溢流堰设计规范
- 格式:docx
- 大小:36.88 KB
- 文档页数:2
溢洪道水力设计计算1 计算依据 《溢洪道设计规范》(DL/T 5166—2002)第6节及附录A的有关规定。
2 已知设计参数堰面曲线可采用抛物线。
上述曲线可按附录A中A.1计算。
本工程选用开敞式实用堰。
考虑到圆弧曲线(驼峰堰)的流量系数较小,泄流能力相对较小,本工程堰面曲线选用幂曲线(三)。
3 堰面曲线选择及泄流能力复核 (1)按规范5.3.3条,堰(闸)型式可采用开敞式或带胸墙的实用堰、宽顶堰、驼峰堰等,应根据地形地质条件、水力条件、运用要求及技术经济指标等综合比较选用。
开敞式溢流堰溢流堰有较大的超泄能力,宜优先选用。
(2)按规范6.3.3条,采用开敞式实用堰时,堰面曲线宜采用幂曲线、圆弧曲线(驼峰堰);当堰上设有胸墙时,点上游用三圆弧曲线。
3.1 幂曲线方程计算(A.1) (3)按规范6.3.2条,低实用堰应满足上游堰高P 1≥0.3H d ,下游堰高P 2≥0.6H d ;下游堰面坡度宜陡于1:1。
设计中应避免形成淹没流。
式中: (4)按规范附录A.1.3条,采用开敞式幂曲线(三)时,幂曲线按式(A.1)计算。
n=1.85,K=2。
上游面铅直,原H d …………定型设计水头,对低堰(P 1>1.33H d )可按堰顶最大水头H max 的75%~95%计算,yKH x n dn 1-=1.560m ~ 1.976m1.500m1.8522.8230.35423x^1.85 计算公式:0.6553255x^0.852.306m1.662m3.4 反弧半径R的计算即H d =(0.75~0.95)H max =堰顶O点上游三圆弧的半径R及其水平坐标x计算表即幂曲线方程为:y=3.2 幂曲线末端端点坐标计算 将m,dy/dx带入公式1可求得:x c =本工程取H d =n…………………系数,n=K…………………系数,K= 对堰面曲线求一阶导数得:dy/dx=(公式1)堰顶下游幂曲线方程坐标值表y c =3.3 堰顶上游三圆弧曲线的x坐标及半径R计算 经计算:KH d n-1=溢流堰下游反弧段半径,应结合下游消能设施来确定,对于挑流消能和底流消能方式,可按下式求反弧半径R。
溢流坝段设计第四章溢流坝段设计4.1孔⼝设计1.确定⼯程等级本⼯程基本资料防洪要求减轻洪⽔对A市和A平原的威胁,在遇到5000年⼀遇和1000年⼀遇的洪⽔时,经⽔库调洪后,洪峰流量由原来的12100⽴⽅⽶/秒、10900⽴⽅⽶/秒分别削减为6350⽴⽅⽶/秒、5750⽴⽅⽶/秒。
要求设计洪⽔时最⼤下泄流量限制为6550⽴⽅⽶/秒。
其他参数见表4。
表4 洪⽔标准的调洪成果结合SL252-2000《⽔利⽔电枢纽⼯程等级划分及设计标准》参照表4-14-1由此可以确定⽔⼯建筑物⼯程等级为Ⅰ级。
2.孔⼝形式选择溢流重⼒坝既要挡⽔⼜要泄⽔,不仅要满⾜稳定和强度要求,还要满⾜泄⽔要求。
因此需要有⾜够的孔⼝尺⼨、较好体型的堰型,以满⾜泄⽔的要求;且使⽔流平顺,不产⽣空蚀破坏。
溢流坝的泄⽔⽅式主要有以下两种:(1)开敞溢流式除泄洪外,它还可排除冰凌或其它漂浮物,如图1 所⽰。
堰顶可设置闸门,也可不设。
不设闸门时,堰顶⾼程等于⽔库的正常⾼⽔位,泄洪时库⽔位雍⾼,从⽽加⼤了淹没损失,但结构简单,管理⽅便,适⽤于泄洪量不⼤、淹没损失⼩的中⼩型⼯程;设置闸门的溢流坝,闸门顶⾼程⼤致与正常⾼⽔位齐平,堰顶⾼程较低,可利⽤闸门的开启⾼度调节库⽔位和下泄流量,适⽤于⼤型⼯程及重要的中型⼯程。
闸门在顶部,操作⽅便,易于检修,⼯作安全可靠,所以,开敞溢流式得到⼴泛采⽤。
(2)⼤孔⼝溢流式为了降低堰顶闸门的⾼度,增⼤泄流可采⽤带有胸墙的溢流堰,如图2 所⽰。
这种型式的溢流孔可按洪⽔预报提前放⽔,从⽽腾出较⼤库容蓄纳洪⽔,提⾼⽔库的调洪能⼒。
为使⽔库具有较⼤的泄洪潜⼒,宜优先考虑开敞式溢流孔。
(3)综合上⾯所述,本设计采⽤开敞式溢流设闸门。
图1开敞溢流式堰图2孔⼝溢流式堰3.孔⼝尺⼨确定从基本资料中得知,本电站4台5万千⽡机组。
正常蓄⽔位为2184.5⽶,汛期限制⽔位为2182⽶,死⽔位2163⽶,4台机满载流量332⽴⽅⽶/秒,相应尾⽔位2103.5⽶。
溢洪道设计5.3溢洪道加固设计5.3.1溢洪道的现状及存在问题某⽔库的溢洪道为侧槽式溢洪道,位于⼤坝的左侧,总长度280 m,由溢流堰、侧槽、渐变段、泄槽、挑流消能⼯等部分组成。
溢流堰呈L型布置,为克—奥型⾮真空实⽤堰,堰顶⾼程282.5 m,其中侧堰长70 m,端堰长5 m。
侧槽的起始底宽为5m,沿程线性扩⼤⾄25m,通过渐变段缩窄为17 m后与泄槽衔接。
根据地形条件,泄槽采⽤变纵坡的陡渠,两级纵坡分别为i=1/30与1/10。
挑流⿐坎段长10 m,宽17 m,其反弧曲率半径为19.5m,挑射⾓25°。
各段均为梯形断⾯,侧墙的边坡系数m=0.25。
该溢洪道在开挖施⼯的过程中,由于深切⽅于1977年11⽉造成左岸⼭体⼤规模滑坡,为了就近处理⼟⽯⽅,临时修改了⼤坝的设计断⾯。
溢洪道于1987年⾸次溢洪,过⽔深0.16 m。
1988年9⽉3⽇当溢洪⽔深达0.62 m时,挑流⽔⾆直接冲刷左侧下游的⼭体,再次引起滑坡,下滑的泥⽯流淤塞河床,导致⼤坝坝脚长期渍⽔,威胁⽔库的安全,且呈逐年加剧之势。
⽬前,溢洪道存在的主要安全隐患如下:a)溢洪道的基础为元古界板溪群粉砂质、泥质板岩,岩⽯破碎,节理裂隙发育,堰体及基础长期漏⽔,且溢洪道的排⽔系统也已堵塞失效。
库⽔通过渗漏通道直接作⽤在底板下,使底板在泄洪时承受过⾼的扬压⼒,导致底板与基础之间产⽣接触冲刷,底板以下⼤⾯积被掏空,危及溢洪道的安全运⾏。
b)虽然对左岸滑坡体进⾏了加固,但由于资⾦不⾜,处理不够彻底。
⽬前,两个滑坡体均处于临滑的状态,左岸的滑坡体有蠕动的迹象,使溢洪道侧墙开裂,尤其是靠近滑坡体的左侧墙,纵横裂缝已达15条之多。
继续发展下去,如果两个滑坡的侧翼相连,有可能诱发更⼤规模的滑坡。
c)溢洪道⿐坎以下的消能措施不⼒,滑坡体基脚及护岸挡⼟墙遭挑流⽔⾆的冲刷,使下游沟⾕的⽔⼟流失现象加剧,且河床中堆积的岩渣未作任何处理,渍⽔危及⼤坝的安全。
出水堰设计规范PDF篇一:常用量水堰槽使用技术如何选择量水堰槽非满管状态流动的水路称作明渠(open channel),明渠流量计的应(转载于: 小龙文档网:出水堰设计规范,pdf)用场所有城市供水引水渠、火电厂冷却水引水和排水渠、污水治理流入和排放渠、工矿企业废水排放以及水利工程和农业灌溉用渠道。
选择量水堰槽的种类,要考虑渠道内流量的大小,渠道内水的流态,是否能形成自由流。
最大流量小于40升/秒建议使用直角三角堰;大于40升/秒建议使用巴歇尔槽;上游渠道较短,最大流量又大于40升/秒建议使用矩形堰。
条件允许,最好选择巴歇尔槽。
巴歇尔槽的水位-流量关系是由实验室标定出来的,而且对于上游行进渠槽条件要求较弱。
三角堰和矩形堰的水位-流量关系来源于理论计算,容易由于忽略一些使用条件,带来附加误差。
三角堰材料:PVC、玻璃钢、不锈钢可选。
流量越大,相应增加壁厚。
注意事项:◇ 三角口处的尺寸准确、缘台平直、光滑。
板面光滑、平整、无扭曲。
;◇ 三角堰的中心线要与渠道的中心线重合。
定。
适应范围:◇ 三角堰可按图1.1加工。
注意:安装该直角三角堰的上游渠道宽是600mm,三角顶角与上游渠底的高度是250mm。
◇ 如使用图1.1直角三角堰,可在明渠菜单“10堰槽种类”→“1直角三角堰”项选择“开启”,仪表内已有该堰板的水位-流量表,可根据水位值直接给给出流速。
最小流量0.0136升/秒,最大流量45.010升/秒(162吨/小时)图1.1 直角三角堰堰板构造图1.2 三角堰建造效果图图1.3 三角堰在渠道上的安装和三角堰的水位零点三角堰安装在渠道上如图1.3所示。
堰板要竖直,要安在渠道的中轴线上。
加工三角堰时,可以会使顶角变成圆角,在确定水位等于零的位置时要注意,三角堰的水位零点应在三角堰的侧边的延长线的交点上。
仪表的探头要安装在上游距离堰板0.5~1米的位置。
二:矩形堰材质:PVC、玻璃钢、不锈钢可选。
流量越大,相应增加壁厚。
中华人民共和国行业标准SDJ341—89溢洪道设计规范1989-12-31发布1990-09-01实施中华人民共和国能源部中华人民共和国水利部发布说明本规范在我国系首次制定,在编制过程中进行了广泛地调查研究,认真总结了我国溢洪道工程的实践经验、试验研究和原型观测成果,同时也借鉴了国外已有的研究成果和实践经验。
本规范编制组由中南勘测设计院、北京勘测设计院和陕西省水利水电勘测设计院等三个单位组成,中南勘测设计院为主编单位。
参加本规范编写的主要人员有:中南勘测设计院——陈其煊、李诚、邓正湖、席与光北京勘测设计院——吴季宏陕西省水利水电勘测设计院——曹国兰目次第一章总则第二章溢洪道布置第一节一般原则第二节进水渠第三节控制段第四节泄槽第五节消能防冲设施第六节出水渠第三章水力设计第一节一般规定第二节进水渠第三节控制段第四节泄槽第五节消能防冲第六节出水渠第七节厂顶溢流及厂前挑流第八节泄洪隧洞出口第九节防空蚀设计第四章建筑物结构设计第一节一般规定第二节进水渠渠底衬护第三节控制段第四节泄槽底板第五节挑流鼻坎第六节消力池护坦第七节边墙第八节下游防冲第五章地基及边坡处理第一节一般规定第二节地基开挖第三节固结灌浆第四节地基防渗和排水第五节断层、软弱夹层及岩溶处理第六节边坡开挖及处理第六章观测设计第一节一般原则第二节一般性观测第三节专门性观测附录一水力设计计算公式附录二高速水流区的防空蚀设计附录三荷载计算附录四常用参数表附录五水力观测设计附录六本规范用词说明第一章总则第1.0.1条本规范使用范围以河岸式溢洪道的设计为主,兼顾厂顶溢流、厂前挑流及泄洪隧洞出口的水力设计。
第1.0.2条本规范适用于大、中型水利水电工程中岩基上的1、2、3级溢洪道的设计,4、5级溢洪道的设计可参照使用。
对于特殊重要的工程,应进行专门研究,制定补充条例。
第1.0.3条设计河岸式溢洪道时,应符合《水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)》(SDJ12-78)及其它标准和规范的有关规定。
第1篇一、工程概况溢流堰工程是水利枢纽工程的重要组成部分,其主要作用是调节上游水位,防止洪水灾害,同时兼顾发电、灌溉、供水等功能。
本工程位于XX河上游,建设地点为XX市XX县,工程规模为中型,总库容为XX万立方米。
工程主要包括溢流堰主体结构、上下游连接段、溢洪道、上下游引水渠等。
二、施工组织设计1. 施工部署(1)施工顺序:按照“先地下、后地上,先主体、后附属,先关键、后一般”的原则进行施工。
(2)施工阶段划分:施工准备阶段、主体工程施工阶段、附属工程施工阶段、工程验收阶段。
2. 施工进度计划根据工程特点和施工组织设计,制定详细的施工进度计划,确保工程按期完成。
3. 施工资源配置(1)人员配置:根据工程规模和施工进度,合理配置各类施工人员,包括技术人员、管理人员、施工人员等。
(2)设备配置:根据施工需要,配置各类施工设备,如挖掘机、推土机、混凝土搅拌站、运输车辆等。
(3)材料配置:根据施工进度,提前储备各类建筑材料,确保施工过程中材料供应充足。
三、施工工艺1. 溢流堰主体结构施工(1)基础处理:对溢流堰基础进行清基,确保基础坚实可靠。
(2)混凝土浇筑:采用泵送混凝土浇筑工艺,确保混凝土均匀密实。
(3)模板安装与拆除:根据设计要求,合理设计模板体系,确保模板安装牢固,拆除方便。
2. 上下游连接段施工(1)土方开挖:采用挖掘机进行土方开挖,确保开挖质量。
(2)基础处理:对基础进行清基,确保基础坚实可靠。
(3)混凝土浇筑:采用泵送混凝土浇筑工艺,确保混凝土均匀密实。
3. 溢洪道施工(1)土方开挖:采用挖掘机进行土方开挖,确保开挖质量。
(2)基础处理:对基础进行清基,确保基础坚实可靠。
(3)混凝土浇筑:采用泵送混凝土浇筑工艺,确保混凝土均匀密实。
4. 上下游引水渠施工(1)土方开挖:采用挖掘机进行土方开挖,确保开挖质量。
(2)基础处理:对基础进行清基,确保基础坚实可靠。
(3)混凝土浇筑:采用泵送混凝土浇筑工艺,确保混凝土均匀密实。
水利工程施工中的溢流堰施工技术要点与验收规范水利工程中的溢流堰施工技术要点与验收规范引言:水利工程是国家基础设施建设的关键领域,其中溢流堰的施工是保障水利工程安全运行的重要环节。
本文将从溢流堰施工的技术要点和验收规范两个方面进行论述,以帮助读者全面了解溢流堰施工的关键问题。
1. 溢流堰施工的技术要点1.1 堰型设计与选择在溢流堰施工前,应根据所需的泄洪流量和水位变化情况,选取合适的堰型。
常见的堰型有梯形堰、V型堰和S型堰等。
堰型的选择应根据工程具体情况以及对水流影响的要求综合考虑,确保施工后的溢流堰能够稳定且有效地控制水流。
1.2 堰面平整度控制溢流堰的平整度对其正常运行具有重要影响。
在施工过程中,应严格控制堰面的水平度和垂直度,确保堰面平整,避免水流在过程中的滞留和水流分流,从而影响堰体的正常工作。
为此,施工中应选用适当的水平仪和测量工具,对堰体进行精确测量和调整。
1.3 材料的选择与使用在溢流堰施工中,应根据堰体的工作要求选择合适的材料。
常用的材料有混凝土、钢板和岩石等。
为了确保材料的质量,施工前应进行充分的检验和试验,保证材料的强度和稳定性。
在施工过程中,还应合理选择施工工艺和施工方法,确保材料能够正确使用和固定。
2. 溢流堰施工的验收规范2.1 施工质量验收在溢流堰施工完成后,应对其质量进行验收,以确保施工质量符合相关要求。
验收内容包括堰面平整度、堰体强度、堰体稳定性等方面的检验。
验收过程中,应进行充分的观察和测量,对堰体进行关键部位的检查,确保施工质量达到规定标准。
2.2 技术文件验收施工单位在完成溢流堰施工后,应整理施工过程中的资料和技术文件,进行相关的验收。
技术文件验收包括施工设计文件、施工记录、检验报告和施工图纸等。
验收过程中,应检查施工文件的完整性和准确性,并与原始设计文件进行核对,确保工程的施工与设计一致。
2.3 安全验收溢流堰作为水利工程的关键设施,其安全性是至关重要的。
在验收过程中,应重点检查溢流堰的安全性能,包括堰体稳定性、防冲刷和抗滑坡能力等方面。
溢流侧堰设计实例摘要:溢流侧堰布置在引水渠首工程上游河道左侧,下游与冲沙闸的左边墙相连,平面呈弧形状,侧堰总长116.7m,堰体结构为外包钢筋混凝土实用堰,目前溢流堰运行良好,堰前淤积量少,堰顶高程保证了引水的需要。
关键词:溢流侧堰;堰顶高程;结构;设计1.工程概况新疆阿勒泰地区青河县阿苇灌区引水工程引水渠首,位于青河县西北部,在大青格里河与小青格里河汇合口下游约13.6km处,渠首控制流域面积3415km2。
阿苇灌区控制下游灌溉面积为31.51万亩。
引水渠首拦河闸最大过闸流量为569 m3/s,工程等别属Ⅲ等工程。
引水渠首由进水闸、2孔泄洪闸、1孔冲沙闸、溢流侧堰组成。
溢流侧堰布置在上游河道左侧,末端与泄洪冲沙闸上游边墙平顺连接,始端与上游导流堤采用挡土墙连接。
进水闸与泄洪冲沙闸呈40°角度布置在泄洪闸右岸。
2.溢流侧堰结构设计溢流侧堰布置在主河道的左岸,上游与导流堤相连,下游与冲沙闸的左边墙相连,平面呈弧形状,可将堰前泥沙平顺引入下游冲沙闸,利于冲沙。
溢流侧堰全长116.7m,堰顶高程1161.14m。
溢流侧堰的结构简图如图1所示,该堰采用“WES”实用堰,堰顶高程1161.14m,在溢0+116.7m处河床整治后高程为1158.06m。
溢流侧堰采用浆砌石结构,外包钢筋混凝土面板,按照规范要求,严寒地区外包混凝土厚度不小于40cm,采用50cm厚钢筋混凝土面板。
堰底:堰底兼有防渗作用,其顺水流方向长度,根据砂砾石地基情况,对于砂砾石地基采用2.0H=2*2.7=5.4m,考虑和下游连接,取基本底宽 6.6m;齿墙:考虑下游冲刷深度,按照规范齿墙底面低于冲刷深度1m,因而溢0+116.7处下游齿墙深度为4.5m,溢0+000处下游齿墙深为2.5m。
对于上游齿墙深度要求低于整治后河床面2.9m。
图1溢流侧堰结构简图3.溢流侧堰水力计算(1)侧堰泄水流量计算溢流侧堰选用实用堰,水位流量关系计算如下:Q=cmεδsB(2g)1/2H03/2式中:Q ——流量,m3/s;B ——溢流堰总净宽,m;m ——正堰流量系数;0.495,侧堰取0.95m=0.47;c ——上游堰坡影响系数;H0 ——计入行进流速水头的堰上总水头,m;ε ——闸墩侧收缩系数,0.97;计算结果如下表1所示。
中华人民共和国行业标准溢洪道设计规范发布实施中华人民共和国水利部发布中华人民共和国行业标准溢洪道设计规范主编单位水利部天津水利水电勘测设计研究院批准部门中华人民共和国水利部施行日期年月日中华人民共和国水利部的通知号标准的名称和编号为本标准自年月在实施过程中请各单位二年七月十三日前言本规范是根据水利部水利水电规划设计管理局水规局技明确本规范使用范围为大中型水利水电工程中岩基上的级河岸式溢洪道水力设计方面供不具备进行减压箱试验建筑物结构设计强度等级体系按照删去了堰增加了完建和施工两种工况增加了闸后段边墙的荷载组合表增加在地基及边坡处理一章中增写了在确定建基面时不宜与边坡的几何关系的分类法并将各类岩体可能失稳方式和常见处理措施一并列于附录测内容本规范的归口管理单位和解释单位水利部水利水电规划设计总院本规范修订的主编单位水利部天津水利水电勘测设计研究院本规范的主要起草人李启业郭竟章夏毓常牟广丞倪世生目次总则溢洪道布置一般规定进水渠控制段泄槽消能防冲设施出水渠水力设计一般规定进水渠控制段泄槽消能防冲出水渠防空蚀设计一般规定进水渠衬护控制段泄槽底板挑流鼻坎消力池护坦边墙下游防冲一般规定地基开挖固结灌浆地基防渗和排水边坡开挖及处理安全监测设计一般规定监测项目附录水力设计计算公式附录附录荷载计算公式附录边坡岩体稳定性分类及处理措施附录水力监测设计要求总则级并应认真考虑并根据防洪规划要求溢洪道的设计除应符合本规范外尚应符合国家现行有关溢洪道布置一般规定如采用集中布置需应根据下列因素通过技术经济比较选定非常溢洪道宣泄超过正常溢溢洪道启用时溢洪道的位置应选择有利的地形和地质条件布置在岸边或垭口当两岸坝肩山势陡峻而布置上又需要较大的溢流前缘宽度溢洪道应布置在稳定的地基上并应充分注意建库后水文如需转弯时宜在进水渠或出水渠段当溢洪道靠近坝肩布置时其布置及泄流不得影响坝肩电源进水渠进水渠的布置应遵循下列原则进水渠较长时当进口布置在垭口面临水库时宜布置成对称或基本对称的宜在底板宜当水头损失较大或不满当岩性差时进水渠的直立式导墙的平面弧线曲率半径不宜小于倍导墙顺水流方向的长度宜大于堰前水深的距控制段倍堰前水深长度以远的导墙控制段应满足下列要求堰型可选用开敞式或带胸墙孔开敞式溢流堰有较大的超泄能力侧靠山一侧边坡可根据基岩特性确表安全超高下限值洪水时不应低于校核洪水位加安全超高值挡水时应不低于设计洪水位或正常蓄水位加波波浪的计算高度取平均波高公式计按附录泄槽当必须设置弯道时弯矩形断面弯道的弯道半径宜采用当结合岩石开挖采用梯形泄槽沿轴线宜为等宽当需要变化泄槽宽度时变化角度可按附录消能防冲设施河岸式溢洪道可采用挑流消能或底流消能溢洪道消能防冲建筑物的设计洪水标准级建筑物按级建筑物按级建筑物按消能防冲建筑物的校核洪水标准可低于溢洪道的校核洪水标但选定的消能设施应符合消能防冲设计洪水流量及以下各级流量尤其是在宣泄常遇洪水时消能效果良好结构可靠溢洪道挑流挑流鼻坎可河流的泥雾对枢纽其它建筑物及岸理地基中存在延伸至下游的缓倾角软弱结构面及断层破碎岸坡有可能被冲塌下游涌浪及回流危及大坝与其他建筑物的安全和正常运底流消能可用于各种地基出水渠当溢洪道下泄水流经消能后不能直接泄入河道而造成危害时水力设计一般规定溢洪道水力设计宜包括如下内容溢洪道的水力设计应满足下列要求和校核洪水标准按消能防冲设计的洪水标准按下泄水流流态及水流对河床的冲淤满足溢洪道沿程水头损失计算中的糙率系数可按附录查局部水头损失计算中的局部阻力系数可根据有关资料分析进水渠冲流速渠道设计流速宜采用渠道水面线可由引水渠首部到位于堰前倍堰上水头控制段堰顶下游堰面宜优先采堰面曲线可按附录计算当选择低实用堰时宜取上游堰高堰面曲线下接直线当堰顶以上最大水头与孔口高度的比值可按附录堰高小于驼峰堰堰面曲线参数可按附录实用堰堰顶附近堰面压力应符合下列规定堰顶附近的堰面负压值可按附表可根据不同堰型选用本规范附录闸墩墩头型式门槽型式可按实用堰末端与泄槽连接的反弧半径倍反弧最泄槽计掺气水深可按附录当泄槽段内布置收缩段时应进行急流冲击波验算计算公式对于收缩角小于计算公式见附录侧槽溢洪道中侧槽段水力设计应满足下列要求侧槽底坡且小于按侧槽末端断面临界水深计算出的临界底坡侧槽首端断面水深超过堰顶的高度的一半可采用调整段长度底坡尾部升坎高度可采用倍泄槽首端断面临界水深高宜取平均水深的必要时应经水工模型试验侧槽段水力计算公式见附录可采用抛物线连接抛物线方程可按附录圆弧半径可采用倍变坡处的断面水深再加上比较复杂的部位消能防冲挑流水冲刷坑上游坡度应根据地质情况确定宜在同时挑流鼻坎段反弧半径可采用反弧最低点最大水深的当采用差动式鼻坎时挑流鼻坎高程应通过比较选定在保证能形成自由挑流情况下当跃前断面平均流速超过时确定池底消力池两侧边墙高度可根据跃后水深附录出水渠防空蚀设计应重视溢洪道下列部位和区域的防空蚀设计溢洪道各部位的水流空化数应大于该处体型的若干体型的初生空化数及空蚀发生与否的判别标准见附录录施控制水流边界壁面的局部不平整度包括混凝土施工中留其标准可按附录当流速超过当采用掺气减蚀设施时建筑物结构设计一般规定前提下大体积混凝土的抗压强度可采用按表规定取值其余部位混凝土抗压强度可采用天龄期抗压强度值按表经论证亦可采用天龄期的抗压强度强度增长系数对于普通硅酸盐水泥取于矿渣硅酸盐水泥取混凝土泊松比取表表弱夹层层面的抗剪断强度的取值表钢筋强度和弹性模量注轴心受拉和小偏心受拉构件的钢筋抗拉强度值大于仍应按其他构件的钢筋抗拉强度值大于时取用对于直径大于级钢筋得利用冷拉后的强度级冷轧带肋钢筋经机械调直后抗拉及抗压强度值应降低每种钢筋根据其受力情况应采用各自的选用可行性研究报告以后各及附录验确定进水渠衬护底板衬护厚度可按构造要求确定混凝土衬砌厚度可取为混凝土衬砌的分块尺寸可按控制段控制段的结构设计应包括特别是混凝分离式适分离式底板必要时应设置垂直水流向的纵缝缝的位置控制段范围内的结构缝闸室基底应力及实用堰堰体应力分析可采用材料力学法重要工程或受宽顶堰及驼峰堰闸底板应力分析可采用对设置大型弧形基本荷载正常蓄水位或设计洪水位时的静水压力特殊荷载根据各种荷载实际同时出现的可能性按表荷载组合表注正常蓄水位情况考虑排水失效可按特殊组合计算作用在控制段上的荷载应按附录式计算式中按抗剪断强度计算的抗滑稳定安全系数体混凝土与基岩接触面的抗剪断摩擦堰堰算其最不利荷载组合方向的抗滑稳定性规定值表抗滑稳定安全系数注面上的最大垂直正应力时分别计入扬压力和不计入扬最小垂直正应力地震情况下可允许出现不大于双向受力并计入地震荷载时基底面可容许出现不大于应力于当结构和当结构不对称或受下列情况的稳定和应力分析闸墩一侧工作闸门关闭闸墩一侧工作闸门关闭对闸室的上部结构对于大型和受力条件复杂的中型工程的控制段的结构设必要时宜进行结泄槽底板挟沙情况等因素泄槽底板的厚度不应小于泄槽底板在消力池最高水位以下的部分应按消力池护坦设泄槽底板应设置结构缝分条件当地基不均匀性明显时也可在板挑流鼻坎挑流鼻坎在泄洪时所受的动水压力按附录的公式计挑流鼻坎顺水流向纵缝的间距可按消力池护坦尚应根据具体条件分析闸门启闭的不利情况取校核情况下式中护坦自重按混凝土重度计算护坦顶面上的时均压力的公式计算当采用锚固措施时护坦顶面上的脉动压力的公式计算护坦底面上的扬压力缝中宜设止边墙各项荷载均按附录泄槽反弧段边墙设计应考虑水流离心力进水渠及控制段边墙的荷载组合与控制段相同控制段以下各段边墙的荷载组合见表表溢洪道下游段边墙荷载组合表式中作用于边墙上的全部荷载对计算滑动面的切向分当墙基内存在不利软弱结构面时当按式计算边墙抗滑稳定安全系数不小于表规定值系数值应不小于表表边墙抗滑稳定安全系数值注在特殊组合情况下可允许出现不大于式中对于计入地震的特殊荷载组合边墙结构缝间距可取重力式边墙顶宽应不小于可利用渠槽底板的一进水渠边坡设置贴坡式边墙或护坡时可根据水流及地凝土衬砌等型式消力池贴坡式边墙的厚度宜按计算并结合工程经验类比确下游防冲地基及边坡处理设计一般规定溢洪道的地基处理设计应结合建筑物的结构和运用特运用特点等因素对地质条件复杂的高边坡尚应进行专门的研究及设计排水设施应因地制宜合理布设便于检修地基开挖结合地质条件对于岩层较差的地基不宜只采用开挖满足建筑物对地基的要求建筑物的基坑形状求确定控制段的基坑宜略向上游倾斜若受可开挖成带钝角固结灌浆溢洪道地基固结灌浆的范围和深度应根据岩石的破碎程宜在控制段及消能灌浆孔方向应尽孔深宜取距及固结灌浆宜在混凝土浇筑后进行灌浆压力当有混凝土盖重时可采用软弱岩体地基地基防渗和排水条件靠近坝肩的溢洪道防渗和排水设施的布设应满足下列要求宜采用水泥灌浆帷幕也控制段防渗帷幕的范围及深度该隔水层内相对隔水层透水率的控制标准为小于当地基的相对隔水层埋藏较深或分布无规律时帷幕深度除应满足遇透水性强的破碎带靠近坝肩的溢洪道其帷幕应与大坝帷幕衔接形成整体防渗帷幕体透水性控制标准应与相对隔水层透水性控制帷幕灌浆孔宜设一排育或可能发生渗透变形地段帷幕灌浆的孔距可取为有条件时帷幕钻孔方向宜采用铅直或略向上游倾斜应使钻孔尽量穿帷幕灌浆必须在有一定厚度混凝土盖重及固结灌浆后进行灌浆压力可通过试验确定帷幕孔表层段不宜小于的要求当必须降低地基内承压水的作用时应选择适宜的位置设应布设在防渗帷幕下游的与帷幕灌浆孔的间距在基底面不宜小于主排水孔的孔距宜为辅助排水孔孔距宜为连续的排水垫层但不宜骑对于规模较大的溢洪道宜优先选用在边墙地基或泄槽底底板下的排水系统相应布设护坦下的纵横排水系统的出口宜设在两侧边墙收缩水深处水面以下应符合以下规定在适当位置设置低于排水系统的集水井和可靠的自动抽对有防渗要求的边墙水面线以下部稳定不大时研究并根据类似工程经验采用加铺地基存在缓倾角断层破碎带或软弱夹层时应根据其埋藏深度及对建筑物的影响选择处理措施溢洪道地基的岩溶处理应与大坝及其他建筑物岩溶处理不同方式土或水泥砂浆边坡开挖及处理溢洪道开挖边坡坡度对边坡岩体应根据岩体结构特征进行分类判断边坡可能发生破坏的型式式及常用处理措施见附录还应考虑地质条件复高边坡或地质条件复边坡马道分级高度可选用马道宽度宜沿边坡走向结合马道位视需要可在边坡内布置排水隧洞安全监测设计一般规定条件设置必要的监测项目及相应设施仪器监测布设应满足下列要求位于坝肩的溢洪道的观测断面测点应与大坝统筹安排布设测站布设应统筹规划通条件监测设计中应要求施工单位负责保证施工期间各项监测记录整理分析后监测项目巡视检查和仪器监测的项目可按所列内容确表溢洪道安全监测项目表应根据地质条件需要及加各监测项目在不同时期的测次按水力学监测的设计要求见附录求按附录水力设计计算公式堰面曲线开敞式堰面堰顶下游堰面采用算式中堰面曲线定型设计于原点下游堰面曲线横与上游堰坡有关的指数表堰面曲线参数开敞式堰面堰顶上游堰头曲线可采用下列三种曲线等参数取值见表所示图堰顶上游堰头为双圆弧图堰顶上游堰头为三圆弧式中椭园曲线长半轴和短半轴时与上游堰面采用倒悬时应满足条件如图上游堰面倒悬堰头堰顶附近的最小相对压力与相对水头及带胸墙孔口式实用堰堰面曲线采用抛物线时如图式中图堰顶孔口式堰面曲线实用堰堰顶附近最小相对压力取表驼峰堰体型参数驼峰堰剖面示意图泄流能力计算公式型实用堰的泄流能力按下列公式计算上式适用于当时仍取值式中溢流堰总净宽表值表上游堰面坡度影响修正系数表中墩形状系数二维水流查得上游堰坡影响系数值由表闸墩侧收缩系数与闸墩头伸出上游堰面距离及淹没度有关中墩形状示意图边墩形状示意图。
溢流坝段设计一、孔口设计1、孔口形式本设计溢流坝段采用开敞式溢流坝,孔口形式采用坝顶溢流式,堰顶不设闸门,所以溢流堰堰顶高程即为正常蓄水位605m。
2、孔口尺寸本设计溢流堰净宽51m,每孔净宽17m。
二、溢流坝剖面设计溢流坝曲线由顶部曲线段、中间直线段和下部反弧段三部分组成,溢流面曲线采用WES曲线。
1、设计依据《溢洪道设计规范》(SL 253-2002)2、基本资料有上述资料可得出H max=5.97m。
3、溢流曲线设计溢流曲线具体尺寸要求如下图一所示,其中H d为堰面曲线定型设计水头设计水头,规范要求按最大作用水头H max的75%到95%计算,本设计采用80%倍的H max,所以H d=4.78m。
上游堰高P1=42m>1.33H d=6.35m,所以本设计为高堰流量系数m d=0.502。
1)、曲线上游圆弧段参数计算如下表所示:曲线参数计算表2)、下游曲线段下游曲线段计算公式为:式中:H d为堰面曲线定型设计水头;x,y为原点下游堰面曲线横纵坐标;n与上游堰坡有关;k当P1/H d>1.0时,k值由规范查取,当P1/H d≦1.0时,k取2.0到2.2。
上游堰坡垂直,所以由规范查的n=1.85;P1/H d=8.8>1.0,所以由规范查的k=2.0。
综上所述,本设计溢流堰堰面曲线段公式为:经excel计算可得堰面曲线计算表如下表所示:3)、中间直线段直线段与曲线段的切点计算如下所示:代入数据计算可得:4)、下游反弧段本设计采用挑流消能,由规范查的反弧段半径R=(4~10)h0,式中h为校核水位闸门全开时挑流鼻坎反弧段最低点处的水深。
挑流鼻坎高程取579.00m(下游最高水位577.54m)。
反弧段最低点流速:式中:φ为堰面流速系数,由长江流域规划办公室提供的公式初步确定为:反弧段半径R=(4~10)h0,本设计反弧段流速为23.29m/s>16m/s,但流速也不是很大,同时考虑反弧段要与中间直线段相切,所以取R=6.42h0=9.95m。
一、设计依据:二、基本资料:第一段泄槽的角度 2.29°糙率:0.02闸孔数3闸孔宽10.00闸墩厚 1.50堰顶高程929.00m 校核水位下的流量:Q=196校核洪水位931.35m 设计水位下的流量:Q=102设计水位930.52m Q=87.3930.37m 校核水位到堰顶高差: 2.35 m 设计水位到堰顶高差: 1.52 m 下游水位:设计902.65m 校核904.04m 902.4m 1.37m三、计算内容:溢流堰采用驼峰堰面曲线:校核水位下的堰上水头 2.35 m1.76m类型0.600.63 2.4 3.60流量系数的计算:P1/H0=0.255<0.34流量系数的计算为:m=0.448泄流量的计算:式中:Q—1、《水力学》2、《溢洪道设计规范》3、水文资料(m 3/s)(m 3/s)30年一遇水位下的流量:(m 3/s)30年一遇水位30年一遇水位30年一遇水位到堰顶高差1、溢洪道泄流能力计算:H max —H d —堰面曲线定型设计水头(取0.75H max )H d =采用b型驼峰堰:上游堰高P1中圆弧半径R1上、下圆弧半径R2总长度Lb型m=0.385+0.224(P 1/H 0)0.934下泄流量的计算按《规范》A.2.3公式进行计算:流量,m 3/s Q =mεB �2g H 03/2B—30m b—10.00m n—闸孔数目;3 2.35 mg— g=9.81m—m=0.448闸墩侧收缩系数,由下式计算得:0.9750.450.7根据以上参数计算得:Q=208.858临界水深及临界底坡的计算公式为:式中:校核设计α—流速不均匀系数 1.05 1.05q—q= 6.533 3.40036.31935.147R—R= 1.508 1.008临界谢才系数71.38866.7553333由上计算得:校核设计1.659 1.0740.00201760.0022330溢流堰总净宽,(m),定义:B=nb 单孔宽度,(m)H 0—计入行近流速水头的堰上总水头,(m)重力加速度,(m/s 2);堰流量系数;ε—ε=ζ0—中墩形状系数,由《规范》表A.2.1-3查得:ζ0=ζK —边墩形状系数,由《规范》图A.2.1-2查得:ζK =m 3/s2、泄槽段临界水深及临界底坡计算:α=泄槽单宽流量(m 3/sm )x k —临界湿周(m)x k =水力半径(m )C k —C k =b k —临界水深对应水面宽(m )b k =h k =h k =i k =i k =ε=1−0.2[ζk ��n −1�ζ0]H 0nb h k =3�αq 2g i k =gx k αC K 2b k起始计算断面定在堰下收缩断面处:断面水深计算公式为:式中:校核设计q—q=5.9393.091 2.6452.952.12 1.97泄槽底坡坡角; 2.29φ—起始计算断面流速系数;0.95校核设计1.0150.5950.523计算结果如下:泄槽起始断面水深: 1.0150.5950.523泄槽水面线根据能量方程,采用分段求和法进行计算,计算公式如下:水面曲线的推算见附表一:3、泄槽段起始水深h 1计算:30年一遇起始计算断面单宽流量,m 3/(s.m);H 0—起始计算断面渠底以上总水头,(m );H 0=θ—θ=o φ=30年一遇假定一个初始值h 1(m)h 1=h 1=4、泄槽段水面线的推算:5、泄槽由缓变陡时抛物线的推求:泄槽在(泄0+037.156)段由缓变陡,采用抛物线连接,方程为:h 1=qφ�2g �H 0−h 1cos θ�Δl 1−2=�h 2cos θ�α2v 222g �−�h 1cos θ�α1v 122g �i −�J �J =n 2�v 2�R 4/3�v =v i −1�v i2�R =R i −1�R i2y =xtg θ�x 2K �4H 0cos 2θ�H 0=h �αv 22g式中: 2.3°1.0K=1.3以设计水位来推求抛物线:h=0.45m v=14.59m/s所以:11.308m 0.04求切点得:所以y=0.4x+b求切点得:x= 4.657y= 1.025挑流水舌外缘挑距按下式计算: 冲刷坑最大水垫深度计算公式为:式中:L—x 、y—以缓坡泄槽段末端为原点的抛物线横、纵坐标,m ;θ—缓坡泄槽底坡坡角,θ=H 0—抛物线起始断面比能,m ;h—抛物线起始断面水深,m ;v—抛物线起始断面流速,m/s ;α—流速分布不均匀系数,取α=K—系数,H 0=1/K(4H 0cos 2θ)=y=0.04x+0.03865x 2后接陡坡坡度为K=0.4由(1)、(2)式得:6、挑流消能计算:挑流鼻坎末端至挑流水舌外缘的距离(m );L =1g [v 12sin θcos θ�v 1cos θ�v 12sin 2θ�2g �h 1cos θ�h 2�]T =kq 1/2Z 1/4y '=0.4��2�y '=0.04�0.0773x ��1�θ—挑流水舌水面出射角,近似可取用鼻坎挑胸:20设计校核0.370.610.33鼻坎坎顶至下游河床高程差 2.3m 设计校核20.4223.4519.6T—q—设计校核q= 6.813.067 5.820设计校核Z—Z=27.87 27.31 27.97 k—k=1.4由上可得:设计校核L=33.29042.70030.987T=8.38811.5697.767式中:v —修正系数,取值为: 1.4s/m 计算可得:桩号0+003.2500+043.2500+083.2500+123.2500+163.2500+203.2500+266.979θ=h 1—挑流鼻坎末端法向水深(m );30年一遇h 1=h 2—h 2=v 1—鼻坎坎顶水面流速,(m/s ),可按鼻坎处平均流速v 的1.1倍30年一遇v 1=自下游水面至坑底最大水垫深度,(m );鼻坎末端断面单宽流量,m 3/(s.m);30年一遇30年一遇上、下游水位差,(m );综合冲刷系数,由《规范》表A.4.2可得30年一遇7、泄槽段水流掺气水深可按下式计算:根据《规范》A.3.2的计算公式:h 、h b —泄槽计算断面的水深及掺气水深,(m )不掺气情况下泄槽计算断面的流速,(m/s);ζ—ζ=h b =�1�ζv 100�hh=设计水位0.60.520.530.570.630.720.37校核水位 1.020.870.870.92 1.01 1.140.610.520.460.470.510.570.650.33v=设计水位 5.2 6.637.297.738.128.5118.57校核水位 5.857.588.549.219.7510.2321.325.06 6.39 6.977.367.728.117.82设计水位0.638270.564970.584050.629450.699360.800140.46113校核水位 1.098160.962290.97398 1.03295 1.14217 1.307760.795950.565850.508800.529530.575750.642110.743050.4245930年一遇水位30年一遇水位h b =30年一遇水位由上计算可知,h b 最大值为1.308m,所以考虑泄槽边墙的超高,所以泄槽的边墙高度取2.5m 。
拦河坝设计规范中的溢流结构设计要点拦河坝是一种用于阻挡河流、调节水位和防洪的重要水利工程。
在拦河坝的设计中,溢流结构是至关重要的一部分,它的设计要点直接影响到工程的安全性和效果。
下面将介绍拦河坝设计规范中溢流结构设计的要点。
1. 溢流能力计算:溢流结构的设计首先要考虑的是其溢流能力。
溢流能力的计算需要考虑到最大可能出现的洪峰流量和坝体的最大承载能力。
计算方法可以采用理论计算、模型试验和现场观测等多种手段,以确保溢流结构具备足够的安全性和稳定性。
2. 溢流堰型选择:溢流堰型的选择应根据坝体的特点、河流水情和洪水特性等因素进行综合考虑。
常见的溢流堰型有直线溢流堰、跳墩溢流堰、潜隐溢流堰等。
在选择时,要考虑溢流能力、排砂能力、抗冲刷能力和经济性等因素。
3. 溢流堰的尺寸设计:溢流堰的尺寸设计要根据洪水情况和坝体特点进行合理确定。
溢流堰的有效宽度、高度和缓坡长度等参数需要根据溢流能力计算结果和坝体稳定性要求进行调整。
同时,还需考虑到施工工艺和材料的可行性,确保施工和维护便利。
4. 溢流能量消耗措施:溢流结构设计中,为了减少溢流能量对坝体和下游河床的冲刷破坏,需要采取一定的能量消耗措施。
常见的消能措施有能量消浪墙、激流抑制块、溢流消力坎等。
这些措施能够有效地消耗溢流能量,减少河床冲刷和坝体破坏风险。
5. 溢流结构的稳定性分析:在设计溢流结构时,还需要进行稳定性分析,确保其在各种水流作用下的安全性。
稳定性分析可采用数值模拟和实测数据结合的方法,考虑到水流的冲刷、侵蚀和结构的承载能力等因素,预测溢流结构在实际使用条件下的稳定性。
6. 施工和维护要求:在设计溢流结构时,还要考虑到施工和维护的便利性。
设计中应合理安排溢流结构的施工工艺和施工材料,保证施工的质量和效率。
同时,还要预留一定的空间和设施,方便后续的巡检、维修和大修等工作的进行。
综上所述,拦河坝设计规范中的溢流结构设计要点包括溢流能力计算、溢流堰型选择、溢流堰的尺寸设计、溢流能量消耗措施、溢流结构的稳定性分析以及施工和维护要求等。
溢流坝段设计一、孔口设计 1、孔口形式本设计溢流坝段采用开敞式溢流坝,孔口形式采用坝顶溢流式,堰顶不设闸门,所以溢流堰堰顶高程即为正常蓄水位605m 。
2、孔口尺寸本设计溢流堰净宽51m ,每孔净宽17m 。
二、溢流坝剖面设计溢流坝曲线由顶部曲线段、中间直线段和下部反弧段三部分组成,溢流面曲线采用WES 曲线。
1、设计依据《溢洪道设计规范》(SL 253-2002) 2、基本资料调洪演算成果汇总表工况上游水位(m )下泄流量(m3/s )下游水位(m)正常605.00 179.30 572.83 设计609.45 1248.39 576.29校核610.97 1831.76 577.54 有上述资料可得出H max =5.97m 。
3、溢流曲线设计溢流曲线具体尺寸要求如下图一所示,其中H d 为堰面曲线定型设计水头设计水头,规范要求按最大作用水头H max 的75%到95%计算,本设计采用80%倍的H max ,所以H d =4.78m 。
上游堰高P 1=42m>1.33H d =6.35m ,所以本设计为高堰流量系数m d =0.502。
1)、曲线上游圆弧段参数计算如下表所示:0.282Hd=1.348m R1=0.50Hd=2.39m 0.276Hd=1.319m R2=0.20Hd=0.956m 0.175Hd=0.837m R3=0.04Hd=0.191m曲线参数计算表0.175Hd0.276Hd0.282HdR 1=0.50H dR 2=0.20H dR3=0.04Hdxy2)、下游曲线段下游曲线段计算公式为:1n n d x kH y-=式中:H d 为堰面曲线定型设计水头;x ,y 为原点下游堰面曲线横纵坐标; n 与上游堰坡有关; k 当P 1/H d >1.0时,k 值由规范查取,当P 1/H d ≦1.0时,k 取2.0到2.2。
上游堰坡垂直,所以由规范查的n=1.85;P 1/H d =8.8>1.0,所以由规范查的k=2.0。
溢流堰设计规范
溢流堰是水利工程中常用的一种工程设施,主要用于控制河流的水位,防止发生洪水灾害。
溢流堰的设计规范对于确保工程的安全可靠性至关重要。
下面是溢流堰设计规范的一些要点。
首先,设计者需要充分了解溢流堰所在河流的水文特征,包括年径流量、设计洪水、洪水历时等。
根据水文特征,确定溢流堰的设计流量,以确保溢流堰能够有效地控制河流的水位。
其次,设计者需要考虑溢流堰的建设条件和可行性。
包括河床的地质状况、流域的地貌特征、溢流堰布设的位置等。
根据实地调查和现场勘测结果,确定溢流堰的具体建设方案。
第三,设计者需要根据溢流堰的工作原理,确定溢流堰的各项技术指标。
包括溢流堰的尺寸、几何形状、溢流堰筏的计算、溢流堰坡度、堰身的堆石、确定泄流量等。
确保溢流堰能够稳定工作,达到预期的控制水位的目的。
第四,根据溢流堰的不同功能和设计需求,设计者需要对溢流堰的结构形式和材料进行选择。
比如,对于一般的溢流堰,主要采用土石坝、混凝土坝、重力坝等结构形式。
设计者需要根据实际情况选择合适的结构形式,并对结构进行合理的计算和设计。
第五,设计者需要考虑溢流堰的安全性和耐久性。
包括对溢流堰的抗滑稳定性、坝体的抗冲刷性、抗渗性、抗冻性进行合理的计算和设计。
确保溢流堰在长期使用过程中不发生变形、破
坏等问题。
最后,设计者需要对溢流堰进行合理的施工和监测。
根据设计方案,选择适当的施工方法和技术,确保溢流堰的质量和工程进度。
在施工过程中,对溢流堰进行合理的监测,及时发现和解决施工中的问题,确保工程的安全和顺利进行。
总之,溢流堰的设计规范是确保溢流堰工程的安全可靠性的重要保证。
设计者需要充分考虑水文特征、建设条件和可行性、工作原理等因素,采用合适的结构形式和材料,确保溢流堰能够稳定工作,并且具有良好的安全性和耐久性。
同时,在施工和监测过程中,需要严格遵守设计规范,确保工程质量和安全。