移关系:Vt^2-Vo^2=2as●重要公式补充(1)平均速度V=s/t;(2)中间时刻速度V(t)=(Vt+Vo)/2=x/t;(3)中间位置速度V(s)=[(Vo^2+Vt^2)/2]1/2;(4)公式推论Δs=aT^2;备注:式子中Δs为连续相邻相等时间(T)内位移之差,这个公式也是打点计时器求加速度实验的原理方程。
●物体作匀变速直线运动须同时符合下述两条:⑴受恒外力作用⑴合外力与初速度在同一直线上。
●重要比例关系由Vt=at,得Vt⑴t。
由s=(at^2)/2,得s⑴t^2,或t⑴2√s。
由Vt^2=2as,得s⑴Vt^2,或Vt⑴√s。
今天的内容就介绍到这里了。
高中物理直线运动知识点2一、基本关系式v=v0+at x=v0t+1/2at2 v2-vo2=2ax v=x/t=(v0+v)/2二、推论1、vt/2=v=(v0+v)/22、⑴x=at2 { xm-xn=(m-n)at2 }3、初速度为零的匀变速直线运动的比例式(1)初速度为0的n个连续相等的时间末的速度之比:V1:V2:V3: :Vn=1:2:3: :n(2)初速度为0的n个连续相等时间内全位移X之比:X1: X2: X3: :Xn=1:2(3)初速度为0的n个连续相等的时间内S之比:S1:S2:S3::Sn=1:3:5::(2n—1)(4)初速度为0的n个连续相等的位移内全时间t之比t1:t2:t3::tn=1:√2:√3::√n(5)初速度为0的n个连续相等的位移内t之比:t1:t2:t3::tn=1:(√2—1):(√3—√2)::(√n—√n—1) 应用基本关系式和推论时注意:(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。
高中全部物理知识点总结第一章:力学1.1 运动的描述1.1.1 位移、速度、加速度的定义和计算公式1.1.2 平均速度、平均加速度的计算公式1.1.3 匀速直线运动、变速直线运动的描述和计算1.1.4 直线运动图像的绘制1.1.5 二维运动的描述和计算1.2 牛顿运动定律1.2.1 牛顿第一定律1.2.2 牛顿第二定律1.2.3 牛顿第三定律1.2.4 物体的运动和力的关系1.2.5 弹力、摩擦力、重力的性质和计算1.3 动能和动能定理1.3.1 动能的定义和计算公式1.3.2 动能定理的概念和计算1.3.3 动能定理的应用1.4 势能和势能定理1.4.1 势能的定义和计算公式1.4.2 势能定理的概念和计算1.4.3 势能定理的应用1.4.4 弹簧弹力的势能和应用1.5 力的做功和功1.5.1 力的做功的定义和计算公式1.5.2 功率的定义和计算1.5.3 功的计算和应用1.5.4 功的加减法第二章:热学与物态变化2.1 物态变化和热量2.1.1 基本概念:凝固、熔化、气化、凝华2.1.2 物态变化的热量计算2.1.3 变态物质的能量转化2.1.4 水的异常膨胀2.2 热力学定律2.2.1 热平衡和热传导2.2.2 火焰的构成和燃烧过程2.2.3 热的传播和传热的应用2.2.4 热功当量和物质内能的计算第三章:波动3.1 机械波3.1.1 波的概念3.1.2 机械波的特点和参数3.1.3 立体波和平面波的传播3.1.4 波的叠加和干涉3.1.5 波的频率和波长的计算3.2 声波3.2.1 声波的产生和传播3.2.2 声波和噪声的特点3.2.3 声速的测量和计算3.2.4 声的反射、折射和衍射3.2.5 声的共振和声音的应用3.3 光波3.3.1 光的特点:直线传播、波粒二象性3.3.2 光的波动理论和光的波动模型3.3.3 光的反射、折射和衍射3.3.4 光的干涉和衍射实验第四章:电学4.1 电荷和电场4.1.1 电荷的带电特点4.1.2 电荷守恒定律和库仑定律4.1.3 电场的产生和描述4.1.4 电场的强度和公式计算4.1.5 电势差和电势能的概念和计算4.2 电流和电路4.2.1 电流的定义和计算4.2.2 电阻和电阻率4.2.3 串联和并联电路的分析和计算4.2.4 电功和电功率的概念和计算4.2.5 电路中的电流和电压4.2.6 电源和电路的能量转化4.3 磁场和电磁感应4.3.1 磁场的产生和描述4.3.2 磁感线和磁场的强度计算4.3.3 洛伦兹力和安培环路定理4.3.4 电流产生磁场和磁能4.3.5 电磁感应现象和法拉第电磁感应定律4.4 电磁波和电磁谱4.4.1 电磁波的产生和传播4.4.2 电磁谱的组成和特点4.4.3 电磁波的应用和危害第五章:光学5.1 光的传播和折射5.1.1 光的直线传播和光速5.1.2 折射定律和绝对折射定律5.1.3 透镜的成像和应用5.2 光的成像和透镜5.2.1 成像规律和公式计算5.2.2 成像的特点和应用5.2.3 透镜的种类和功能5.3 光的干涉和衍射5.3.1 光的干涉现象5.3.2 干涉条纹的间距计算5.3.3 光的衍射现象5.3.4 衍射格的规律和应用5.4 光的偏振和波粒二象性5.4.1 光的偏振现象5.4.2 光的波粒二象性5.4.3 光的量子论和光的粒子性第六章:原子与分子6.1 原子结构和粒子模型6.1.1 原子的组成和结构6.1.2 原子的构建和粒子模型6.1.3 原子的尺度和电子云6.1.4 原子的质谱和元素周期表6.2 电子和核的结构6.2.1 电子的波粒二象性6.2.2 原子核的结构和尺度6.2.3 原子核的组成和放射性6.2.4 放射性的装置和应用6.3 分子结构和化学键6.3.1 分子的结构和形状6.3.2 化学键的类型和特点6.3.3 成键能和分子间相互作用6.3.4 分子的种类和性质第七章:一维运动7.1 平抛运动7.1.1 平抛运动的概念和参数7.1.2 平抛运动的计算和规律7.1.3 平抛运动的应用7.2 圆周运动7.2.1 圆周运动的概念和参数7.2.2 圆周运动的计算和规律7.2.3 圆周运动的应用7.3 万有引力7.3.1 万有引力的概念和公式7.3.2 行星运动和人造卫星的动力学7.3.3 引力场和引力的关系第八章:流体力学8.1 流体的性质和参数8.1.1 流体的密度、压强、密度和速度的关系8.1.2 流体的连贯和牛顿流体力学定律8.2 流体的运动和压强计算8.2.1 流体的运动和速度计算8.2.2 流体的压强和流速计算8.3 流体的压力和浮力8.3.1 流体的压力和压力计算8.3.2 流体的浮力和浮力计算8.3.3 流体的应用和压力控制总结:以上就是高中物理的全部知识点总结,这些知识点涵盖了力学、热学、波动、电学、光学、原子与分子、一维运动和流体力学等多个领域,在高中物理课程中占据重要地位。
高中物理知识点、公式大全(超齐全)一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t 只是量度式,不是决定式;(4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力1)平抛运动1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
高中物理:匀速直线运动【知识点的认识】(1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。
根据匀速直线运动的特点可知,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。
(2)匀速直线运动的公式:速度公式:v=;位移公式:s=vt。
(3)匀速直线运动的s﹣t图象:匀速直线运动的图象是一条过原点的倾斜直线,表示作匀速直线运动的物体,通过的位移与所用的时间成正比。
如图1所示,s﹣t图线的斜率表示速度的大小,斜率越大,速度越大。
(4)匀速直线运动的v﹣t图象:一条平行于时间轴的直线。
如图2所示,v﹣t图线与时间轴围成的面积等于对应时间的位移。
图线在横轴上方表示速度为正,即做正向匀速直线运动;图线在横轴下方表示速度为负,即做反向匀速直线运动。
【命题方向】例1:下列图象中反映物体做匀速直线运动的是()(图中x表示位移、v表示速度、t表示时间)A.B.C.D.分析:对于v﹣t图象,要读出随时间的变化速度如何变化;对于s﹣t图象,要读出随着时间的变化路程如何变化,从而找到符合匀速直线运动的图象。
解答:A、是x﹣t图象:随时间的增大,位移不变,表示物体静止,故A不符合题意;B、是x﹣t图象:物体位移均匀增大,位移和时间的比值为常数,表示物体做匀速直线运动,故B符合题意;C、是v﹣t图象:随时间的增大,物体速度不变,表示物体做匀速直线运动,故C符合题意;D、是v﹣t图象:随时间的增大,物体速度逐渐增大,表示物体做匀加速运动,故D不符合题意;故选:BC。
点评:此题考查的是我们对速度概念的理解和对图象的分析能力,属于基本能力的考查,读懂图象信息是正确解答此题的关键。
【知识点的应用及延伸】1.s﹣t、v﹣t图的相互转换:①根据s﹣t图象,画出相应的v﹣t图象分别计算各段的速度,根据时间、速度建立适当的坐标系,作图。
一、直线运动1)匀变速直线运动1.平均速度V平=x/t(定义式)2.有用推论V t2-V o2=2as3.中间时刻速度V t/2=V平=(V t+V o)/24.末速度V t=V o+at5.中间位置速度V s/2=[(V o2+V t2)/2]1/26.位移s=V平t=V o t+at2/2=V t/2t7.加速度a=(V t-V o)/t(以V o为正方向,a与V o同向(加速)a>0;a与V o反向(减速)则a<0)8.实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差)9.主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(V t):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(V t-V o)/t只是测量式,不是决定式考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1.初速度V o=02.末速度V=gt3.下落高度h=gt2/2(从V o位置向下计算)4.推论V2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动1.位移s=V o t-gt2/22.末速度V=V o-gt (g=9.8m/s2≈10m/s2)3.有用推论V t2-V o2=-2gs4.上升最大高度H m=V o2/2g(抛出点算起)5.往返时间t=2V o/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高考物理匀变速直线运动三大规律总结一、内容简述大家都知道,高考物理中的匀变速直线运动是一大重点。
关于这个知识点,它其实有一些核心规律我们得掌握。
接下来我就给大家简单梳理一下这三大规律,希望能帮大家更好地理解和掌握这部分内容。
毕竟高中物理是个难关,我们得一起加油才行。
第一个规律呢,是关于匀变速直线运动的速度和时间的关系。
简单来说就是物体在固定的速度下加速或者减速,它的速度是怎么随着时间变化的。
这个规律很重要,因为它能帮助我们理解物体运动的速度变化过程。
第二个规律是位移和时间的关系,在匀变速直线运动中,物体在不同的时间段里会走不同的距离。
这个规律就是告诉我们这个距离和时间是怎么关联的,掌握了这一点,我们就能更好地预测物体在一段时间内会移动多远。
这三大规律都是帮助我们理解和预测匀变速直线运动的物体的运动过程。
掌握了这些,我们在解决物理问题时就能事半功倍了。
所以大家得好好琢磨琢磨这些规律,加油哦!1. 简述匀变速直线运动在高考物理中的重要性高考物理中,匀变速直线运动可是个重头戏。
无论是初学者还是资深考生,都得好好掌握。
这个运动规律不仅基础,还非常实用。
毕竟很多物理现象都能用匀变速直线运动来解释,简单地说它就是物体速度一直增加或减少,方向还保持不变的那种运动。
高考物理里,它的重要性可不是闹着玩的。
掌握了匀变速直线运动,就等于迈过了物理学习的一大门槛。
接下来我们就来详细说说匀变速直线运动的三大规律。
2. 引出本文将重点介绍的三大规律接下来就让我带你一起深入了解一下高考物理中的匀变速直线运动的三大规律。
你可能会觉得,高中物理是不是都是高深莫测的公式和理论?其实不然只要你掌握了基础,理解这些规律其实并不难。
接下来我们就一起来揭开这三大规律的神秘面纱,让你在高考物理中轻松应对匀变速直线运动的问题。
二、匀变速直线运动的基本概念高中物理中,匀变速直线运动是考察重点之一,这类运动有规律可循,对于我们高考备考非常关键。
大家都知道什么是匀变速直线运动吗?简单来说就是速度一直按照一定规律变化的直线运动,这种运动有个特点,那就是加速度恒定不变。
高中物理公式大全:直线运动平均速度V平=s/t(定义式)2.有用推论Vt2-V o2=2as中间时刻速度Vt/2=V平=(Vt+V o)/2 4.末速度Vt=V o+at中间位置速度Vs/2=[(V o2+Vt2)/2]1/2 6.位移s=V平t=V ot+at2/2=Vt/2t加速度a=(Vt-V o)/t{以V o为正方向,a与V o同向(加速)a>0;反向则a<0}实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
自由落体运动初速度V o=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从V o位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
竖直上抛运动位移s=V ot-gt2/2 2.末速度Vt=V o-gt(g=9.8m/s2≈10m/s2)有用推论Vt2-V o2=-2gs 4.上升最大高度Hm=V o2/2g(抛出点算起)往返时间t=2V o/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;上升与下落过程具有对称性,如在同点速度等值反向等。
质点的运动(1)——直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。
自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。
匀速直线运动
1.定义:即在任意相等的时间内物体的位移相等。
它是速度为恒矢量的运动,加速度为零的直线运
动。
2.图像:匀速直线运动的 s-t 图像为一直线:图线的斜率在数值上等于物体的速度。
【知识网络】
【综合例析】
例 1:关于位移和路程,下列说法中正确的是()。
A.物体沿直线向某一方向运动,通过的路程就是位移
B.物体沿直线向某一方向运动,通过的路程等于位移的大小
C.物体通过一段路程,其位移可能为零
D.物体通过的路程可能不等,但位移可能相同
解析:位移是矢量,路程是标量,不能说这个标量就是这个矢量,所以 A 错,B 正确。
路程是物体运动轨迹的实际长度,而位移是从物体运动的起始位置指向终止位置的有向线段,如果物体做的是单向直线运动,路程就和位移的大小相等。
如果物体在两位置间沿不同的轨迹运动,它们的位移相同,路程可能不同。
如果物体从某位置开始运动,经一段时间后回到起始位置,位移为零,但路程不为零,所以,CD 正确。
例 2:关于速度和加速度的关系,下列说法中正确的是()。
A.速度变化越大,加速度就越大
B.速度变化越快,加速度越大
C.加速度大小不变,速度方向也保持不变
D.加速度大小不断变小,速度大小也不断变小
解析:v 越大,加速度不一定越大,速度变化越快,则加速度也越大,B 正确。
加速度和速度方向没有直接联系,加速度大小不变,速度方向可能不变,也可能改变.加速度大小变小,速度可以是不断增大.故此题应选 B。
(每日一练)2022届高中物理直线运动知识汇总笔记单选题1、一个质点正在做匀加速直线运动,用固定在地面上的照相机对该质点进行频闪照相,闪光时间间隔为1 s,分析照片得到的数据,发现质点在第一次、第二次闪光的时间间隔内移动了2 m,在第三次、第四次闪光的时间间隔内移动了8 m,由此可以知()A.质点运动的初速度为0 m/sB.质点运动的加速度大小为6 m/s2C.第一次闪光时质点的速度大小为1 m/sD.从第二次闪光到第三次闪光这段时间内质点的位移大小为5 m答案:D解析:B.设第一次到第二次闪光的时间内质点的位移为x1=2 m,第三次到第四次闪光的时间内质点的为x3=8 m,则有x3-x1=6 m=2aT2得aT2=3 m已知T=1 s,可解得a=3 m/s2B错误;D.第二次闪光到第三次闪光的位移x2=x1+aT2=5 mD正确;A.由于不知道第一次闪光时质点已运动了多长时间,所以无法求出初速度,A错误;aT2,可解得C.设第一次闪光时质点速度为v1,由x1=v1T+12v1=0.5 m/sC错误。
故选D。
2、2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区着陆,在火星上首次留下中国印迹,迈出了我国星际探测征程的重要一步。
假设天问一号探测器在降落到火星表面前在重力和发动机推力作用下做匀减速直线运动过程中依次经过A、B、C、D四点,最后平稳落到火星表面,探测器经过AB、BC和CD三段所用的时间之比为1:3:5。
已知AB段和BC段的长度分别为ℎ1和ℎ2,则根据题给条件可以求出的物理量有( )A.探测器加速度的大小B.探测器经过AB段所用的时间C.探测器在B点速度的大小D.CD段的长度答案:D解析:ABC.设探测器加速度大小为a,在A点的速度为v A,在B点的速度为v B,经过AB段所用的时间为T,CD段的长度为ℎ3,则根据匀变速直线运动规律可得v B=v A−aTℎ1=v A T−12aT2ℎ2=v A(4T)−12a(4T)2−ℎ1ℎ3=v A(9T)−12a(9T)2−ℎ1−ℎ2求解五个未知量但只有四个方程,所以无法将五个未知量全部解出,故ABC错误;D.通过观察可知若把v A T、aT2看成两个整体,利用ℎ1=v A T−12aT2ℎ2=v A(4T)−12a(4T)2−ℎ1ℎ3=v A(9T)−12a(9T)2−ℎ1−ℎ2三个方程可求解得v A T=5ℎ14−ℎ212,aT2=ℎ12−ℎ26,ℎ3=5ℎ2−10ℎ1故D正确。
直线运动高中物理知识点直线运动高中物理知识点直线运动高中物理知识点1知识点概述1.知识与技能:1掌握用v—t图象描述位移的方法.2掌握匀变速运动位移与时间的关系并运用(知道其推导方法).2.过程与方法:1通过对v—t图象位移的求法,明确“面积”与位移的关系。
2通过图像问题,学会用已有知识分析问题的方法和验证匀加速运动的平均速度求法。
3练习位移与时间公式的应用知识点总结位移--时间图象(s-t图)(1)描述:表示位移和时间的关系的图象,叫位移-时间图象,简称位移图象。
(2)物理意义:描述物体运动的位移随时间的变化规律。
(3)坐标轴的含义:横坐标表示时间,纵坐标表示位移。
由图象可知任意一段时间内的位移和发生某段位移所用的时间。
匀速直线运动的s-t图(1)匀速直线运动的s-t图象是一条倾斜的直线,或某直线运动的s-t图象是倾斜直线则表示其作匀速直线运动。
(2)s-t图象中斜率(倾斜程度)大小表示物体运动快慢,斜率(倾斜程度)越大,速度越快。
(3)s-t图象中直线倾斜方式(方向)不同,意味着两直线运动方向相反。
(4)s-t图象中,两物体图象在某时刻相交表示在该时刻相遇。
(5)s-t图象若平行于t轴,则表示物体静止。
(6)s-t图象并不是物体的运动轨迹,二者不能混为一谈。
(7)s-t图只能描述直线运动。
表达式:v =(vt+vo)/2、x=v·t、vt=v0+at、x = v0 + at2/2常见考点考法一辆汽车从静止开始加速,加速度a=5m/s2,问:10s后汽车走过的位移为多少?(汽车沿直线运动)解:因为物体做的是匀加速直线运动,所以:x = v0t + at2/2 x=250m直线运动高中物理知识点2一、直线运动1、质点:用来代替物体的有质量的点。
2、说明:(1)质点是一个理想化模型,实际上并不存在。
(2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动)。
②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转)。
二、参考系和坐标系1、参考系:在描述一个物体的运动时,用来作为标准的另外的物体。
说明:(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同。
(2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系。
2、坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系。
三、时刻和时间1、时刻:指的是某一瞬间,在时间轴上用—个确定的点表示。
如“3s末”;和“4s初”。
2、时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示。
四、位置、位移和路程1、位置:质点所在空间对应的点。
建立坐标系后用坐标来描述。
2、位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度。
3、路程:物体运动轨迹的长度,是标量。
五、速度与速率1、速度:位移与发生这个位移所用时间的比值(v= ),是矢量,方向与Δx的方向相同。
2、瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量。
3、平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v= ),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量。
说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等。
六、加速度1、物理意义:描述速度改变快慢及方向的物理量,是矢量。
2、定义:速度的改变量跟发生这一改变所用时间的比值。
3、大小:等于单位时间内速度的'改变量。
4、方向:与速度改变量的方向相同。
5、理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率()。
加速度的大小即,而加速度的方向即Δv的方向七。
速度、速度变化量及加速度有哪些区别?速度等于位移跟时间的比值。
它是位移对时间的变化率,描述物体运动的快慢和运动方向。
也可以说是描述物体位置变化的快慢和位置变化的方向。
速度的变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差。
它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反。
速度的变化与速度大小无必然联系。
加速度是速度的变化与发生这一变化所用时间的比值。
也就是速度对时间的变化率,在数值上等于单位时间内速度的变化。
它描述的是速度变化的快慢和变化的方向。
加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系。
直线运动高中物理知识点3匀变速直线运动重要知识点讲解基本概念:物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
●最核心公式末速度与时间关系:Vt=Vo+at位移与时间关系:x=Vot+at^2/2速度与位移关系:Vt^2-Vo^2=2as●重要公式补充(1)平均速度V=s/t;(2)中间时刻速度V(t)=(Vt+Vo)/2=x/t;(3)中间位置速度V(s)=[(Vo^2+Vt^2)/2]1/2;(4)公式推论Δs=aT^2;备注:式子中Δs为连续相邻相等时间(T)内位移之差,这个公式也是打点计时器求加速度实验的原理方程。
●物体作匀变速直线运动须同时符合下述两条:⑴受恒外力作用⑵合外力与初速度在同一直线上。
●重要比例关系由Vt=at,得Vt∝t。
由s=(at^2)/2,得s∝t^2,或t∝2√s。
由Vt^2=2as,得s∝Vt^2,或Vt∝√s。
今天的内容就介绍到这里了。
直线运动高中物理知识点4物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
【概念及公式】沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
s(t)=1/2·at^2+v(0)t=【v(t)^2-v(0)^2】/(2a)={【v(t)+v(0)】/2}*tv(t)=v(0)+at其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t 秒时的位移速度公式:v=v0+at位移公式:x=v0t+1/2at²;位移---速度公式:2ax=v2;-v02;条件:物体作匀变速直线运动须同时符合下述两条:⑴受恒外力作用⑵合外力与初速度在同一直线上。
【规律】瞬时速度与时间的关系:V1=V0+at位移与时间的关系:s=V0t+1/2·at^2瞬时速度与加速度、位移的关系:V^2-V0^2=2as位移公式X=Vot+1/2·at ^2=Vo·t(匀速直线运动)位移公式推导:⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度而匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]·t 利用速度公式v=v0+at,得s=[(v0+v0+at)/2]·t=[v0+at/2]·t=v0·t+1/2·at^2⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是ds/dt=v,dv/dt=a,d2s/dt2=a于是v=∫adt=at+v0,v0就是初速度,可以是任意的常数进而有s=∫vdt=∫(at+v0)dt=1/2at^2+v0·t+C,(对于匀变速直线运动),显然t=0时,s=0,故这个任意常数C=0,于是有s=1/2·at^2+v0·t这就是位移公式。
推论 V^2-Vo^2=2ax平均速度=(初速度+末速度)/2=中间时刻的瞬时速度△X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)X为位移。
V为末速度Vo为初速度【初速度为零的匀变速直线运动的比例关系】⑴重要比例关系由Vt=at,得Vt∝t。
由s=(at^2)/2,得s∝t^2,或t∝2√s。
由Vt^2=2as,得s∝Vt^2,或Vt∝√s。
⑵基本比例①第1秒末、第2秒末、……、第n秒末的速度之比V1:V2:V3……:Vn=1:2:3:……:n。
推导:aT1 : aT2 : aT3 : ..... : aTn②前1秒内、前2秒内、……、前n秒内的位移之比s1:s2:s3:……sn=1:4:9……:n^2。
推导:1/2·a(T1)^2:1/2·a(T2)^2:1/2·a(T3)^2: ...... :1/2·a(Tn)^2③第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比xⅠ:xⅡ:xⅢ……:xn=1:3:5:……:(2n-1)。
推导:1/2·a(t)^2:1/2·a(2t)^2-1/2·a(t)^2:1/2·a(3t)^2-1/2·a(2t)^2④通过前1s、前2s、前3s……、前ns的位移所需时间之比t1:t2:……:tn=1:√2:√3……:√n。
推导:由s=1/2a(t)^2t1=√2s/at2=√4s/at3=√6s/a⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)推导:t1=√(2s/a)t2=√(2×2s/a)-√(2s/a)=√(2s/a)×(√2-1)t3=√(2×3s/a)-√(2×2s/a)=√(2s/a)×(√3-√2)…… 注⑵2=4⑶2=9【分类】在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。