2020版新高考数学二轮复习:第二部分 专题六 第3讲 导数的简单应用 练典型习题 提数学素养
- 格式:doc
- 大小:163.61 KB
- 文档页数:5
第2讲 导数的简单应用[做小题——激活思维]1.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________.y =3x [因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .]2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能是以下选项中的( )C [由题图知,当x <0时,f ′(x )>0,所以y =f (x )在(-∞,0)上单调递增.因为当0<x <2时,f ′(x )<0,所以y =f (x )在(0,2)上单调递减.又当x >2时,f ′(x )>0,所以y =f (x )在(2,+∞)上单调递增.]3.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)B [函数定义域为(0,+∞),由y ′=x -1x =x 2-1x≤0得,0<x ≤1,故选B.]4.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)D [f ′(x )=k -1x ,由题意知k -1x ≥0,即k ≥1x在(1,+∞)上恒成立,又当x ∈(1,+∞)时,0<1x<1,所以k ≥1,故选D.]5.函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m 的值为( )A .7 B.283C .3D .4D [f ′(x )=x 2-4,x ∈[0,3],f ′(x )=0时,x =2,f ′(x )<0时,0≤x <2,f ′(x )>0时,2<x ≤3.所以f (x )在[0,2)上是减函数, 在(2,3]上是增函数. 又f (0)=m ,f (3)=-3+m . 所以在[0,3]上,f (x )max =f (0)=4, 所以m =4,故选D.]6.已知f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则a +b 等于( ) A .0或-7 B .-7 C .0D .7B [因为f ′(x )=3x 2+2ax +b ,所以f ′(1)=3+2a +b =0,①f (1)=1+a +b +a 2=10,②由①②得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3,而要在x =1处取到极值,则Δ=4a 2-12b >0,故舍去⎩⎪⎨⎪⎧a =-3,b =3,所以只有⎩⎪⎨⎪⎧a =4,b =-11,所以a +b =-7,故选B.][扣要点——查缺补漏]1.导数的几何意义(1)f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处切线的斜率.(2)函数y =f (x )在点x =x 0处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0),如T 1. 2.导数与函数的单调性(1)函数单调性的判定方法:在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在此区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在此区间内单调递减.如T 2.(2)若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.如T 3.(3)若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.如T 4.3.导数与函数的极值、最值(1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,f ′(0)=0,但x =0不是极值点.如T 5.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值,在x 0处,f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.(3)一般地,在闭区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么函数y =f (x )在[a ,b ]上必有最大值与最小值,函数的最值必在极值点或区间的端点处取得.如T 6.导数的运算及其几何意义(5年11考)[高考解读] 以导数的几何意义为载体,考查曲线切线方程的求法,注意方程思想的应用及复合函数的求导问题.1.[一题多解](2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =xD [法一:(直接法)因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ), 所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法二:(特值法)因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.]2.(2011·大纲版高考)曲线y =e -2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A .13B .12 C .23D .1A [由题意,得:y ′=(e-2x+1)′=e-2x(-2x )′=-2e-2x,则在点(0,2)处的切线斜率为k =-2e 0=-2,∴切线方程为y =-2x +2. 联立⎩⎪⎨⎪⎧y =-2x +2,y =x ,得C ⎝ ⎛⎭⎪⎫23,23.∴与y =0和y =x 围成三角形的面积为S △OBC =12OB ×23=12×1×23=13.]3.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.1-ln 2 [求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2.]与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0.1.(考查导数的运算)设函数f (x )=f ′⎝ ⎛⎭⎪⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =1A [∵f (x )=f ′⎝ ⎛⎭⎪⎫12x 2-2x +f (1)ln x ,∴f ′(x )=2f ′⎝ ⎛⎭⎪⎫12x -2+f x .令x =12得f ′⎝ ⎛⎭⎪⎫12=2f ′⎝ ⎛⎭⎪⎫12×12-2+2f (1),即f (1)=1.又f (1)=f ′⎝ ⎛⎭⎪⎫12-2,∴f ′⎝ ⎛⎭⎪⎫12=3,∴f ′(1)=2f ′⎝ ⎛⎭⎪⎫12-2+f (1)=6-2+1=5. ∴曲线在点(1,f (1))处的切线方程为y -1=5(x -1), 即5x -y -4=0,故选A.]2.(与不等式交汇)若曲线y =x 3-2x 2+2在点A 处的切线方程为y =4x -6,且点A 在直线mx +ny -1=0(其中m >0,n >0)上,则1m +2n的最小值为( )A .4 2B .3+2 2C .6+4 2D .8 2C [设A (s ,t ),y =x 3-2x 2+2的导数为y ′=3x 2-4x ,可得切线的斜率为3s 2-4s ,切线方程为y =4x -6,可得3s 2-4s =4,t =4s -6,解得s =2,t =2或s =-23,t =-263.由点A 在直线mx +ny -1=0(其中m >0,n >0),可得2m +2n =1⎝ ⎛⎭⎪⎫s =-23,t =-263,舍去,则1m +2n=(2m +2n )⎝ ⎛⎭⎪⎫1m +2n =2⎝⎛⎭⎪⎫3+n m+2m n ≥2⎝⎛⎭⎪⎫3+2n m ·2m n =6+42, 当且仅当n =2m 时,取得最小值6+42,故选C.]3.(求切点的坐标)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则点P 的坐标为________.(1,1) [∵函数y =e x 的导函数为y ′=e x, ∴曲线y =e x在点(0,1)处的切线的斜率k 1=e 0=1. 设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x2,∴曲线y =1x(x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝⎛⎭⎪⎫-1x20=-1, 解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x(x >0)上,∴y 0=1,故点P 的坐标为(1,1).]4.(与圆锥曲线交汇)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.-4 [由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎪⎨⎪⎧42=2y 1,-2=2y 2.∴⎩⎪⎨⎪⎧y 1=8,y 2=2.∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x .∴过点P 的切线斜率为y ′|x =4=4.∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2, ∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2. 联立⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,得⎩⎪⎨⎪⎧x =1,y =-4.∴点A 的纵坐标为-4.]利用导数研究函数的单调性(5年4考)[高考解读] 以函数的单调性为载体,融一元二次不等式的解法、分类讨论思想、函数、方程、不等式的关系于一体,考查学生对知识的灵活应用能力,有一定的难度.(2018·全国卷Ⅰ节选)已知函数f (x )=1x-x +a ln x .讨论f (x )的单调性.[解] ∵f (x )的定义域为(0,+∞),且f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.(ⅰ)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减.(ⅱ)若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42单调递增.利用导数研究函数单调性的一般步骤(1)确定函数的定义域. (2)求导函数f ′(x ).(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可;②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)含参数讨论单调性常见的四个方面讨论.如f ′(x )=ax 2+2x +1-ax 2.①二次系数的讨论.②根的有关讨论,“Δ”讨论. ③根大小讨论.④根在不在定义域内讨论.1.(借助单调性比较大小)定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定 A [设g (x )=f xex,则g ′(x )=f xx-f xxe2x=f x -f xex,由题意知g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2), 即f x 1e x 1<f x 2e x 2,所以e x 1f (x 2)>e x 2f (x 1).]2.(借助单调性解不等式)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0.当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-1,0)∪(1,+∞)C [令g (x )=f xx 2, ∴g ′(x )=x 2fx -2xf x x4=xfx -2f xx 3,又g (1)=0,当x >0时,xf ′(x )<2f (x ),即g ′(x )<0, 因为f (x )为偶函数,所以当x <0时,g ′(x )>0,f (x )>0等价于g (x )>0,所以⎩⎪⎨⎪⎧x >0,g x >g或⎩⎪⎨⎪⎧x <0,gx >g -,所以0<x<1或-1<x <0,选C.]3.(已知单调性求参数的范围)已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围. [解](1)当a =2时,f (x )=(-x 2+2x )·e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f ′(x )>0,即(-x 2+2)e x>0,因为e x >0,所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x, 所以[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)都成立. 因为e x>0,所以-x 2+(a -2)x +a ≥0,则a ≥x 2+2x x +1=x +2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令g (x )=(x +1)-1x +1,则g ′(x )=1+1x +2>0.所以g (x )=(x +1)-1x +1在(-1,1)上单调递增.所以g (x )<g (1)=(1+1)-11+1=32. 所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. 4.(含参数的复合函数的单调性)已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.[解] f ′(x )=a x +1-a -2x =-2x ⎝ ⎛⎭⎪⎫x +2+a 2x +1,令f ′(x )=0,得x =0或x =-a +22,又f (x )的定义域为(-1,+∞), ①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增; 若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减. ②当-1<-a +22<0,即-2<a <0时,若x ∈⎝⎛⎭⎪⎫-1,-a +22,f ′(x )<0, 则f (x )单调递减; 若x ∈⎝ ⎛⎭⎪⎫-a +22,0,f ′(x )>0, 则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0, 则f (x )单调递减. ③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减; 若x ∈⎝⎛⎭⎪⎫0,-a +22,f ′(x )>0,则f (x )单调递增; 若x ∈⎝ ⎛⎭⎪⎫-a +22,+∞,f ′(x )<0,则f (x )单调递减.综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )在⎝⎛⎭⎪⎫-1,-a +22上单调递减,在⎝ ⎛⎭⎪⎫-a +22,0上单调递增,在(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减; 当a <-2时,f (x )在(-1,0)上单调递减,在⎝⎛⎭⎪⎫0,-a +22上单调递增,在⎝ ⎛⎭⎪⎫-a +22,+∞上单调递减.利用导数研究函数的极值(最值)问题(5年5考)[高考解读] 试题常以线性函数与指数函数或对数函数的组合形式出现,考查导数的运算法则、极最值的求法,考查分类讨论及数形结合思想,考查等价转化能力及逻辑推理能力,难度较大.1.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·ex -1=ex -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)·e -3=0,所以a =-1.所以f (x )=(x 2-x -1)e x -1,f ′(x )=ex -1·(x 2+x -2).由ex -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;-2<x <1时,f ′(x )<0;x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1. 故选A.]2.(2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.切入点:(1)分a >0,a =0,a <0三类讨论f (x )的单调性;(2)分析f (x )在[0,1]上的单调性,分情况求a ,b 的值.[解](1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a 3,+∞时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫0,a3时,f ′(x )<0.故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞单调递增,在⎝ ⎛⎭⎪⎫0,a3单调递减;若a =0,f (x )在(-∞,+∞)单调递增;若a <0,则当x ∈⎝ ⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫a3,0时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)单调递增,在⎝ ⎛⎭⎪⎫a3,0单调递减.(2)满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝ ⎛⎭⎪⎫a 3=-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.[教师备选题]1.(2016·全国卷Ⅱ)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0.(2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.[解](1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x -x +x-x -xx +2=x 2e xx +2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)g ′(x )=x -x+a x +x3=x +2x 3(f (x )+a ). 由(1)知,f (x )+a 单调递增.对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈(0,2],使得f (x a )+a =0, 即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e x a -a x a +x 2a=e x a +f x a x a +x 2a=e x ax a +2. 于是h (a )=e x ax a +2. 由⎝ ⎛⎭⎪⎫e xx +2′=x +x x +2>0,得y =exx +2单调递增, 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 2.(2018·全国卷Ⅲ节选)已知函数f (x )=(2+x +ax 2)ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .[解](1)当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x.设函数g (x )=f ′(x )=ln(1+x )-x 1+x,则g ′(x )=x+x2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0.故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0. 所以f (x )在(-1,+∞)单调递增.又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)①若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾.②若a <0,设函数h (x )=f x 2+x +ax 2=ln(1+x )-2x 2+x +ax2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0,故h (x )与f (x )符号相同. 又h (0)=f (0)=0,故x =0是f (x )的极大值点,当且仅当x =0是h (x )的极大值点.h ′(x )=11+x-+x +ax 2-2x+2ax+x +ax22=x 2a 2x 2+4ax +6a +x +ax 2+x +2.如果6a +1>0,则当0<x <-6a +14a ,且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0,故x =0不是h (x )的极大值点.如果6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0,所以x =0不是h (x )的极大值点. 如果6a +1=0,则h ′(x )=x 3x -x +x 2-6x -2,则当x ∈(-1,0)时,h ′(x )>0;当x ∈(0,1)时,h ′(x )<0.所以x =0是h (x )的极大值点,从而x =0是f (x )的极大值点.综上,a =-16.函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f ′(x )→求方程f ′(x )=0的根→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反.1.(知图判断函数极值)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论一定成立的是( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点 D [绘制表格考查函数的性质如下:2.(已知最值求参数)已知函数f (x )=ln x -a x ,若函数f (x )在[1,e]上的最小值为32,则a 的值为( )A .- eB .-e 2C .-32D .e 12A [由题意,f ′(x )=1x +ax2,若a ≥0,则f ′(x )>0,函数单调递增,所以f (x )min =f (1)=-a =32,矛盾;若-e <a <-1,函数f (x )在[1,-a ]上递减,在[-a ,e]上递增,所以f (-a )=32,解得a =-e ;若-1≤a <0,函数f (x )是递增函数,所以f (1)=-a =32,矛盾;若a ≤-e ,函数f (x )单调递减,所以f (e)=32,解得a =-e2,矛盾.综上a =- e.故选A.]3.(已知极值点个数求参数范围)已知n >0,若函数f (x )=⎩⎪⎨⎪⎧x 2+nx ,x ≤0,mx 2-x ln x +x ,x >0恰有三个极值点,则实数m 的取值范围是________.⎝ ⎛⎭⎪⎫0,12e [由题意知f (x )的导函数f ′(x )=⎩⎪⎨⎪⎧2x +n ,x ≤0,2mx -ln x ,x >0在定义域上有三个零点,且在这三个零点附近的左、右两侧的函数值异号.当x ≤0时,令2x +n =0,得x =-n2,因为n >0,所以x =-n2是f ′(x )的一个零点,且f ′(x )在其附近的左、右两侧的函数值异号,故需f ′(x )=2mx -ln x 在(0,+∞)上有两个零点,且在这两个零点附近的左、右两侧的函数值均异号,即y =2mx 与y =ln x 的图象在(0,+∞)上有两个交点,故m 的取值范围是⎝ ⎛⎭⎪⎫0,12e .] 4.(极值点个数的判断)已知函数f (x )=ax -1-ln x (a ∈R ) . (1)讨论函数f (x )的定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的最大值.[解](1)f (x )的定义域为(0,+∞),f ′(x )=a -1x =ax -1x.①当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,所以函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. ②当a >0时, 由f ′(x )>0得x >1a.∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上递减,在⎝ ⎛⎭⎪⎫1a ,+∞上递增,即f (x )在x =1a处有极小值.综上,当a ≤0时,f (x )在(0,+∞)上没有极值点; 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=a -1=0,则a =1,从而f (x )=x -1-ln x . ∵x ∈(0,+∞),f (x )≥bx -2恒成立,∴x ∈(0,+∞),1+1x -ln xx≥b 恒成立.令g (x )=1+1x -ln x x ,则g ′(x )=ln x -2x2,由g ′(x )≥0得x ≥e 2,则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增.∴g (x )min =g (e 2)=1-1e 2,故实数b 的最大值是1-1e 2.。
重点增分专题三导数的简单应用[全国卷3年考情分析](1)此部分内容是高考命题的热点内容.在选择题、填空题中多考查导数的几何意义,难度较小.(2)应用导数研究函数的单调性、极值、最值,多在选择题、填空题最后几题的位置考查,难度中等偏上,属综合性问题;常在解答题的第一问中考查,难度一般.考点一导数的几何意义保分考点·练后讲评[大稳定——常规角度考双基]1.[已知切点求切线方程](2018·全国卷Ⅱ)曲线y=2ln x在点(1,0)处的切线方程为______________.解析:因为y′=2x,y′|x=1=2,所以切线方程为y-0=2(x-1),即y=2x-2.答案:y=2x-22.[由切线方程求切点坐标]曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则点P的坐标为________.解析:f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故点P的坐标为(1,3)和(-1,3).答案:(1,3)和(-1,3)3.[求参数值或范围](2018·全国卷Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=________.解析:∵y′=(ax+a+1)e x,∴当x=0时,y′=a+1,∴a+1=-2,解得a=-3.答案:-34.[已知切线上一点(非切点)求切线方程]曲线f (x )=x 3-2x 2+2⎝⎛⎭⎫12≤x ≤52过点P (2,0)的切线方程为________.解析:因为f (2)=23-2×22+2=2≠0, 所以点P (2,0)不在曲线f (x )=x 3-2x 2+2上. 设切点坐标为(x 0,y 0),则12≤x 0≤52,因为f ′(x )=3x 2-4x ,所以⎩⎪⎨⎪⎧y 0=x 30-2x 20+2,0-y 02-x 0=3x 20-4x 0, 消去y 0,整理得(x 0-1)(x 20-3x 0+1)=0, 解得x 0=1或x 0=3+52(舍去) 或x 0=3-52(舍去), 所以y 0=1,f ′(x 0)=-1,所以所求的切线方程为y -1=-(x -1), 即y =-x +2. 答案:y =-x +2 [解题方略]1.求曲线y =f (x )的切线方程的3种类型及方法2.由曲线的切线求参数值或范围的2种类型及解题关键[小创新——变换角度考迁移]1.[与数列交汇]已知函数f (x )=x 2-ax 的图象在点A (1,f (1))处的切线l 与直线x +3y -1=0垂直,记数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为S n ,则S 2 018的值为( )A.2 0162 017B.2 0172 018C.2 0152 016D.2 0182 019解析:选D 由题意知f (x )=x 2-ax 的图象在点A (1,f (1))处的切线斜率k =f ′(1)= 2-a =3⇒a =-1,故f (x )=x 2+x .则1f (n )=1n (n +1)=1n -1n +1,S 2 018=1-12+12-13+…+12 018-12 019=1-12 019=2 0182 019.2.[与圆交汇]曲线f (x )=-x 3+3x 2在点(1,f (1))处的切线截圆x 2+(y +1)2=4所得的弦长为( )A .4B .2 2C .2D. 2解析:选A 因为f ′(x )=-3x 2+6x ,则f (x )在点(1,f (1))处的切线的斜率k =-3+6=3,又f (1)=2,故切线方程为y -2=3(x -1),即3x -y -1=0.因为圆心C (0,-1)到直线3x -y -1=0的距离d =0,所以直线3x -y -1=0截圆x 2+(y +1)2=4所得的弦长就是该圆的直径4,故选A. 3.[与三角函数交汇]已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线的斜率为1,则tan x 0=________.解析:∵f (x )=12x -14sin x -34cos x ,∴f ′(x )=12-14cos x +34sin x =12+12sin ⎝⎛⎭⎫x -π6. ∵函数f (x )的图象在点A (x 0,y 0)处的切线斜率为1, ∴12+12sin ⎝⎛⎭⎫x 0-π6=1,∴x 0-π6=π2+2k π,k ∈Z ,∴x 0=2π3+2k π,k ∈Z , ∴tan x 0=tan ⎝⎛⎭⎫2π3+2k π=- 3. 答案:-3考点二 利用导数研究函数的单调性 增分考点深度精研[析母题——高考年年“神”相似][典例] 已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性. [解] 函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0. 故f (x )在(-∞,ln a )上单调递减, 在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a 2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减, 在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. [练子题——高考年年“形”不同]1.若本例中f (x )变为f (x )=ln x +1ax -1a,a ∈R 且a ≠0,讨论函数f (x )的单调性. 解:函数f (x )的定义域为(0,+∞), 则f ′(x )=1x -1ax 2=ax -1ax 2.当a <0时,f ′(x )>0恒成立, ∴函数f (x )在(0,+∞)上单调递增. 当a >0时,由f ′(x )>0,得x >1a ;由f ′(x )<0,得0<x <1a,∴函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减. 综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减. 2.若本例变为:已知函数f (x )=e x (e x -a )-a 2x 在[1,+∞)上单调递增,求实数a 的取值范围.解:由本例解析知f ′(x )=(2e x +a )(e x -a ), ∵f (x )在[1,+∞)上单调递增, 则f ′(x )≥0在[1,+∞)上恒成立, ∴(2e x +a )(e x -a )≥0,∴-2e x ≤a ≤e x 在[1,+∞)上恒成立, ∴-2e ≤a ≤e ,∴实数a 的取值范围为[-2e ,e].3.若本例变为:函数f (x )=e x (e x -a )-a 2x 在[1,+∞)上存在单调递减区间,求实数a 的取值范围.解:由本例解析知f ′(x )=2e 2x -a e x -a 2, 设t =e x ,∵x ∈[1,+∞),∴t ∈[e ,+∞), 即g (t )=2t 2-at -a 2在[e ,+∞)上有零点. ∴g (e)=2e 2-a e -a 2<0, 解得a >e 或a <-2e ,∴实数a 的取值范围为(-∞,-2e)∪(e ,+∞). [解题方略]求解或讨论函数单调性有关问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论. [注意] 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.[多练强化]1.已知函数f (x )=-ln x +x 22+3,则函数f (x )的单调递减区间是( )A .(-∞,0)B .(0,1)C .(0,+∞)D .(1,+∞)解析:选B f ′(x )=-1x +x (x >0).由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得0<x <1.所以函数f (x )的单调递减区间为(0,1).2.已知函数f (x )在定义域R 内可导,f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0.设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .c <a <bB .c <b <aC .a <b <cD .b <c <a解析:选A 依题意得,当x <1时,f ′(x )>0,函数f (x )为增函数.又f (3)=f (-1),-1<0<12<1,∴f (-1)<f (0)<f ⎝⎛⎭⎫12,即f (3)<f (0)<f ⎝⎛⎭⎫12,∴c <a <b . 3.已知函数f (x )=x 2-12ln x +32在其定义域内的一个子区间(a -1,a +1)内不是单调函数,求实数a 的取值范围.解:法一:由已知得f (x )的定义域为(0,+∞),∵函数f (x )=x 2-12ln x +32在区间(a -1,a +1)上不单调,∴f ′(x )=2x -12x =4x 2-12x 在区间(a -1,a +1)上有零点.由f ′(x )=0,得x =12,则⎩⎪⎨⎪⎧a -1≥0,a -1<12<a +1,得1≤a <32.∴实数a 的取值范围为⎣⎡⎭⎫1,32. 法二:由已知得f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x ,令f ′(x )>0,得x >12,令f ′(x )<0,得0<x <12,即函数f (x )的单调递增区间为⎝⎛⎭⎫12,+∞,单调递减区间为⎝⎛⎭⎫0,12.若函数f (x )在其定义域内的一个子区间(a -1,a +1)内是单调函数,则a -1≥12或⎩⎪⎨⎪⎧a +1≤12,a -1≥0,即a ≥32,∴函数f (x )在其定义域内的一个子区间(a -1,a +1)内不是单调函数,需满足1≤a <32.∴实数a 的取值范围为⎣⎡⎭⎫1,32. 考点三 利用导数研究函数的极值(最值)问题 增分考点广度拓展题型一 求已知函数的极值(最值)[例1] (2017·北京高考节选)已知函数f (x )=e x cos x -x ,求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.[解] f ′(x )=e x (cos x -sin x )-1, 令g (x )=e x (cos x -sin x )-1,则g ′(x )=-2sin x ·e x ≤0在⎣⎡⎦⎤0,π2上恒成立,且仅在x =0处等号成立, ∴g (x )在⎣⎡⎦⎤0,π2上单调递减, ∴g (x )≤g (0)=0,∴f ′(x )≤0,且仅在x =0处等号成立, ∴f (x )在⎣⎡⎦⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝⎛⎭⎫π2=-π2. [解题方略] 利用导数研究函数极值、最值的方法(1)若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. (2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.题型二 由函数的极值(最值)确定参数值(范围) [例2] (1)已知函数f (x )=x x 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.3-1B.34C.43D.3+1(2)已知函数f (x )=2ln x -2ax +x 2有两个极值点x 1,x 2(x 1<x 2),求实数a 的取值范围. [解析] (1)选A 由f (x )=xx 2+a ,得f ′(x )=a -x 2(x 2+a )2,当a >1时,若x >a ,则f ′(x )<0,f (x )单调递减, 若1<x <a ,则f ′(x )>0,f (x )单调递增,故当x =a 时,函数f (x )有最大值12a =33,得a =34<1,不合题意;当a =1时,函数f (x )在[1,+∞)上单调递减,最大值为f (1)=12,不合题意;当0<a <1时,函数f (x )在 [1,+∞)上单调递减,此时最大值为f (1)=1a +1=33,得a =3-1,符合题意.故a 的值为3-1.(2)f (x )的定义域为(0,+∞), f ′(x )=2x -2a +2x =2(x 2-ax +1)x,令f ′(x )=0,即x 2-ax +1=0,要使f (x )在(0,+∞)上有两个极值点,则方程x 2-ax +1=0有两个不相等的正根,则⎩⎪⎨⎪⎧Δ=a 2-4>0,x 1+x 2=a >0,解得a >2,x 1x 2=1>0,∴实数a 的取值范围为(2,+∞).[解题方略] 已知函数极值点或极值求参数的方法逻辑推理——分类与整合思想研究函数的单调性[典例] (2018·佛山月考)已知函数f (x )=ln x -a 2x 2+ax (a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数f (x )在区间(1,+∞)上是减函数,求实数a 的取值范围.[解] (1)当a =1时,f (x )=ln x -x 2+x ,其定义域为(0,+∞), ∴f ′(x )=1x -2x +1=-2x 2-x -1x , 令f ′(x )=0,则x =1(负值舍去).当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (2)法一:f ′(x )=1x -2a 2x +a =-(2ax +1)(ax -1)x. ①当a =0时,f ′(x )=1x >0,∴f (x )在区间(0,+∞)上为增函数,不合题意; ②当a >0时,由f ′(x )<0,得x >1a . ∴f (x )的单调递减区间为⎝⎛⎭⎫1a ,+∞. 依题意,得⎩⎪⎨⎪⎧1a ≤1,a >0,解得a ≥1;③当a <0时,由f ′(x )<0,得x >-12a. ∴f (x )的单调递减区间为⎝⎛⎭⎫-12a ,+∞. 依题意,得⎩⎪⎨⎪⎧-12a ≤1,a <0,解得a ≤-12.综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,-12∪[1,+∞). 法二:f ′(x )=1x -2a 2x +a =-2a 2x 2+ax +1x. 由f (x )在区间(1,+∞)上是减函数,可得g (x )=-2a 2x 2+ax +1≤0在区间(1,+∞)上恒成立.①当a =0时,1≤0不合题意;②当a ≠0时,可得⎩⎪⎨⎪⎧ 14a <1,g (1)≤0,即⎩⎪⎨⎪⎧a >14或a <0,-2a 2+a +1≤0,∴⎩⎨⎧a >14或a <0,a ≥1或a ≤-12,∴a ≥1或a ≤-12.∴实数a 的取值范围是⎝⎛⎦⎤-∞,-12∪[1,+∞). [素养通路]逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的素养.主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎.本题是含参函数的单调性问题,对于此类问题一般要分类讨论,常见有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.考查了逻辑推理这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.已知函数f (x )的导函数f ′(x )满足下列条件: ①f ′(x )>0时,x <-1或x >2; ②f ′(x )<0时,-1<x <2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )解析:选A 根据条件知,函数f (x )在(-1,2)上是减函数.在(-∞,-1),(2,+∞)上是增函数,故选A.2.(2018·合肥质检)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1- ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.3.(2019届高三·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0, 解得a =-3或a =4,故⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧ a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时, f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C. 4.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x ≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4,a ≥-5⇔a ≥-26,故选C. 5.(2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x解析:选D 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x .法二:易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.6.函数f (x )(x >0)的导函数为f ′(x ),若xf ′(x )+f (x )=e x ,且f (1)=e ,则( ) A .f (x )的最小值为e B .f (x )的最大值为e C .f (x )的最小值为1eD .f (x )的最大值为1e解析:选A 设g (x )=xf (x )-e x , 所以g ′(x )=f (x )+xf ′(x )-e x =0, 所以g (x )=xf (x )-e x 为常数函数. 因为g (1)=1×f (1)-e =0, 所以g (x )=xf (x )-e x =g (1)=0, 所以f (x )=e xx ,f ′(x )=e x (x -1)x 2,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 所以f (x )≥f (1)=e. 二、填空题7.(2019届高三·西安八校联考)曲线y =2ln x 在点(e 2,4)处的切线与坐标轴所围成的三角形的面积为________.解析:因为y ′=2x ,所以曲线y =2ln x 在点(e 2,4)处的切线斜率为2e 2,所以切线方程为y-4=2e 2(x -e 2),即2e 2x -y +2=0.令x =0,则y =2;令y =0,则x =-e 2,所以切线与坐标轴所围成的三角形的面积S =12×e 2×2=e 2.答案:e 28.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是________. 解析:函数f (x )=x 2-5x +2ln x的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12和(2,+∞). 答案:⎝⎛⎭⎫0,12和(2,+∞) 9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________.解析:由题意知f (x )的定义域为(0,+∞),f ′(x )=1+ax ,要使函数f (x )=x +a ln x 不是单调函数,则需方程1+ax=0在(0,+∞)上有解,即x =-a ,∴a <0.答案:(-∞,0) 三、解答题10.已知f (x )=e x -ax 2,曲线y =f (x )在点(1,f (1))处的切线方程为y =bx +1. (1)求a ,b 的值;(2)求f (x )在[0,1]上的最大值. 解:(1)f ′(x )=e x -2ax ,所以f ′(1)=e -2a =b ,f (1)=e -a =b +1, 解得a =1,b =e -2. (2)由(1)得f (x )=e x -x 2,则f ′(x )=e x -2x ,令g (x )=e x -2x ,x ∈[0,1], 则g ′(x )=e x -2, 由g ′(x )<0,得0<x <ln 2; 由g ′(x )>0,得ln 2<x <1,所以f ′(x )在(0,ln 2)上单调递减,在(ln 2,1)上单调递增, 所以f ′(x )≥f ′(ln 2)=2-2ln 2>0, 所以f (x )在[0,1]上单调递增, 所以f (x )max =f (1)=e -1.11.(2018·潍坊统一考试)已知函数f (x )=ax -ln x ,F (x )=e x +ax ,其中x >0,a <0.若f (x )和F (x )在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围.解:由题意得f ′(x )=a -1x =ax -1x,F ′(x )=e x +a ,x >0,∵a <0,∴f ′(x )<0在(0,+∞)上恒成立,即f (x )在(0,+∞)上单调递减, 当-1≤a <0时,F ′(x )>0,即F (x )在(0,+∞)上单调递增,不合题意, 当a <-1时,由F ′(x )>0,得x >ln(-a ); 由F ′(x )<0,得0<x <ln(-a ),∴F (x )的单调递减区间为(0,ln(-a )),单调递增区间为(ln(-a ),+∞). ∵f (x )和F (x )在区间(0,ln 3)上具有相同的单调性, ∴ln(-a )≥ln 3,解得a ≤-3,综上,实数a 的取值范围是(-∞,-3]. 12.已知函数f (x )=xln x+ax ,x >1. (1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围;(2)若a =2,求函数f (x )的极小值. 解:(1)f ′(x )=ln x -1ln 2x+a , 由题意可得f ′(x )≤0在(1,+∞)上恒成立, ∴a ≤1ln 2x -1ln x =⎝⎛⎭⎫1ln x -122-14. ∵x ∈(1,+∞),∴ln x ∈(0,+∞), ∴当1ln x -12=0时,函数t =⎝⎛⎭⎫1ln x -122-14的最小值为-14, ∴a ≤-14,即实数a 的取值范围为⎝⎛⎦⎤-∞,-14. (2)当a =2时,f (x )=xln x+2x (x >1), f ′(x )=ln x -1+2ln 2xln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍去),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0, ∴f (x )的极小值为f (e 12)=e1212+2e 12=4e 12.B 组——大题专攻补短练1.(2019届高三·益阳、湘潭调研)已知函数f (x )=ln x -ax 2+x ,a ∈R. (1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程; (2)讨论f (x )的单调性.解:(1)当a =0时,f (x )=ln x +x ,f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e ,∴曲线y=f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝⎛⎭⎫1+1e (x -e),即y =⎝⎛⎭⎫1e +1x . (2)f ′(x )=1x -2ax +1=-2ax 2+x +1x,x >0,①当a ≤0时,显然f ′(x )>0,∴f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x =0,则-2ax 2+x +1=0,易知其判别式为正, 设方程的两根分别为x 1,x 2(x 1<x 2), 则x 1x 2=-12a<0,∴x 1<0<x 2,∴f ′(x )=-2ax 2+x +1x =-2a (x -x 1)(x -x 2)x,x >0.令f ′(x )>0,得x ∈(0,x 2),令f ′(x )<0得x ∈(x 2,+∞),其中x 2=1+8a +14a, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减.2.已知函数f (x )=a (x -1)x 2,其中a >0. (1)求函数f (x )的单调区间;(2)若直线x -y -1=0是曲线y =f (x )的切线,求实数a 的值.(3)设g (x )=x ln x -x 2f (x ),求g (x )在区间[1,e]上的最小值.(其中e 为自然对数的底数) 解:(1)因为函数f (x )=a (x -1)x 2, 所以f ′(x )=[a (x -1)]′·x 2-(x 2)′·a (x -1)x 4=a (2-x )x 3, 由f ′(x )>0,得0<x <2; 由f ′(x )<0,得x <0或x >2,故函数f (x )的单调递增区间为(0,2),单调递减区间为(-∞,0)和(2,+∞). (2)设切点为(x 0,y 0),由切线斜率k =1=a (2-x 0)x 30⇒x 30=-ax 0+2a ,①由x 0-y 0-1=x 0-a (x 0-1)x 20-1=0⇒(x 20-a )(x 0-1)=0⇒x 0=1,x 0=±a . 把x 0=1代入①得a =1, 把x 0=a 代入①得a =1, 把x 0=-a 代入①无解, 故所求实数a 的值为1.(3)因为g (x )=x ln x -x 2f (x )=x ln x -a (x -1), 所以g ′(x )=ln x +1-a ,由g ′(x )>0,得x >e a -1;由g ′(x )<0,得0<x <e a -1,故g (x )在区间(e a -1,+∞)上单调递增,在区间(0,e a -1)上单调递减,①当e a -1≤1,即0<a ≤1时,g (x )在区间[1,e]上单调递增,其最小值为g (1)=0; ②当1<e a -1<e ,即1<a <2时,g (x )的最小值为g (e a -1)=a -e a -1;③当e a -1≥e ,即a ≥2时,g (x )在区间[1,e]上单调递减,其最小值为g (e)=e +a -a e. 故g (x )min =⎩⎪⎨⎪⎧0,0<a ≤1,a -e a -1,1<a <2,e +a -a e ,a ≥2.3.(2019届高三·南昌调研)设函数f (x )=ln x -2mx 2-n (m ,n ∈R ). (1)讨论f (x )的单调性;(2)若f (x )有最大值-ln 2,求m +n 的最小值. 解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=1x -4mx =1-4mx 2x, 当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增; 当m >0时,令f ′(x )>0,得0<x <m 2m, 令f ′(x )<0,得x >m2m, ∴f (x )在⎝⎛⎭⎫0,m 2m 上单调递增,在⎝⎛⎭⎫m 2m ,+∞上单调递减. (2)由(1)知,当m ≤0时,f (x )在(0,+∞)上单调递增,无最大值. 当m >0时,f (x )在⎝⎛⎭⎫0,m 2m 上单调递增,在m 2m ,+∞上单调递减.∴f (x )max =f⎝⎛⎭⎫m 2m =ln m 2m -2m ·14m -n =-ln 2-12ln m -12-n =-ln 2,∴n =-12ln m -12,∴m +n =m -12ln m -12.令h (x )=x -12ln x -12(x >0),则h ′(x )=1-12x =2x -12x, 由h ′(x )<0,得0<x <12;由h ′(x )>0,得x >12,∴h (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增, ∴h (x )min =h ⎝⎛⎭⎫12=12ln 2, ∴m +n 的最小值为12ln 2.4.已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 解:(1)由已知得f (x )的定义域为x ∈(0,+∞), f ′(x )=ax +2=a +2x x .当a =-4时,f ′(x )=2x -4x. ∴当0<x <2时,f ′(x )<0,即f (x )单调递减;当x >2时,f ′(x )>0,即f (x )单调递增. ∴f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2. (2)∵f ′(x )=a +2x x ,∴当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在x ∈(0,+∞)上单调递增,没有最小值; 当a <0时,由f ′(x )>0得,x >-a 2,∴f (x )在⎝⎛⎭⎫-a2,+∞上单调递增; 由f ′(x )<0得,x <-a2,∴f (x )在⎝⎛⎭⎫0,-a2上单调递减. ∴当a <0时,f (x )的最小值为f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a2. 根据题意得f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a2≥-a , 即a [ln(-a )-ln 2]≥0.∵a <0,∴ln(-a )-ln 2≤0,解得a ≥-2, ∴实数a 的取值范围是[-2,0).。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
专题限时集训(十三) 导数的简单应用[专题通关练] (建议用时:30分钟)1.已知函数f (x )的导函数f ′(x )满足下列条件: ①f ′(x )>0时.x <-1或x >2; ②f ′(x )<0时.-1<x <2; ③f ′(x )=0时.x =-1或x =2. 则函数f (x )的大致图象是( )A [根据条件知.函数f (x )在(-1,2)上是减函数.在(-∞.-1).(2.+∞)上是增函数.故选A.]2.已知直线2x -y +1=0与曲线y =a e x+x 相切(其中e 为自然对数的底数).则实数a 的值是( )A.12 B .1 C .2D .eB [由题意知y ′=a e x+1=2.则a >0.x =-ln a .代入曲线方程得y =1-ln a .所以切线方程为y -(1-ln a )=2(x +ln a ).即y =2x +ln a +1=2x +1⇒a =1.]3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10.则数对(a .b )为( ) A .(-3,3) B .(-11,4)C .(4.-11)D .(-3,3)或(4.-11)C [f ′(x )=3x 2+2ax +b .依题意可得⎩⎪⎨⎪⎧f′1=0,f 1=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a2=10,消去b 可得a 2-a -12=0.解得a =-3或a =4.故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时.f ′(x )=3x 2-6x +3=3(x -1)2≥0.这时f (x )无极值.不合题意.舍去.故选C.]4.已知f (x )=x 2+ax +3ln x 在(1.+∞)上是增函数.则实数a 的取值范围为( ) A .(-∞.-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-2 6.+∞)D .[-5.+∞)C [由题意得f ′(x )=2x +a +3x =2x2+ax +3x ≥0在(1.+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1.+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g 1≥0⇔-26≤a ≤26或⎩⎪⎨⎪⎧a≥-4,a≥-5⇔a ≥-2 6.故选C.]5.(20xx·重庆七校联考)函数f (x )(x >0)的导函数为f ′(x ).若xf ′(x )+f (x )=e x.且f (1)=e.则( )A .f (x )的最小值为eB .f (x )的最大值为eC .f (x )的最小值为1eD .f (x )的最大值为1eA [设g (x )=xf (x )-e x.则g ′(x )=f (x )+xf ′(x )-e x=0. 所以g (x )=xf (x )-e x为常数函数. 因为g (1)=1×f (1)-e =0. 所以g (x )=xf (x )-e x=g (1)=0. 所以f (x )=ex x .f ′(x )=exx -1x2. 当0<x <1时.f ′(x )<0. 当x >1时.f ′(x )>0. 所以f (x )≥f (1)=e.]6.(20xx·西安八校联考)已知曲线f (x )=e x+x 2.则曲线在(0.f (0))处的切线与坐标轴围成的图形的面积为________.②当a >0时.令f ′(x )=-2ax2+x +1x =0.则-2ax 2+x +1=0.易知其判别式为正. 设方程的两根分别为x 1.x 2(x 1<x 2). 则x 1x 2=-12a<0.∴x 1<0<x 2.∴f ′(x )=-2ax2+x +1x =-2a x -x1x -x2x.x >0.令f ′(x )>0.得x ∈(0.x 2).令f ′(x )<0得x ∈(x 2.+∞).其中x 2=1+8a +14a.∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增.在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减. 10.设函数f (x )=ln x -2mx 2-n (m .n ∈R ). (1)讨论f (x )的单调性;(2)若f (x )有最大值-ln 2.求m +n 的最小值. [解] (1)函数f (x )的定义域为(0.+∞).f ′(x )=1x -4mx =1-4mx2x. 当m ≤0时.f ′(x )>0.∴f (x )在(0.+∞)上单调递增; 当m >0时.令f ′(x )>0.得0<x <m 2m. 令f ′(x )<0.得x >m 2m. ∴f (x )在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增. 在⎝⎛⎭⎪⎫m 2m ,+∞上单调递减. (2)由(1)知.当m ≤0时.f (x )在(0.+∞)上单调递增.无最大值. 当m >0时.f (x )在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增.在⎝ ⎛⎭⎪⎫m 2m ,+∞上单调递减. ∴f (x )max =f ⎝⎛⎭⎪⎫m 2m =ln m 2m -2m ·14m -n =-ln 2-12ln m -12-n =-ln 2. ∴n =-12ln m -12.∴m +n =m -12ln m -12.点.则P .Q 两点间距离的最小值为________.32 [y ′=e -x-x e -x=(1-x )e -x.令(1-x )e -x=1.则e x =1-x .e x+x -1=0.令h (x )=e x +x -1.易得h (x )是增函数.且h (0)=0.则方程e x+x -1=0有且只有一解x =0.易求得过曲线y =x e -x上点(0,0)的切线方程为y =x .由题意可得.P .Q 两点间距离d 的最小值即两平行直线x -y =0和x -y +6=0间的距离.所以最小值为d min =62=3 2.]【押题2】 已知函数f (x )=ax 2+bx -ln x (a .b ∈R ).(1)当a =-1.b =3时.求函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值和最小值; (2)当a =0时.是否存在正实数b .使当x ∈(0.e](e 是自然对数的底数)时.函数f (x )的最小值是3?若存在.求出b 的值;若不存在.说明理由.[解] (1)当a =-1.b =3时.f (x )=-x 2+3x -ln x .且x ∈⎣⎢⎡⎦⎥⎤12,2.则f ′(x )=-2x +3-1x =-2x2-3x +1x =-2x -1x -1x.令f ′(x )>0.得12<x <1;令f ′(x )<0.得1<x <2.所以函数f (x )在⎝ ⎛⎭⎪⎫12,1上单调递增.在(1,2)上单调递减.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤12,2上仅有极大值点x =1.且这个极大值点也是最大值点.故函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值为f (1).且f (1)=2. 又f (2)-f ⎝ ⎛⎭⎪⎫12=(2-ln 2)-⎝ ⎛⎭⎪⎫54+ln 2=34-2ln 2=34-ln 4<0.所以f (2)<f ⎝ ⎛⎭⎪⎫12. 故函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最小值为f (2).且f (2)=2-ln 2.综上.函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值为2.最小值为2-ln 2. (2)当a =0时.f (x )=bx -ln x .则f ′(x )=b -1x =b ⎝ ⎛⎭⎪⎫x -1b x.①当0<b ≤1e .即1b≥e 时.f ′(x )<0.所以f (x )在(0.e]上单调递减.所以f (x )min =f (e)=b e -1≤0.②当b >1e .即0<1b <e 时.令f ′(x )<0.得0<x <1b .所以f (x )在⎝ ⎛⎭⎪⎫0,1b 上单调递减;令f ′(x )>0.得1b<x <e.所以f (x )在⎝ ⎛⎭⎪⎫1b,e 上单调递增.。
专题限时集训(十三) 导数的简单应用[专题通关练] (建议用时:30分钟)1.(20xx·深圳二模)已知函数f (x )=ax 2+(1-a )x +2x 是奇函数,则曲线y =f (x )在x=1处的切线的倾斜角为( )A.π4 B.3π4 C.π3D.2π3B [函数f (x )=ax 2+(1-a )x +2x 是奇函数,可得f (-x )=-f (x ),可得a =0,f (x )=x +2x,f ′(x )=1-2x2,即有曲线y =f (x )在x =1处的切线斜率为k =1-2=-1,可得切线的倾斜角为3π4,故选B.]2.若x =2是函数f (x )=(x 2-2ax )e x的极值点,则函数y =f (x )的最小值为( )A .(2+22)e-2B .0C .(2-22)e2D .-eC [∵f (x )=(x 2-2ax )e x, ∴f ′(x )=[x 2+(2-2a )x -2a ]e x,由题意可知f ′(2)=0,即a =1.∴f (x )=(x 2-2x )e x. ∴f ′(x )=(x 2-2)e x, 由f ′(x )=0得x =± 2.又f (2)=(2-22)e 2,f (-2)=(2+22)e -2,且f (2)<f (-2).故选C.]3.[易错题](20xx·长春二模)已知f ′(x )是函数f (x )的导函数,f (1)=e ,x ∈R,2f (x )-f ′(x )>0,则不等式f (x )<e 2x -1的解集为( )A .(-∞,1)B .(1,+∞)C .(-∞,e)D .(e ,+∞)B [令g (x )=fxe2x, 则g ′(x )=e2xf′x -2e2xf x e4x =f′x -2f xe2x,∵2f (x )-f ′(x )>0, ∴g ′(x )<0, ∴g (x )递减, 不等式f (x )<e2x -1⇔f x e2x <1e =e e2=f 1e2⇔g (x )<g (1)⇔x >1,故选B.]4.[易错题]若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)C [由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知⎩⎨⎧-3≤a <0,a +5>0,解得a ∈[-3,0),故选C.]5.已知函数f (x )在R 上可导,且f (x )=4x -x 3f ′(1)+2f ′(0),则⎠⎛01f (x )dx =________.394[∵f (x )=4x -x 3f ′(1)+2f ′(0), ∴f ′(x )=4-3x 2f ′(1),令x =1得f ′(1)=4-3f ′(1),即f ′(1)=1. 令x =0得f ′(0)=4. ∴f (x )=4x -x 3+8.∴⎠⎛01f (x )dx =⎠⎛01(4x -x 3+8)dx =⎝ ⎛⎭⎪⎫2x2-x44+8x ⎪⎪⎪10=394.]所以f (x )在⎝⎛⎭⎪⎫0,-a 2上单调递减. 所以当a <0时,f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a . 根据题意得f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a ≥-a , 即a [ln(-a )-ln 2]≥0.因为a <0,所以ln(-a )-ln 2≤0,解得a ≥-2, 所以实数a 的取值范围是[-2,0).8.(20xx·武汉模拟)已知函数f (x )=exx -a (x -ln x ).(1)当a ≤0时,试求f (x )的单调区间;(2)若f (x )在(0,1)内有极值,试求a 的取值范围. [解](1)函数f (x )的定义域为(0,+∞).f ′(x )=exx -1x2-a ⎝ ⎛⎭⎪⎫1-1x =exx -1-ax x -1x2,=ex -axx -1x2.当a ≤0时,对于x ∈(0,+∞),e x-ax >0恒成立, 所以由f ′(x )>0,得x >1;由f ′(x )<0,得0<x <1. 所以f (x )的单调增区间为(1,+∞),单调减区间为(0,1). (2)若f (x )在(0,1)内有极值, 则f ′(x )=0在(0,1)内有解. 令f ′(x )=ex -axx -1x2=0,即e x-ax =0,即a =ex x .设g(x )=exx ,x ∈(0,1),所以g′(x )=exx -1x2, 当x ∈(0,1)时,g′(x )<0恒成立,所以g(x)单调递减.又因为g(1)=e,又当x→0时,g(x)→+∞,即g(x)在(0,1)上的值域为(e,+∞),所以当a>e时,f′(x)=ex-ax x-1x2=0有解.设H(x)=e x-ax,设H′(x)=e x-a<0,x∈(0,1),所以H(x)在(0,1)上单调递减.因为H(0)=1>0,H(1)=e-a<0,所以H(x)=e x-ax=0在(0,1)上有唯一解x0.当x变化时,H(x),f′(x),f(x)变化情况如表所示:x (0,x0) x0(x0,1)H(x) +0 -f′(x) -0 +f(x) ↘极小值↗所以当a>e时,f(x)在(0,1)内有极值且唯一.当a≤e时,当x∈(0,1)时,f′(x)≤0恒成立,f(x)单调递减,不成立.综上,a的取值范围为(e,+∞).内容押题依据利用导数讨论函数的单调性、函数的单调性、极值与不等式交汇是近几年高考的热点,极值、不等式的证明考查灵活应用导数工具、数形结合思想及分类讨论思想解题的能力,考查逻辑推理及数学运算的素养【押题】 设函数f (x )=x +ax ln x (a ∈R ). (1)讨论函数f (x )的单调性;(2)若函数f (x )的极大值点为x =1,证明:f (x )≤e -x+x 2. [解](1)f (x )的定义域为(0,+∞),f ′(x )=1+a ln x +a , 当a =0时,f (x )=x ,则函数f (x )在区间(0,+∞)上单调递增;当a >0时,由f ′(x )>0得x >e -a +1a ,由f ′(x )<0得0<x <e -a +1a,所以f (x )在区间⎝ ⎛⎭⎪⎫0,e -a +1a 上单调递减,在区间⎝ ⎛⎭⎪⎫e -a +1a ,+∞上单调递增; 当a <0时,由f ′(x )>0得0<x <e -a +1a ,由f ′(x )<0得x >e -a +1a,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,e -a +1a 上单调递增,在区间⎝ ⎛⎭⎪⎫e -a +1a ,+∞上单调递减. 综上所述,当a =0时,函数f (x )在区间(0,+∞)上单调递增;当a >0时,函数f (x )在区间⎝ ⎛⎭⎪⎫0,e -a +1a 上单调递减,在区间⎝ ⎛⎭⎪⎫e -a +1a ,+∞上单调递增;当a <0时,函数f (x )在区间⎝ ⎛⎭⎪⎫0,e -a +1a 上单调递增,在区间⎝ ⎛⎭⎪⎫e-a +1a,+∞上单调递减. (2)由(1)知a <0且e -a +1a =1,解得a =-1,f (x )=x -x ln x .要证f (x )≤e —x +x 2,即证x -x ln x ≤e —x +x 2,即证1-ln x ≤e —x x+x .令f (x )=ln x +e —x x +x -1(x >0),则f ′(x )=1x +-e —xx -e —xx2+1=x +1x -e —x x2.令g (x )=x -e —x(x >0),易知函数g (x )在区间(0,+∞)上单调递增.而g (1)=1-1e >0,g (0)=-1<0,所以在区间(0,+∞)上存在唯一的实数x 0,使得g (x 0)=x 0-e —x0=0,即x 0=e —x0,且当x ∈(0,x 0)时g (x )<0,当x ∈(x 0,+∞)时g (x )>0,故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增.。
第3讲 导数的简单应用考点1 导数运算及几何意义1.导数公式(1)(sin x )′=cos x ;(2)(cos x )′=-sin x ;(3)(a x )′=a x ln a (a >0);(4)(log a x )′=1x ln a (a >0,且a ≠1).2.导数的几何意义函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[例1] (1)[2019·全国卷Ⅰ]曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________;(2)[2019·全国卷Ⅲ]已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1(1)本题主要考查导数的几何意义,考查考生的运算求解能力,考查的核心素养是数学运算.因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .(2)本题主要考查导数的几何意义,考查的核心素养是数学运算.因为y ′=a e x +ln x +1,所以y ′|x =1=a e +1,所以曲线在点(1,a e)处的切线方程为y -a e =(a e +1)(x -1),即y =(a e +1)x -1,所以⎩⎨⎧ a e +1=2,b =-1,解得⎩⎨⎧ a =e -1b =-1.【答案】 (1)y =3x (2)D1.求曲线y =f (x )的切线方程的三种类型及方法(1)已知切点P (x 0,y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程.(2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0,y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程.(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0,y 0),利用导数求得切线斜率f ′(x 0),然后由斜率公式求得切线斜率,列方程(组)解得x 0,再由点斜式或两点式写出方程.2.[警示] 求曲线的切线方程时,务必分清点P 处的切线还是过点P 的切线,前者点P 为切点,后者点P 不一定为切点,求解时应先求出切点坐标.『对接训练』1.[2019·云南师大附中适应性考试]曲线y =a x 在x =0处的切线方程是x ln 2+y -1=0,则a =( )A.12 B .2C .ln 2D .ln 12详细分析:由题意知,y ′=a x ln a ,则在x =0处,y ′=ln a ,又切点为(0,1),∴切线方程为x ln a -y +1=0,∴a =12.故选A.答案:A2.[2019·河北保定乐凯中学模拟]设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A .2 B.14C .4D .-12详细分析:因为曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,所以g ′(1)=2.又f ′(x )=g ′(x )+2x ,故曲线y =f (x )在点(1,f (1))处的切线的斜率为f ′(1)=g ′(1)+2=4.故选C.答案:C考点2 利用导数研究函数的单调性1.若求函数的单调区间(或证明单调性),只要在其定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可.2.若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.[例2] [2019·全国卷Ⅲ]已知函数f (x )=2x 3-ax 2+b .(1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.本题主要考查导数在研究三次函数单调性、最值中的应用,考查考生的运算求解能力,考查分类讨论思想,考查的核心素养是逻辑推理、数学运算.(1)f ′(x )=6x 2-2ax =2x (3x -a ).令f ′(x )=0,得x =0或x =a 3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a 3,+∞时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫0,a 3时,f ′(x )<0.故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞单调递增,在⎝ ⎛⎭⎪⎫0,a 3单调递减;若a =0,f (x )在(-∞,+∞)单调递增;若a <0,则当x ∈⎝ ⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫a 3,0时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)单调递增,在⎝ ⎛⎭⎪⎫a 3,0单调递减.(2)满足题设条件的a ,b 存在.(ⅰ)当a ≤0时,由(1)知,f (x )在[0,1] 单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.(ⅱ)当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.(ⅲ)当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f (a 3)=-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.1.求解或讨论函数单调性问题的解题策略研究函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归纳为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论.(2)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论.2.[警示] 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.『对接训练』3.[2019·湖北宜昌模拟]已知函数f (x )=⎝ ⎛⎭⎪⎫m +1m ln x +1x -x ,其中常数m >0.(1)当m =2时,求f (x )的极大值;(2)试讨论f (x )在区间(0,1)上的单调性.详细分析:(1)当m =2时,f (x )=52ln x +1x -x ,f ′(x )=52x -1x 2-1=-(x -2)(2x -1)2x 2(x >0).当0<x <12或x >2时,f ′(x )<0,当12<x <2时,f ′(x )>0,∴f (x )在⎝ ⎛⎭⎪⎫0,12和(2,+∞)上单调递减,在⎝ ⎛⎭⎪⎫12,2上单调递增, ∴f (x )的极大值为f (2)=52ln 2-32.(2)f ′(x )=m +1m x -1x 2-1=-(x -m )⎝ ⎛⎭⎪⎫x -1m x 2(x >0,m >0), 故当0<m <1时,f (x )在(0,m )上单调递减,在(m,1)上单调递增; 当m =1时,f (x )在(0,1)上单调递减;当m >1时,f (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递减,在⎝ ⎛⎭⎪⎫1m ,1上单调递增.考点3 利用导数研究函数极值、最值可导函数的极值与最值(1)若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.(2)设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.[例3] [2019·全国卷Ⅰ]已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明:(1)f ′(x )在区间⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点; (2)f (x )有且仅有2个零点.本题主要考查导数及其应用、函数的单调性、函数的极值与函数零点个数的证明等,考查考生的推理论证能力、运算求解能力、抽象概括能力等,考查化归与转化思想、分类讨论思想、数形结合思想等,考查的核心素养是逻辑推理、直观想象、数学运算.(1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2. 当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点,即f ′(x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(ⅰ)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在 (-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(ⅱ)当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝⎛⎭⎪⎫β,π2单调递减. 又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝⎛⎦⎥⎤0,π2没有零点. (ⅲ)当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点. (ⅳ)当x ∈(π,+∞)时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点.综上,f (x )有且仅有2个零点.1.利用导数求函数最值的方法技巧(1)对含参数的函数解+析式求最值时,常常分类讨论,分类的原则是极值点在给定区间的内部还是外部,从而根据单调性求出最值.(2)求极值和最值时,为了直观易懂,常常列出x 的取值范围与y ′的符号及y 的单调区间、极值的对应表格.2.[警示](1)求函数极值时,一定要注意分析导函数的零点是不是函数的极值点.(2)求函数最值时,务必将极值点与端点值比较得出最大(小)值.(3)对于含参数的函数解+析式或区间求极值、最值问题,务必要对参数分类讨论.『对接训练』4.[2019·福建福州质量检测]已知函数f (x )=x 1+x-a ln(1+x )(a ∈R ),g (x )=x 2e mx +1-e 2.(1)求函数f (x )的单调区间;(2)若a <0,∀x 1,x 2∈[0,e],不等式f (x 1)≥g (x 2)恒成立,求实数m 的取值范围.详细分析:(1)因为f (x )=x 1+x-a ln(1+x )(x >-1), 所以f ′(x )=1(x +1)2-a x +1=-ax -a +1(x +1)2. 当a ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间为(-1,+∞),无单调递减区间.当a >0时,由⎩⎨⎧ f ′(x )>0,x >-1,得-1<x <-1+1a ; 由⎩⎨⎧ f ′(x )<0,x >-1,得x >-1+1a .所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-1,-1+1a ,单调递减区间是⎝ ⎛⎭⎪⎫-1+1a ,+∞. 综上所述,当a ≤0时,函数f (x )的单调递增区间为(-1,+∞),无单调递减区间.当a >0时,函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-1,-1+1a ,单调递减区间是⎝ ⎛⎭⎪⎫-1+1a ,+∞. (2)若a <0,则∀x 1,x 2∈[0,e],不等式f (x 1)≥g (x 2)恒成立, 等价于“对任意x ∈[0,e],f (x )min ≥g (x )max 恒成立”.当a <0时,由(1)知,函数f (x )在[0,e]上单调递增,所以f (x )min =f (0)=0.g ′(x )=2x e mx +1+mx 2e mx +1=x (mx +2)e mx +1,(ⅰ)当m ≥0时,若0≤x ≤e ,则g ′(x )≥0,函数g (x )在[0,e]上单调递增,所以g (x )max =g (e)=e m e +3-e 2>0,不符合题意.(ⅱ)当-2e ≤m <0,即-2m ≥e 时,在[0,e]上,g ′(x )≥0,所以g (x )在[0,e]上单调递增,所以g (x )max =g (e)=e m e +3-e 2,令e m e +3-e 2≤0,得m ≤-1e ,所以-2e ≤m ≤-1e .(ⅲ)当m <-2e ,即0<-2m <e 时,在⎣⎢⎡⎦⎥⎤0,-2m 上,g ′(x )≥0,所以g (x )在⎣⎢⎡⎦⎥⎤0,-2m 上单调递增, 在⎣⎢⎡⎦⎥⎤-2m ,e 上,g ′(x )≤0,所以g (x )在⎣⎢⎡⎦⎥⎤-2m ,e 上单调递减, 所以g (x )max =g ⎝ ⎛⎭⎪⎫-2m =4e m 2-e 2,令4e m 2-e 2≤0, 得m 2≥4e 3,所以m ≤-4e 3,又-4e 3>-2e ,所以m <-2e .综上所述,实数m 的取值范围为⎝ ⎛⎦⎥⎤-∞,-1e .考点4 定积分定积分求平面图形的面积(1)正确画出几何图形,结合图形位置,准确确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微积分基本定理求出积分值.(2)根据图形的特征,选择合适的积分变量.在以y 为积分变量时,应注意将曲线方程变为x =φ(y )的形式,同时,积分上、下限必须对应y 的取值.[例4] [2019·辽宁丹东适应性测试]如图,函数y =-x 2+2x +1与y =1的图象相交,形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43 C. 3 D .2由⎩⎨⎧ y =-x 2+2x +1,y =1,得x 1=0,x 2=2,所以闭合图形的面积S=⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x)d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫-x 33+x 220=-83+4=43. 【答案】 B(1)求曲边多边形面积的步骤①画出草图,在直角坐标系中画出曲线或直线的大致图形.②借助图形确定被积函数,求出交点坐标,确定积分的上限、下限.③将曲边梯形的面积表示为若干个定积分之和.④计算定积分.(2)若所求定积分有明显的几何意义,可以利用定积分的几何意义求定积分.『对接训练』5.[2019·河南八市联合测评]已知函数f(x)=⎩⎪⎨⎪⎧x ,1<x ≤4,x|x|,-1≤x ≤1,则⎠⎛-14f(x)d x =( ) A .14 B .143C .7D .212详细分析:函数f(x)=⎩⎨⎧ x ,1<x ≤4,x|x|,-1≤x ≤1,则⎠⎛-14f(x)d x =⎠⎛-11x|x|d x +⎠⎛14x d x =0+23x 32|41=143.故选B . 答案:B6.[2019·四川内江适应性测试]由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴围成的图形的面积为( )A .3B .103C .73D .83详细分析:由题意可知题中曲线与坐标轴围成的图形如图中阴影部分所示,由⎩⎨⎧ y =x 2+1,y =-x +3,解得⎩⎨⎧ x =-2,y =5(舍去)或⎩⎨⎧ x =1,y =2,则A(1,2),结合图形可知,所求的面积为⎠⎛01(x 2+1)d x +12×22= ⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3+x 10+2=103,选B .答案:B课时作业5 导数的简单应用 1.[2019·甘肃兰州一中月考] ⎠⎛-11|x|d x 等于( ) A .0 B .1C .2D .12详细分析:如图,由定积分的几何意义可知⎠⎛-11|x|d x 表示图中阴影部分的面积,故⎠⎛-11|x|d x =2×⎝ ⎛⎭⎪⎫12×1×1=1.答案:B2.[2019·河南南阳月考]已知函数f(x)的导函数为f ′(x),且满足f(x)=2xf ′(e )+ln x ,则f(e )=( )A .eB .-1e C .-1 D .-e详细分析:由f(x)=2xf ′(e )+ln x ,得f ′(x)=2f ′(e )+1x ,则f ′(e )=2f ′(e )+1e ,所以f ′(e )=-1e ,故f(x)=-2e x +ln x ,所以f(e )=-1.故选C .答案:C3.[2019·湖北钟祥模拟]已知函数f(x)=cos xe x ,则函数f(x)的图象在点(0,f(0))处的切线方程为( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0详细分析:∵f(x)=cos xe x ,∴f ′(x)=-sin x -cos x e x,∴f ′(0)=-1,f(0)=1,即函数f(x)的图象在点(0,1)处的切线斜率为-1,∴函数f(x)的图象在点(0,f(0))处的切线方程为y =-x +1,即x +y -1=0.故选B .答案:B4.[2019·河北九校第二次联考]函数f(x)=x +3x +2ln x 的单调递减区间是( )A .(-3,1)B .(0,1)C .(-1,3)D .(0,3)详细分析:解法一 令f ′(x)=1-3x 2+2x <0,得0<x<1,故所求函数的单调递减区间为(0,1).故选B .解法二 由题意知x>0,故排除A ,C 选项;又f(1)=4<f(2)=72+2ln 2,故排除D 选项.故选B .答案:B5.[2019·辽宁辽阳期末]函数f(x)=x 3-3ln x 的最小值为( ) A .0 B .1 C .2 D .3详细分析:函数f(x)=x 3-3ln x 的定义域为(0,+∞).可得f ′(x)=3x 3-3x =3(x -1)(x 2+x +1)x ,令f ′(x)=0,可得x =1, 所以x ∈(0,1)时,f ′(x)<0,函数f(x)是减函数; x ∈(1,+∞)时,f ′(x)>0,函数f(x)是增函数, 所以函数f(x)的最小值为f(1)=1.故选B . 答案:B6.[2019·河南濮阳第二次模拟]已知a =ln 33,b =e -1,c =3ln 28,则a ,b ,c 的大小关系为( ) A .b>c>a B .a>c>b C .a>b>c D .b>a>c详细分析:依题意,得a =ln 33=ln 33,b =e -1=ln e e ,c =3ln 28=ln 88. 令f(x)=ln xx ,则f ′(x)=1-ln x x 2,易知函数f(x)在(0,e )上单调递增,在(e ,+∞)上单调递减.所以f(x)max =f(e )=1e =b ,且f(3)>f(8),即a>c ,所以b>a>c.故选D .答案:D7.[2019·吉林三校联合模拟]若函数f(x)=(2-m )xx 2+m的图象如图所示,则m 的范围为( )A .(-∞,-1)B .(-1,2)C .(0,2)D .(1,2) 详细分析:f ′(x)=(x 2-m )(m -2)(x 2+m )2=(x -m )(x +m )(m -2)(x 2+m )2,由函数图象的单调性及有两个极值点可知m -2<0且m>0,故0<m<2.又由题图易得m>1,即m>1.故1<m<2,故选D .答案:D8.[2019·广东惠州中学一模]设直线x =t 与函数f(x)=x 2,g(x)=ln x 的图象分别交于点M ,N ,则当|MN|最小时t 的值为( )A .1B .12C .52D .22详细分析:|MN|的最小值,即函数h(x)=x 2-ln x 的最小值,h ′(x)=2x -1x =2x 2-1x ,显然x =22是函数h(x)在其定义域内唯一的极小值点,也是最小值点,故t =22.故选D .答案:D9.[2019·广东肇庆第二次检测]已知x =1是f(x)=[x 2-(a +3)x +2a +3]e x 的极小值点,则实数a 的取值范围是( )A .(1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,1)详细分析:依题意f ′(x)=(x -a)(x -1)e x ,它的两个零点为x =1,x =a ,若x =1是函数f(x)的极小值点,则需a<1,此时函数f(x)在(a,1)上单调递减,在(1,+∞)上单调递增,在x =1处取得极小值.故选D .答案:D 10.[2019·山东济南质检]若函数f(x)=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .[1,2)C .⎣⎢⎡⎭⎪⎫1,32D .⎣⎢⎡⎭⎪⎫32,2详细分析:f ′(x)=4x -1x =(2x -1)(2x +1)x, 令f ′(x)>0,得x>12;令f ′(x)<0,得0<x<12.由题意得⎩⎪⎨⎪⎧k -1≥0,k -1<12<k +1,得1≤k<32.故选C .答案:C11.[2019·湖南湘东六校联考]已知曲线f(x)=e x +x 2,则曲线y =f(x)在(0,f(0))处的切线与坐标轴围成的图形的面积为________.详细分析:由题意,得f ′(x)=e x +2x ,所以f ′(0)=1.又f(0)=1,所以曲线y =f(x)在(0,f(0))处的切线方程为y -1=1×(x -0),即x -y +1=0,所以该切线与x ,y 轴的交点坐标分别为(-1,0),(0,1),所以该切线与坐标轴围成的图形的面积为12×1×1=12.答案:1212.[2019·湖南株洲质检]若⎠⎛0T x 2d x =9,则常数T 的值为________.详细分析:⎠⎛0T x 2d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3T 0=13T 3=9,所以T =3.答案:313.[2019·广东广州第二次模拟]若函数f(x)=x 2-x +1+a ln x 在(0,+∞)上单调递增,则实数a 的取值范围是________.详细分析:f ′(x)=2x -1+a x =2x 2-x +ax, 由题意得,f ′(x)≥0在(0,+∞)上恒成立,即a ≥-2x 2+x =-2⎝⎛⎭⎪⎫x -142+18在(0,+∞)上恒成立,因为y =-2⎝ ⎛⎭⎪⎫x -142+18在(0,+∞)上的最大值为18,所以a 的取值范围是⎣⎢⎡⎭⎪⎫18,+∞. 答案:⎣⎢⎡⎭⎪⎫18,+∞ 14.[2019·河北承德一中一模]设函数f(x)=x 2+1x ,g(x)=xe x ,对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,则正数k 的取值范围是________.详细分析:对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,等价于g (x 1)f (x 2)≤k k +1恒成立.f(x)=x 2+1x =x +1x ≥2x·1x =2,当且仅当x =1x ,即x =1时取等号,所以f(x)的最小值是2.由g(x)=xe x ,得g ′(x)=e x -x e x (e x )2=1-xe x ,由g ′(x)>0得0<x<1,此时函数g(x)为增函数,由g ′(x)<0得x>1,此时函数g(x)为减函数,故当x =1时,g(x)取得极大值,同时也是最大值,为g(1)=1e .则g (x 1)f (x 2)的最大值为1e 2=12e ,则kk +1≥12e ,得2e k ≥k +1,即k(2e -1)≥1,则k ≥12e -1,故正数k 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫12e -1,+∞. 答案:⎣⎢⎡⎭⎪⎫12e -1,+∞ 15.[2019·西藏山南模拟]已知函数f(x)=e axx -1.(1)当a =1时,求曲线y =f(x)在(0,f(0))处的切线方程; (2)求函数f(x)的单调区间.详细分析:(1)当a =1时,f(x)=e xx -1,则f ′(x)=e x (x -2)(x -1)2. 又f(0)=e 00-1=-1,f ′(0)=e 0(0-2)(0-1)2=-2. 所以曲线y =f(x)在(0,f(0))处的切线方程为y -(-1)=-2(x -0),即y =-2x -1.(2)由函数f(x)=eaxx -1,得f ′(x)=e ax[ax -(a +1)](x -1)2.当a =0时,f ′(x)=-1(x -1)2<0,因为函数f(x)的定义域为(-∞,1)∪(1,+∞),所以f(x)的单调递减区间为(-∞,1),(1,+∞),无单调递增区间.当a ≠0时,令f ′(x)=0,即ax -(a +1)=0,解得x =a +1a . 当a>0时,x =a +1a >1,所以x ,f ′(x),f(x)变化情况如下表:所以f(x)的单调递减区间为(-∞,1),⎝ ⎛⎭⎪⎪⎫1,a +1a ,单调递增区间为⎝ ⎛⎭⎪⎪⎫a +1a ,+∞. 当a<0时,x =a +1a <1,所以x ,f ′(x),f(x)变化情况如下表:所以f(x)的单调递增区间为⎝ ⎛⎭⎪⎪⎫-∞,a +1a ,单调递减区间为⎝ ⎛⎭⎪⎪⎫a +1a ,1,(1,+∞). 16.[2019·广东广州二模]已知函数f(x)=(x +2)ln x +ax 2-4x +7a.(1)若a =12,求函数f(x)的所有零点;(2)若a ≥12,证明函数f(x)不存在极值.详细分析:(1)当a =12时,f(x)=(x +2)ln x +12x 2-4x +72, 函数f(x)的定义域为(0,+∞),则f ′(x)=ln x +2x +x -3.设g(x)=ln x +2x +x -3,则g ′(x)=1x -2x 2+1=x 2+x -2x 2=(x +2)(x -1)x 2. 当0<x<1时,g ′(x)<0,当x>1时,g ′(x)>0,所以函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以当x>0时,g(x)≥g(1)=0(当且仅当x =1时取等号), 即当x>0时,f ′(x)≥0(当且仅当x =1时取等号). 所以函数f(x)在(0,+∞)上单调递增,至多有一个零点. 因为f(1)=0,所以x =1是函数f(x)唯一的零点. 所以函数f(x)的零点只有x =1.(2)方法一 f(x)=(x +2)ln x +ax 2-4x +7a ,函数f(x)的定义域为(0,+∞),且f ′(x)=ln x +x +2x +2ax -4. 当a ≥12时,f ′(x)≥ln x +2x +x -3,由(1)知ln x +2x +x -3≥0. 即当x>0时,f ′(x)≥0, 所以f(x)在(0,+∞)上单调递增. 所以f(x)不存在极值.方法二 f(x)=(x +2)ln x +ax 2-4x +7a ,函数f(x)的定义域为(0,+∞),且f ′(x)=ln x +x +2x +2ax -4.设m(x)=ln x +x +2x +2ax -4,则m ′(x)=1x -2x 2+2a =2ax 2+x -2x 2(x>0). 设h(x)=2ax 2+x -2(x>0),当a ≥12时,令h(x)=2ax 2+x -2=0,解得x 1=-1-1+16a 4a <0,x 2=-1+1+16a4a>0. 可知当0<x<x 2时,h(x)<0,即m ′(x)<0,当x>x 2时,h(x)>0,即m ′(x)>0,所以f ′(x)在(0,x 2)上单调递减,在(x 2,+∞)上单调递增.由(1)知ln x +2x +x -3≥0,则f ′(x 2)=ln x 2+2x 2+x 2-3+(2a -1)x 2≥(2a -1)x 2≥0.所以f ′(x)≥f ′(x 2)≥0,即f(x)在定义域上单调递增. 所以f(x)不存在极值.17.[2019·江西吉安一模]已知函数f(x)=e x ,g(x)=12x 2-52x -1(e 为自然对数的底数).(1)记F(x)=ln x +g(x),求函数F(x)在区间[1,3]上的最大值与最小值;(2)若k ∈Z ,且f (x )+g (x )-k ≥0对任意x ∈R 恒成立,求k 的最大值.详细分析:(1)∵F (x )=ln x +g (x )=ln x +12x 2-52x -1,∴F ′(x )=(2x -1)(x -2)2x , 令F ′(x )=0,得x =12或x =2,∴易知函数F (x )在区间(1,2)上单调递减,在区间(2,3)上单调递增. ∴当1≤x ≤3时,F (x )min =F (2)=-4+ln 2, F (x )max =max{F (1),F (3)}=-4+ln 3. (2)∵f (x )+g (x )-k ≥0对任意x ∈R 恒成立,∴e x+12x 2-52x -1-k ≥0对任意x ∈R 恒成立,∴k ≤e x +12x 2-52x -1对任意x ∈R 恒成立.令h (x )=e x +12x 2-52x -1,则h ′(x )=e x+x -52.令φ(x )=e x+x -52,则φ′(x )=e x +1>0,所以h ′(x )在R 上单调递增.又h ′(0)=-32<0,h ′(1)=e -32>0,h ′⎝ ⎛⎭⎪⎫12=e 12-2<0,h ′⎝ ⎛⎭⎪⎫34=e 34-74>0,所以存在唯一的x 0∈⎝ ⎛⎭⎪⎫12,34,使得h ′(x 0)=0,且当x ∈(-∞,x 0)时,h ′(x )<0,x ∈(x 0,+∞)时,h ′(x )>0.∴h (x )在(-∞,x 0)上单调递减,在(x 0,+∞)上单调递增. ∴h (x )min =h (x 0)=e x 0+12x 20-52x 0-1.又h ′(x 0)=0,即e x 0+x 0-52=0,∴e x 0=52-x 0.∴h (x 0)=52-x 0+12x 20-52x 0-1=12(x 20-7x 0+3).∵x 0∈⎝ ⎛⎭⎪⎫12,34,∴h (x 0)∈⎝⎛⎭⎪⎫-2732,-18. ∵k ≤e x+12x 2-52x -1对任意x ∈R 恒成立, ∴k ≤h (x 0),又k ∈Z ,∴k max =-1.18.[2019·福建福州质量抽测]设函数f (x )=(ax -1)e 1-x . (1)当a >0时,求函数f (x )的单调区间;(2)当a =1时,若函数f (x )与函数y =x 2-4x +m (m ∈R )的图象总有两个交点,设两个交点的横坐标分别为x 1,x 2.①求m 的取值范围; ②求证:x 1+x 2>4.详细分析:(1)由已知得,f ′(x )=-a e 1-x ⎝⎛⎭⎪⎪⎫x -a +1a,由于e1-x>0,a >0,∴令f ′(x )>0,得x <a +1a ,令f ′(x )<0,得x >a +1a ,∴当a >0时,f (x )的单调递增区间是⎝ ⎛⎭⎪⎪⎫-∞,a +1a ,单调递减区间是⎝ ⎛⎭⎪⎪⎫a +1a ,+∞. (2)①当a =1时,f (x )=(x -1)e 1-x .解法一 令g (x )=f (x )-x 2+4x -m =(x -1)e 1-x -x 2+4x -m , ∴g ′(x )=-(e 1-x +2)(x -2),由g ′(x )<0得,x >2,由g ′(x )>0得,x <2,易知,x =2为g (x )的极大值点,也是最大值点,故g (x )max =g (2)=1e +4-m ,当x →-∞时,g (x )→-∞;当x →+∞时,g (x )→-∞.若要满足题意,则只需满足g (x )max =1e +4-m >0,即m <1e +4,∴m 的取值范围为⎝ ⎛⎭⎪⎫-∞,1e +4. 解法二 f ′(x )=-e 1-x (x -2),由f ′(x )<0得,x >2,由f ′(x )>0得,x <2,易知,x =2为f (x )的极大值点,也是最大值点.又易知y =x 2-4x +m (m ∈R )在x =2处取得最小值,∴也要满足题意,则只需满足f (2)=1e >22-8+m ,解得m <1e +4,∴m 的取值范围为⎝ ⎛⎭⎪⎫-∞,1e +4.②由题意知,x 1,x 2为函数g (x )=f (x )-x 2+4x -m =(x -1)e 1-x -x 2+4x -m 的两个零点,由①知,不妨设x 1<2<x 2,则4-x 2<2,且函数g (x )在(-∞,2)上单调递增,欲证x 1+x 2>4,只需证明g (x 1)>g (4-x 2),又g (x 1)=g (x 2), ∴只需证明g (x 2)>g (4-x 2).- 21 - 令H (x 2)=g (x 2)-g (4-x 2)(x 2>2), 则H (x 2)=(x 2-1)e 21x -+(x 2-3)e23x -, ∴H ′(x 2)=(x 2-2)(e23x --e 21x -). 又x 2>2,∴e 23x -e21x -=e 224x ->1,即e 23x --e 21x ->0, ∴H ′(x 2)>0,即H (x 2)在(2,+∞)上为增函数, ∴H (x 2)>H (2)=0, ∴g (x 2)>g (4-x 2)成立, ∴x 1+x 2>4.。
高考数学二轮复习考点知识与题型专题解析导数的简单应用微专题1导数的几何意义及其应用导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).『典型题训练』1.若过函数f(x)=ln x-2x图象上一点的切线与直线y=2x+1平行,则该切线方程为()A.2x-y-1=0B.2x-y-2ln2+1=0C.2x-y-2ln2-1=0D.2x+y-2ln2-1=02.已知a∈R,设函数f(x)=ax-ln x+1的图象在点(1,f(1))处的切线为l,则l过定点()A.(0,2) B.(1,0)C.(1,a+1) D.(e,1)),则曲线y=f(x)在x=0 3.已知函数f(x)的导函数为f′(x),且满足f(x)=cos x-xf′(π2处的切线方程是()A.2x-y-1=0 B.2x+y+1=0C.x-2y+2=0 D.x+2y+1=04.已知函数f(x)=a e x+x2的图象在点M(1,f(1))处的切线方程是y=(2e+2)x+b,那么ab=()A.2 B.1 C.-1 D.-25.[2021·重庆三模]已知曲线C1:f(x)=e x+a和曲线C2:g(x)=ln (x+b)+a2(a,b∈R),若存在斜率为1的直线与C1,C2同时相切,则b的取值范围是(),+∞)B.[0,+∞)A.[−94]C.(−∞,1]D.(−∞,94在点(-1,-3)处的切线方程为________________.6.[2021·全国甲卷(理)]曲线y=2x−1x+2微专题2利用导数研究函数的单调性『常考常用结论』导数与单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0;2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性.『提分题组训练』1.[2021·山东烟台模拟]已知a=ln12 020+2 0192 020,b=ln12 021+2 0202 021,c=ln12 022+2 0212 022,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>b>a D.c>a>b2.函数f(x)=x2-a ln x在[1,+∞)上单调递增,则实数a的取值范围是()A.(0,2] B.(2,+∞)C.(-∞,2] D.(-∞,2)3.已知函数f(x)=23x3-ax2+4x在区间(-2,-1)内存在单调递减区间,则实数a的取值范围是()A.(2√2,+∞) B.[2√2,+∞)C.(-∞,-2√2) D.(-∞,-2√2]4.若函数f(x)的导函数为f′(x),对任意x∈(-π,0),f′(x)sin x<f(x)cos x恒成立,则()A.√2f(−5π6)>f(−3π4)B.f(−5π6)>√2f(−3π4)C.√2f(−5π6)<f(−3π4)D.f(−5π6)<√2f(−3π4)5.定义在R上的函数f(x)满足f(x)>1-f′(x),f(0)=6,则不等式f(x)>1+5e x(e为自然对数的底数)的解集为()A.(0,+∞) B.(5,+∞)C.(-∞,0)∪(5,+∞) D.(−∞,0)6.[2021·山东济南一模]设a=2022ln2020,b=2021ln2021,c=2020ln2022,则() A.a>c>b B.c>b>aC.b>a>c D.a>b>c微专题3利用导数研究函数的极值、最值『常考常用结论』导数与极值、最值(1)函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左正右负”⇔f(x)在x0处取极大值;函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左负右正”⇔f(x)在x0处取极小值.(2)函数f(x)在一闭区间上的最大值是此函数在该区间上的极值与该区间端点处函数值中的“最大者”;函数f(x)在一闭区间上的最小值是此函数在该区间上的极值与该区间端点处函数值中的“最小者”.『提分题组训练』1.已知函数f(x)=12sin2x+sin x,则f(x)的最小值是()A.-3√32B.3√32C.-3√34D.3√342.[2021·全国乙卷(理)]设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则()A .a <bB .a >bC .ab <a 2D .ab >a 23.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则点(a ,b )为() A .(3,-3) B .(-4,11) C .(3,-3)或(-4,11) D .(4,11)4.若函数f (x )=x 3-3x 在区间(2a ,3-a 2)上有最大值,则实数a 的取值范围是() A .(-3,1) B .(-2,1) C .(−3,−12) D .(-2,-1]5.若函数f (x )=12e 2x -m e x -m2x 2有两个极值点,则实数m 的取值范围是() A .(12,+∞) B .(1,+∞) C .(e 2,+∞) D .(e ,+∞) 6.[2021·山东模拟]若函数f (x )={2x−2−2m ,x <12x 3−6x 2,x ≥1有最小值,则m 的一个正整数取值可以为________.参考答案导数的简单应用微专题1导数的几何意义及其应用典型题训练1.解析:由题意,求导函数可得y ′=1x -2, ∵切线与直线y =2x +1平行, ∴1x -2=2, ∴x =14,∴切点P 坐标为(14,−2ln 2−12),∴过点P 且与直线y =2x +1平行的切线方程为y +2ln2+12=2(x −14),即2x -y -2ln2-1=0.故选C.答案:C2.解析:由f (x )=ax -ln x +1⇒f ′(x )=a -1x ,f ′(1)=a -1,f (1)=a +1,故过(1,f (1))处的切线方程为:y =(a -1)(x -1)+a +1=(a -1)x +2,故l 过定点(0,2).故选A.答案:A3.解析:∵f (x )=cos x -xf ′(π2), ∴f ′(x )=-sin x -f ′(π2),∴f ′(π2)=-sin π2-f ′(π2)=-1-f ′(π2), 解得:f ′(π2)=-12,∴f (x )=cos x +12x ,f ′(x )=-sin x +12,∴f (0)=1,f ′(0)=12,∴y =f (x )在x =0处的切线方程为y -1=12x ,即x -2y +2=0.故选C.4.解析:因为f (x )=a e x +x 2,所以f ′(x )=a e x +2x ,因此切线方程的斜率k =f ′(1)=a e +2,所以有a e +2=2e +2,得a =2,又切点在切线上,可得切点坐标为(1,2e +2+b ), 将切点代入f (x )中,有f (1)=2e +1=2e +2+b ,得b =-1, 所以ab =-2.故选D. 答案:D5.解析:f ′(x )=e x ,g ′(x )=1x+b ,设斜率为1的切线在C 1,C 2上的切点横坐标分别为x 1,x 2,由题知e x 1=1x2+b=1,∴x 1=0,x 2=1-b ,两点处的切线方程分别为y -(1+a )=x 和y -a 2=x -(1-b ), 故a +1=a 2-1+b ,即b =2+a -a 2=-(a −12)2+94≤94.故选D. 答案:D6.解析:y ′=(2x−1x+2)′=2(x+2)−(2x−1)(x+2)2=5(x+2)2,所以y ′|x =-1=5(−1+2)2=5,所以切线方程为y +3=5(x +1),即y =5x +2.答案:y =5x +2微专题2利用导数研究函数的单调性提分题组训练1.解析:构造函数f (x )=ln x +1-x ,f ′(x )=1x-1=1−x x,当0<x <1时,f ′(x )>0,f (x )单调递增,所以f (12 020)>f (12 021)>f (12 022),a >b >c .故选A.2.解析:由题意得,f ′(x )=2x -ax ≥0在x ∈[1,+∞)上恒成立, 所以a ≤2x 2在x ∈[1,+∞)上恒成立, 因为2x 2在x ∈[1,+∞)的最小值为2, 所以m ≤2.故选C. 答案:C3.解析:f ′(x )=2x 2-2ax +4,由题意得∃x ∈(-2,-1),使得不等式f ′(x )=2(x 2-ax +2)<0成立, 即x ∈(-2,-1)时,a <(x +2x )max ,令g (x )=x +2x ,x ∈(-2,-1), 则g ′(x )=1-2x 2=x 2−2x 2,令g ′(x )>0,解得-2<x <-√2, 令g ′(x )<0,解得-√2<x <-1,故g (x )在(-2,-√2)上单调递增,在(-√2,-1)上单调递减, 故g (x )max =g (-√2)=-2√2,故满足条件的a 的范围是(-∞,-2√2), 故选C. 答案:C4.解析:因为任意x ∈(-π,0),f ′(x )sin x <f (x )cos x 恒成立, 即任意x ∈(-π,0),f ′(x )sin x -f (x )cos x <0恒成立, 又x ∈(-π,0)时,sin x <0,所以[f (x )sin x ]′=f ′(x )sin x−f (x )cos x(sin x )2<0,所以f (x )sin x 在(-π,0)上单调递减, 因为-5π6<-3π4,所以f(−5π6)sin(−5π6)>f(−3π4)sin(−3π4),即f(−5π6)−12>f(−3π4)−√22,所以√2f (−5π6)<f (−3π4),故选C.答案:C5.解析:设g (x )=e x f (x )-e x ,因为f (x )>1-f ′(x ),所以g ′(x )=e x [f (x )+f ′(x )]-e x =e x [f (x )+f ′(x )-1]>0,所以g (x )是R 上的增函数, 又g (0)=e 0f (0)-e 0=5,所以不等式f (x )>1+5e x 可化为e xf (x )-e x >5,即g (x )>g (0),所以x >0.故选A.答案:A6.解析:令f (x )=ln xx+1且x ∈(0,+∞),则f ′(x )=1+1x−ln x (x+1)2,若g (x )=1+1x -ln x ,则在x ∈(0,+∞)上g ′(x )=-1x 2−1x <0,即g (x )单调递减, 又g (e)=1e >0,g (e 2)=1e 2-1<0,即∃x 0∈(1e ,e 2)使g (x 0)=0, ∴在(x 0,+∞)上g (x )<0,即f ′(x )<0,f (x )单调递减; ∴f (2021)<f (2020),有ln 20212 022<ln 20202 021,即a >b ,令m (x )=ln xx−1且x ∈(0,1)∪(1,+∞),则m ′(x )=1−1x−ln x (x−1)2,若n (x )=1-1x -ln x ,则n ′(x )=1x (1x -1),即在x ∈(0,1)上n (x )单调递增,在x ∈(1,+∞)上n (x )单调递减,∴n (x )<n (1)=0,即m ′(x )<0,m (x )在x ∈(1,+∞)上递减, ∴m (2022)<m (2021),有ln 20222 021<ln 20212 020,即b >c ,故选D.答案:D微专题3利用导数研究函数的极值、最值提分题组训练1.解析:由题得f ′(x )=cos2x +cos x =2cos 2x +cos x -1=(2cos x -1)(cos x +1), 所以当cos x >12时,f ′(x )>0,f (x )单调递增;当-1≤cos x <12时,f ′(x )<0,f (x )单调递减.所以f (x )取得最小值时,cos x =12,此时sin x =±√32, 当sin x =-√32时,f (x )=sin x cos x +sin x =-3√34; 当sin x =√32时,f (x )=sin x cos x +sin x =3√34; 所以f (x )的最小值是-3√34.故选C.答案:C 2.解析:当a >0时,根据题意画出函数f (x )的大致图象,如图1所示,观察可知b >a .当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .综上,可知必有ab >a 2成立.故选D.答案:D3.解析:由f (x )=x 3-ax 2-bx +a 2,求导f ′(x )=3x 2-2ax -b ,由函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则{f(1)=10f′(1)=0,即{1−a−b+a2=103−2a−b=0,解得{a=−4b=11或{a=3b=−3,当a=3,b=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,此时f(x)在定义域R上为增函数,无极值,舍去.当a=-4,b=11,f′(x)=3x2+8x-11,x=1为极小值点,符合题意,故选B.答案:B4.解析:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1或x>1时,f′(x)>0,当-1<x<1时,f′(x)<0,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1]故选D.答案:D5.解析:依题意,f′(x)=e2x-m e x-mx有两个变号零点,令f′(x)=0,即e2x-m e x-mx=0,则e2x=m(e x+x),显然m≠0,则1m =e x+xe2x,设g(x)=e x+xe2x,则g′(x)=(e x+1)·e2x−(e x+x)·2e2xe4x =1−e x−2xe2x,设h(x)=1-e x-2x,则h′(x)=-e x-2<0,∴h(x)在R上单调递减,又h(0)=0,∴当x∈(-∞,0)时,h(x)>0,g′(x)>0,g(x)单调递增,当x∈(0,+∞)时,h(x)<0,g′(x)<0,g(x)单调递减,∴g(x)max=g(0)=1,且x→-∞时,g(x)→-∞,x→+∞时,g(x)→0,<1,解得m>1.∴0<1m故选B.答案:B6.解析:y=2x-2-2m在(-∞,1)上单调递增,∴y=2x-2-2m>-2m;当x≥1时,y=2x3-6x2,此时,y′=6x2-12x=6x(x-2).∴y=2x3-6x2在(1,2)上单调递减,在(2,+∞)上单调递增,∴y=2x3-6x2在[1,+∞)上的最小值为-8,函数f(x)有最小值,则-2m≥-8,即m≤4,故m的一个正整数取值可以为4.答案:4。
小题考法专训(十) 导数的简单应用A 级——保分小题落实练一、选择题1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1D .e解析:选B 因为f (x )=2xf ′(1)+ln x ,所以f ′(x )=2f ′(1)+1x,令x =1,得f ′(1)=2f ′(1)+1,解得f ′(1)=-1.2.已知直线2x -y +1=0与曲线y =a e x+x 相切(其中e 为自然对数的底数),则实数a 的值是( )A .eB .2eC .1D .2解析:选C 设切点为(x 0,a e x 0+x 0),由曲线y =a e x+x ,可得y ′=a e x+1,则切线的斜率k =y ′|x =x 0=a e x 0+1.令a e x 0+1=2可得x 0=ln 1a,则曲线在点(x 0,a e x 0+x 0),即⎝ ⎛⎭⎪⎫ln 1a ,1+ln 1a 处的切线方程为y -1-ln 1a =2⎝ ⎛⎭⎪⎫x -ln 1a ,整理可得2x -y -ln 1a +1=0.结合题中所给的切线2x -y +1=0,得-ln 1a+1=1,∴a =1.3.已知直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则b 的值为( ) A .3 B .-3 C .5D .-5解析:选A 由题意知,3=k +1,∴k =2.又(x 3+ax +b )′|x =1=(3x 2+a )|x =1=3+a ,∴3+a =2,∴a =-1,∴3=1-1+b ,即b =3.4.(2019·河北九校第二次联考)函数y =x +3x+2ln x 的单调递减区间是( )A .(-3,1)B .(0,1)C .(-1,3)D .(0,3)解析:选B 令y ′=1-3x 2+2x<0,得-3<x <1,又x >0,故所求函数的单调递减区间为(0,1),故选B.5.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中大致为y =f (x )的图象的是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.6.若函数f (x )=kx -2ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[1,+∞)D .[2,+∞)解析:选D 因为f (x )=kx -2ln x ,所以f ′(x )=k -2x.因为f (x )在区间(1,+∞)上单调递增,所以在区间(1,+∞)上f ′(x )=k -2x ≥0恒成立,即k ≥2x恒成立,当x ∈(1,+∞)时,0<2x<2,所以k ≥2,故选D.7.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫32,2 B .⎣⎢⎡⎭⎪⎫32,+∞ C.⎣⎢⎡⎭⎪⎫0,32 D .(-1,0)∪⎣⎢⎡⎭⎪⎫32,+∞解析:选B 对函数求导得f ′(x )=x +a -1-a x =(x +a )(x -1)x,因为函数存在唯一的极值,所以导函数存在唯一的零点,且零点大于0,故x =1是唯一的极值点,此时-a ≤0且f (1)=-12+a ≥1⇒a ≥32.故选B.8.(2020届高三·武汉调研)设曲线C :y =3x 4-2x 3-9x 2+4,在曲线C 上一点M (1,-4)处的切线记为l ,则切线l 与曲线C 的公共点个数为( )A .1B .2C .3D .4解析:选C y ′=12x 3-6x 2-18x ,所以切线l 的斜率k =y ′|x =1=-12,所以切线l 的方程为12x +y -8=0.联立方程⎩⎪⎨⎪⎧12x +y -8=0,y =3x 4-2x 3-9x 2+4,消去y ,得3x 4-2x 3-9x 2+12x -4=0,所以(x +2)(3x -2)(x -1)2=0,所以x 1=-2,x 2=23,x 3=1,所以切线l 与曲线C 有3个公共点,故选C.9.已知函数f (x )=x ln x -a e x(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(-∞,e)解析:选A f ′(x )=ln x -a e x+1,令f ′(x )=0,得a =ln x +1ex.若函数f (x )=x ln x -a e x有两个极值点,则y =a 和g (x )=ln x +1ex在(0,+∞)上有2个交点,g ′(x )=1x -ln x -1ex(x >0).令h (x )=1x-ln x -1,则h ′(x )=-1x2-1x<0,h (x )在(0,+∞)上单调递减,而h (1)=0,故x ∈(0,1)时,h (x )>0,即g ′(x )>0,g (x )单调递增,x ∈(1,+∞)时,h (x )<0,即g ′(x )<0,g (x )单调递减,故g (x )max =g (1)=1e ,而x →0时,g (x )→-∞,x →+∞时,g (x )→0.若y =a 和g (x )=ln x +1e x在(0,+∞)上有2个交点,只需0<a <1e. 10.已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sin x -x ,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .11.设函数f (x )在R 上存在导函数f ′(x ),对任意的实数x 都有f (x )=4x 2-f (-x ),当x ∈(-∞,0]时,f ′(x )+12<4x ,若f (m +1)≤f (-m )+4m +2,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-12,+∞ B .⎣⎢⎡⎭⎪⎫-32,+∞C .[-1,+∞)D .[-2,+∞)解析:选A 令F (x )=f (x )-2x 2,因为F (-x )+F (x )=f (-x )+f (x )-4x 2=0,所以F (-x )=-F (x ),故F (x )=f (x )-2x 2是奇函数.则当x ∈(-∞,0]时,F ′(x )=f ′(x )-4x <-12<0,所以函数F (x )=f (x )-2x 2在(-∞,0]上单调递减,故函数F (x )在R 上单调递减.不等式f (m +1)≤f (-m )+4m +2等价于f (m +1)-2(m +1)2≤f (-m )-2m 2,即F (m +1)≤F (-m ),由函数的单调性可得m +1≥-m ,即m ≥-12.故选A.12.(2019·福州模拟)已知函数f (x )=x 3-2e x 2+mx -ln x ,若f (x )>x 恒成立,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫e 2+1e +1,+∞B .⎝ ⎛⎦⎥⎤0,e 2+1e +1C.⎝⎛⎦⎥⎤-∞,e 2+1e +1D .⎝⎛⎦⎥⎤-∞,e 2+1e 解析:选A 由f (x )>x 恒成立,得x 3-2e x 2+mx -ln x >x 恒成立,即x 3-2e x 2+(m -1)x -ln x >0恒成立,因为x >0,所以两边同时除以x ,得x 2-2e x +(m -1)-ln x x>0,则m -1>ln x x -x 2+2e x 恒成立.令g (x )=ln x x -x 2+2e x ,则g ′(x )=1-ln xx2-2x +2e ,当0<x <e 时,1-ln x x 2>0,2e -2x >0,所以g ′(x )>0;当x >e 时,1-ln xx2<0,2e -2x <0,所以g ′(x )<0.所以当x =e 时,g (x )max =1e +e 2,则m -1>1e +e 2,所以m >e 2+1e +1,故选A.二、填空题13.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0相互垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2·cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:214.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π].①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0); ③f (x )在[0,x 0]上是减函数; ④f (x )在[x 0,π]上是减函数.那么上面命题中真命题的序号是________.解析:f ′(x )=cos x -13,由f ′(x )=0,得cos x =13,即x =x 0.因为x ∈[0,π],当0<x <x 0时,f ′(x )>0;当x 0<x <π时,f ′(x )<0,所以f (x )的最大值为f (x 0),f (x )在[x 0,π]上是减函数.答案:①④15.若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,则实数a 的取值范围是________.解析:f ′(x )=1x -ax -2=-ax 2+2x -1x.因为函数f (x )存在单调递减区间, 所以f ′(x )≤0有解.又因为函数f (x )的定义域为(0,+∞), 所以ax 2+2x -1≥0在(0,+∞)上有解.①当a >0时,y =ax 2+2x -1为开口向上的抛物线,Δ=4+4a >0恒成立,所以ax 2+2x -1≥0在(0,+∞)上有解恒成立;②当a <0时,y =ax 2+2x -1为开口向下的抛物线,ax 2+2x -1≥0在(0,+∞)上恒有解,则⎩⎪⎨⎪⎧Δ=4+4a >0,x =-1a >0,解得-1<a <0;③当a =0时,显然符合题意.综上所述,实数a 的取值范围是(-1,+∞). 答案:(-1,+∞)16.(2019·江西七校第一次联考)定义:如果函数f (x )在[a ,b ]上存在x 1,x 2(a <x 1<x 2<b )满足f ′(x 1)=f ′(x 2)=f (b )-f (a )b -a,则称函数f (x )是[a ,b ]上的“中值函数”.已知函数f (x )=13x 3-12x 2+m 是[0,m ]上的“中值函数”,则实数m 的取值范围是________.解析:由题意,知f ′(x )=x 2-x 在区间[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f ′(x 1)=f ′(x 2)=f (m )-f (0)m =13m 2-12m ,所以方程x 2-x =13m 2-12m 在区间(0,m )上有两个不相等的解. 令g (x )=x 2-x -13m 2+12m (0<x <m ),则⎩⎪⎪⎨⎪⎪⎧Δ=1+43m 2-2m >0,g (0)=-13m 2+12m >0,g (m )=23m 2-12m >0,m >12,解得34<m <32.答案:⎝ ⎛⎭⎪⎫34,32B 级——拔高小题提能练1.[多选题]已知函数y =f (x )的导函数f ′(x )的图象如图所示,则下列判断正确的是( )A .函数y =f (x )在区间⎝ ⎛⎭⎪⎫-3,-12内单调递增B .当x =-2时,函数y =f (x )取得极小值C .函数y =f (x )在区间(-2,2)内单调递增D .当x =3时,函数y =f (x )有极小值解析:选BC 对于A ,函数y =f (x )在区间⎝ ⎛⎭⎪⎫-3,-12内有增有减,故A 不正确;对于B ,当x =-2时,函数y =f (x )取得极小值,故B 正确;对于C ,当x ∈(-2,2)时,恒有f ′(x )>0,则函数y =f (x )在区间(-2,2)内单调递增,故C 正确;对于D ,当x =3时,f ′(x )≠0,故D 不正确.2.[多选题]已知函数y =f (x )在R 上可导且f (0)=1,其导函数f ′(x )满足f ′(x )-f (x )x -1>0,对于函数g (x )=f (x )ex,下列结论正确的是( )A .函数g (x )在(1,+∞)上为单调递增函数B .x =1是函数g (x )的极小值点C .函数g (x )至多有两个零点D .当x ≤0时,不等式f (x )≤e x恒成立 解析:选ABC g (x )=f (x )ex,则g ′(x )=f ′(x )-f (x )ex.当x >1时,由f ′(x )-f (x )x -1>0可得f ′(x )-f (x )>0,则g ′(x )>0,故y =g (x )在(1,+∞)上单调递增,故A 正确;当x <1时,由f ′(x )-f (x )x -1>0可得f ′(x )-f (x )<0,则g ′(x )<0,故y =g (x )在(-∞,1)上单调递减,故x =1是函数y =g (x )的极小值点,故B 正确;若g (1)<0,则函数y =g (x )有2个零点,若g (1)=0,则函数y =g (x )有1个零点,若g (1)>0,则函数y =g (x )没有零点,故C 正确;因为y =g (x )在(-∞,1)上单调递减,所以y =g (x )在(-∞,0)上单调递减,由g (0)=f (0)e=1,得当x ≤0时,g (x )≥g (0),即f (x )ex≥1,故f (x )≥e x,故D 错误.3.已知函数f (x )=a ln x -bx 2,a ,b ∈R.若不等式f (x )≥x 对所有的b ∈(-∞,0],x ∈(e ,e 2]都成立,则实数a 的取值范围是( )A .[e ,+∞)B .⎣⎢⎡⎭⎪⎫e 22,+∞C.⎣⎢⎡⎭⎪⎫e22,e 2 D .[e 2,+∞)解析:选B f (x )≥x 对所有的b ∈(-∞,0],x ∈(e ,e 2]都成立,即a ln x -x ≥bx 2对所有的b ∈(-∞,0],x ∈(e ,e 2]都成立,因为b ∈(-∞,0],x ∈(e ,e 2],所以bx 2的最大值为0,所以a ln x -x ≥0在x ∈(e ,e 2]时恒成立,所以a ≥xln x在x ∈(e ,e 2]时恒成立,令g (x )=xln x ,x ∈(e ,e 2],则g ′(x )=ln x -1ln 2x >0恒成立,所以g (x )=x ln x在(e ,e 2]上单调递增,所以当x =e 2时,g (x )取得最大值e 22,所以a ≥e22,故选B.4.(2019·石家庄模拟)已知函数f (x )=23ax 3+⎝ ⎛⎭⎪⎫a -12x 2,a ∈R ,当x ∈[0,1]时,函数f (x )仅在x =1处取得最大值,则a 的取值范围为________.解析:∵f (x )=23ax 3+⎝ ⎛⎭⎪⎫a -12x 2,∴f ′(x )=2ax 2+(2a -1)x , ∵0≤x ≤1,∴a ≤0时,f ′(x )≤0, ∴函数f (x )在区间[0,1]上单调递减,∴x =1时,f (x )取得最小值,与题意不符,∴a >0. 由f ′(x )=2ax 2+(2a -1)x =0,得x =0或x =12a-1.①当12a -1≤0,即a ≥12时,f ′(x )≥0(x ∈[0,1]),f (x )在区间[0,1]上单调递增,f (x )仅在x =1处取得最大值,符合题意.②当0<12a -1<1,即14<a <12时,令f ′(x )<0,得0<x <12a -1,令f ′(x )>0,得12a -1<x ≤1,∴f (x )在⎣⎢⎡⎦⎥⎤0,12a -1上单调递减,在⎝ ⎛⎦⎥⎤12a -1,1上单调递增,要使f (x )仅在x =1处取得最大值,则f (1)>f (0),即53a -12>0,所以310<a <12.③当12a -1≥1,即0<a ≤14时,f ′(x )≤0(x ∈[0,1]),f (x )在区间[0,1]上单调递减,∴x =1时,f (x )取得最小值,与题意不符.综上,a 的取值范围是⎝ ⎛⎭⎪⎫310,+∞.答案:⎝⎛⎭⎪⎫310,+∞ 5.已知函数f (x )=⎝ ⎛⎭⎪⎫k +4k ln x +4-x 2x ,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为________.解析:f ′(x )=k +4k x -4x2-1(x >0,k ≥4),由题意知f ′(x 1)=f ′(x 2)(x 1,x 2>0且x 1≠x 2),即k +4k x 1-4x 21-1=k +4k x 2-4x 22-1,化简得4(x 1+x 2)=⎝⎛⎭⎪⎫k +4k x 1x 2,而x 1x 2<⎝⎛⎭⎪⎫x 1+x 222,所以4(x 1+x 2)<⎝ ⎛⎭⎪⎫k +4k ⎝ ⎛⎭⎪⎫x 1+x 222,即x 1+x 2>16k +4k对k ∈[4,+∞)恒成立. 令g (k )=k +4k ,则g ′(k )=1-4k 2=(k +2)(k -2)k2>0对k ∈[4,+∞)恒成立, 故g (k )在[4,+∞)上单调递增, 所以g (k )≥g (4)=5,所以16k +4k≤165, 所以x 1+x 2>165,故x 1+x 2的取值范围为⎝ ⎛⎭⎪⎫165,+∞. 答案:⎝ ⎛⎭⎪⎫165,+∞。
导数及其应用高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现.预测高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查.1.导数的定义f ′(x )=lim Δx →0 Δy Δx =lim Δx →0f x +Δx -f x Δx. 2.导数的几何意义函数y =f (x )在x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0). 3.导数的运算(1)基本初等函数的导数公式①c ′=0(c 为常数); ②(x m )′=mx m -1;③(sin x )′=cos x; ④(cos x )′=-sin x ;⑤(e x )′=e x; ⑥(a x )′=a x ln a ;⑦(ln x )′=1x ; ⑧(log a x )′=1x ln a .(2)导数的四则运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③[f x g x ]′=f ′x g x -f x g ′xg 2x. ④设y =f (u ),u =φ(x ),则y ′x =y ′u u ′x .4.函数的性质与导数在区间(a ,b )内,如果f ′(x )>0,那么函数f (x )在区间(a ,b )上单调递增.如果f ′(x )<0,那么函数f (x )在区间(a ,b )上单调递减.5.利用定积分求曲线围成图形的面积的步骤:①画出图形;②确定被积函数;③求出交点坐标,确定积分的上、下限;④运用微积分基本定理计算定积分,求出平面图形的面积.特别注意平面图形的面积为正值,定积分值可能是负值.被积函数为y =f (x ),由曲线y =f (x )与直线x =a ,x =b (a <b )和y =0所围成的曲边梯形的面积为S . ①当f (x )>0时,S =⎠⎛a bf (x )d x ;②当f (x )<0时,S =-⎠⎛a bf (x )d x ;③当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =⎠⎛a c f (x )d x -⎠⎛c bf (x )d x .高频考点一 导数的几何意义及应用例1、(2018年全国Ⅲ卷理数)曲线在点处的切线的斜率为,则________.【变式探究】(1)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.(2)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.【变式探究】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3高频考点二 导数与函数的极值、最值例2、(2018年浙江卷)已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【变式探究】 (1)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)(2)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0。
2020高考数学复习:第三讲导数的简单应用考点一导数的几何意义1.导数公式(1)(sin x)′=cos x;(2)(cos x)′=-sin x;(3)(a x)′=a x ln a(a>0);(4)(log a x)′=1x ln a(a>0,且a≠1).2.导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y -f(x0)=f′(x0)·(x-x0).[对点训练]1.(2018·兰州质检)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A.(1,3) B.(-1,3)C.(1,3)和(-1,3) D.(1,-3)[解析]f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C.[答案] C2.(2018·大同模拟)过点(1,-1)且与曲线y =x 3-2x 相切的切线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y +2=0D .x -y -2=0或4x +5y +1=0[解析] 设切点坐标为(x 0,y 0),y 0=x 30-2x 0,则曲线在(x 0,y 0)处的切线斜率为y ′=3x 20-2,当x 0=1时斜率为1,切线方程为x -y -2=0,当x 0≠1时,过(1,-1)点的切线的斜率为x 30-2x 0+1x 0-1=x 20+x 0-1=3x 20-2,解得x 0=-12,其斜率为-54,切线方程为5x +4y -1=0,所以A 正确,故选A.[答案] A3.(2018·西安质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3[解析] 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1,x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2,故选B.[答案] B4.若曲线y =x 在点(a ,a )处的切线与两个坐标轴围成的三角形的面积为2,则a =________.[解析]y=x=x 12,∴y′=12x-12,于是曲线在点(a,a)处的切线方程为y-a=12a (x-a),令x=0,得y=a2;令y=0,得x=-a,∴三角形的面积S=12·a2·|-a|=a a4=2,解得a=4.[答案] 4[快速审题]看到求切线,想到用导数的几何意义.求曲线y=f(x)的切线方程的3种类型及方法(1)已知切点P(x0,y0),求切线方程求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率k,求切线方程设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求切线方程设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.考点二利用导数研究函数的单调性1.若求函数的单调区间(或证明单调性),只要在其定义域内解(或证明)不等式f′(x)>0或f′(x)<0即可.2.若已知函数的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解.角度1:根据函数的单调性,利用导数求某些参数的取值范围[解题指导] 求f ′(x )→解f ′(x )≥0在(1,+∞)上恒成立→得出结果[解析] 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立,∴g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立,∴Δ=a 2-24≤0或⎩⎨⎧-a 4≤1,g (1)≥0,∴-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4,a ≥-5,即a ≥-26,故选C. [答案] C角度2:利用函数的单调性与导数的关系,讨论含有参数的较复杂基本函数的单调性[解] 函数f (x )的定义域是(0,+∞),f ′(x )=-ax 2+x -ax 2,令h (x )=-ax 2+x -a ,记Δ=1-4a 2,当Δ≤0时,即a ≥12时,-ax 2+x -a ≤0,f ′(x )≤0, 此时函数f (x )在(0,+∞)上递减.当Δ=1-4a 2>0,即当0<a <12时,由-ax 2+x -a =0,解得:x 1=1+1-4a 22a ,x 2=1-1-4a22a, 显然x 1>x 2>0,故此时函数f (x )在⎝ ⎛⎭⎪⎫1-1-4a 22a ,1+1-4a 22a 上递增, 在⎝ ⎛⎭⎪⎫0,1-1-4a 22a 和⎝ ⎛⎭⎪⎫1+1-4a 22a ,+∞上递减, 综上,0<a <12时,函数f (x )在⎝ ⎛⎭⎪⎫1-1-4a 22a ,1+1-4a 22a 上递增, 在⎝ ⎛⎭⎪⎫0,1-1-4a 22a 和⎝ ⎛⎭⎪⎫1+1-4a 22a ,+∞上递减, a ≥12时,函数f (x )在(0,+∞)上递减.[探究追问1] 若把例2的条件“a >0”变为“a ∈R ”,其他条件不变,则f (x )的单调性如何?[解] 由例2解的内容知:f ′(x )=-ax 2+x -a x 2,x ∈(0,+∞), 令h (x )=-ax 2+x -a .当a ≤0时,h (x )>0恒成立,所以f ′(x )>0,故f (x )在(0,+∞)上单调递增,当a >0时,同例2解的内容.综上:a ≤0时,函数f (x )在(0,+∞)上递增.0<a <12时,函数f (x )在⎝ ⎛⎭⎪⎫1-1-4a 22a ,1+1-4a 22a 上递增,在⎝ ⎛⎭⎪⎫0,1-1-4a 22a 和⎝ ⎛⎭⎪⎫1+1-4a 22a ,+∞上递减, a ≥12时,函数f (x )在(0,+∞)上单调递减.[探究追问2] 若将例2中函数“f (x )”变为“f (x )=1x +(1-a )ln x +ax ”,“a >0”变为“a ∈R ”试讨论f (x )的单调性.[解] 函数f (x )的定义域为(0,+∞), f ′(x )=-1x 2+1-ax +a=ax 2+(1-a )x -1x 2=(x -1)(ax +1)x 2. 当a =0时,f ′(x )=x -1x 2, 令f ′(x )>0,则x >1, 令f ′(x )<0,则0<x <1,所以函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.当a ≠0时,f ′(x )=a (x -1)⎝ ⎛⎭⎪⎫x +1a x 2,①当a >0时,x +1a >0,令f ′(x )>0,则x >1,令f ′(x )<0,则0<x <1, 所以函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,②当a =-1时,1=-1a ,f ′(x )=-(x -1)2x 2≤0, 所以函数f (x )在定义域(0,+∞)上单调递减; ③当-1<a <0时,1<-1a ,令f ′(x )>0,则1<x <-1a ,令f ′(x )<0,则0<x <1或x >-1a ,所以函数f (x )在区间(0,1)和⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫1,-1a 上单调递增; ④当a <-1时,1>-1a ,令f ′(x )>0,则-1a <x <1,令f ′(x )<0,则0<x <-1a 或x >1,所以函数f (x )在区间⎝⎛⎭⎪⎫0,-1a 和(1,+∞)上单调递减,在区间⎝ ⎛⎭⎪⎫-1a ,1上单调递增. 综上,当a ≥0时,函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增;当a =-1时,函数f (x )在定义域(0,+∞)上单调递减;当-1<a <0时,函数f (x )在区间(0,1),⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫1,-1a 上单调递增; 当a <-1时,函数f (x )在区间⎝ ⎛⎭⎪⎫0,-1a ,(1+∞)上单调递减,在区间⎝ ⎛⎭⎪⎫-1a ,1上单调递增.利用导数研究函数单调性的3个关注点(1)利用导数研究函数的单调性,大多数情况下归结为对含有参数的不等式的解集的讨论.(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论.(3)在不能通过因式分解求出根时,根据一元二次不等式对应方程的判别式或特殊值进行分类讨论.[对点训练]1.[角度1]若函数f (x )=x +4mx -m ln x 在[1,2]上为减函数,则m 的最小值为( )A.32B.34C.23D.43[解析] 因为f (x )=x +4mx -m ln x 在[1,2]上为减函数,所以f ′(x )=1-4m x 2-m x =x 2-mx -4m x2≤0在[1,2]上恒成立,所以x 2-mx -4m ≤0在[1,2]上恒成立.令g (x )=x 2-mx -4m ,所以⎩⎪⎨⎪⎧g (1)=1-m -4m ≤0,g (2)=4-2m -4m ≤0,所以m ≥23,故m 的最小值为23,故选C. [答案] C2.[角度2]已知函数f (x )=ax 2-x +ln x (a ∈R ),求函数f (x )的单调区间.[解] 函数f (x )的定义域为(0,+∞),f ′(x )=2ax -1+1x =2ax 2-x +1x. ①当a =0时, f ′(x )=-x +1x .显然,当x ∈(0,1)时, f ′(x )>0,函数f (x )单调递增; 当x ∈(1,+∞)时, f ′(x )<0,函数f (x )单调递减.②当a ≠0时,对于2ax 2-x +1=0,Δ=(-1)2-4×2a ×1=1-8a .若Δ≤0,即a ≥18,因为a >0,所以2ax 2-x +1≥0恒成立,即f ′(x )≥0恒成立,所以函数f (x )在(0,+∞)上单调递增.若Δ>0,即0<a <18或a <0,方程2ax 2-x +1=0的两根为x 1=1-1-8a 4a ,x 2=1+1-8a4a. 当a <0时,x 1>0,x 2<0.当x ∈⎝ ⎛⎭⎪⎫0,1-1-8a 4a 时,2ax 2-x +1>0, f ′(x )>0,函数f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫1-1-8a 4a ,+∞时,2ax 2-x +1<0, f ′(x )<0,函数f (x )单调递减.当0<a <18时,x 2>x 1>0.当x ∈⎝ ⎛⎭⎪⎫0,1-1-8a 4a 时,2ax 2-x +1>0, f ′(x )>0,函数f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫1-1-8a 4a ,1+1-8a 4a 时,2ax 2-x +1<0, f ′(x )<0,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1+1-8a 4a ,+∞时,2ax 2-x +1>0, f ′(x )>0,函数f (x )单调递增.综上,当a =0时, f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞);当a ≥18时,函数f (x )的单调递增区间为(0,+∞),无单调递减区间;当0<a <18时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-8a 4a ,⎝ ⎛⎭⎪⎫1+1-8a 4a ,+∞,单调递减区间为⎝ ⎛⎭⎪⎫1-1-8a 4a ,1+1-8a 4a ; 当a <0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-8a 4a ,单调递减区间为⎝ ⎛⎭⎪⎫1-1-8a 4a ,+∞. 考点三 利用导数研究函数的极值与最值1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.角度1:根据函数极值的存在情况,利用导数求某些参数的取值范围[解析] f ′(x )=1x +x -⎝⎛⎭⎪⎫m +1m ,由f ′(x )=0得(x -m )⎝⎛⎭⎪⎫x -1m =0,∴x =m 或x =1m .显然m >0.当且仅当0<m <2≤1m 或0<1m <2≤m 时,函数f (x )在区间(0,2)内有且仅有一个极值点.若0<m <2≤1m ,即0<m ≤12,则当x ∈(0,m )时,f ′(x )>0,当x ∈(m,2)时,f ′(x )<0,函数f (x )有极大值点x =m .若0<1m <2≤m ,即m ≥2,则当x ∈⎝ ⎛⎭⎪⎫0,1m 时, f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1m ,2时, f ′(x )<0,函数f (x )有极大值点x =1m .综上,m 的取值范围是⎝ ⎛⎦⎥⎤0,12∪[2,+∞),故选B. [答案] B角度2:利用函数的极值与导数的关系,求某些含有参数的较复杂基本函数的极值的大小、个数或最值[解题指导] (1)求f ′(x )→f ′(x )=0有两不等正根→确定a 的范围(2)分离参数λ→借助x 1+x 2,x 1·x 2转化关系式→构造关于a 的函数→求函数的最大值[解] (1)由题设知,函数f (x )的定义域为(0,+∞), f ′(x )=x 2-ax +a x,且f ′(x )=0有两个不同的正根,即x 2-ax +a =0有两个不同的正根,则⎩⎪⎨⎪⎧Δ=a 2-4a >0,a >0, ∴a >4.(2)不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立等价于λ>f (x 1)+f (x 2)x 1+x 2恒成立. f (x 1)+f (x 2)=a ln x 1+12x 21-ax 1+a ln x 2+12x 22-ax 2.由(1)可知x 1+x 2=a ,x 1x 2=a ,∴f (x 1)+f (x 2)=a (ln x 1+ln x 2)+12(x 21+x 22)-a (x 1+x 2)=a ln(x 1x 2)+12[(x 1+x 2)2-2x 1x 2]-a (x 1+x 2)=a ln a +12(a 2-2a )-a 2=a ⎝ ⎛⎭⎪⎫ln a -12a -1, ∴f (x 1)+f (x 2)x 1+x 2=ln a -12a -1, 令y =ln a -12a -1,则y ′=1a -12.∵a >4,∴y ′<0,∴y =ln a -12a -1在(4,+∞)上单调递减,∴y <ln4-3,∴λ≥ln4-3.∴λ的最小值是ln4-3.研究极值、最值问题的3个关注点(1)求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.[对点训练]1.[角度1](2018·福建泉州一模)函数f (x )=ax 3+(a -1)x 2-x +2(0≤x ≤1)在x =1处取得最小值,则实数a 的取值范围是( )A .(-∞,0]B .⎣⎢⎡⎦⎥⎤0,35C .⎝ ⎛⎦⎥⎤-∞,35D .(-∞,1][解析] f ′(x )=3ax 2+2(a -1)x -1,x ∈[0,1],a =0时,f ′(x )=-2x -1<0,f (x )在[0,1]上单调递减,f (x )min =f (1)符合题意;a ≠0时,Δ=4(a 2+a +1)>0,x 1=1-a -a 2+a +13a ,x 2=1-a +a 2+a +13a, a >0时,若f (x )在x =1处取最小值,只需x 1≤0且x 2≥1,解得0<a ≤35,a <0时,若f (x )在x =1处取最小值,只需x 1≥1或x 2≤0,解得a <0;综上a ≤35,故选C.[答案] C2.[角度2](2017·北京卷)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. [解] (1)∵f (x )=e x ·cos x -x ,∴f (0)=1,f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0),即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ),则g ′(x )=-2sin x ·e x≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立,且仅在x =0处等号成立,∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立,∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.1.(2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax 为奇函数,∴a -1=0,解得a =1,∴f (x )=x 3+x ,∴f ′(x )=3x 2+1,∴f ′(0)=1,故曲线y =f (x )在点(0,0)处的切线方程为y =x ,故选D.[答案] D2.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.[解析] ∵f (x )=e x ln x ,∴f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x +1x , ∴f ′(1)=e 1×(ln1+1)=e.[答案] e3.(2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________.[解析] 设f (x )=(ax +1)e x ,则f ′(x )=(ax +a +1)e x ,所以曲线在点(0,1)处的切线的斜率k =f ′(0)=a +1=-2,解得a =-3.[答案] -34.(2018·北京卷)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ;(2)若f (x )在x =1处取得极小值,求a 的取值范围.[解] (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x ,所以f ′(x )=[ax 2-(a +1)x +1]e x .f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0,所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).1.高考对导数的几何意义的考查,多在选择、填空题中出现,难度较小,有时出现在解答题第一问.2.高考重点考查导数的应用,即利用导数研究函数的单调性、极值、最值问题,多在选择、填空的后几题中出现,难度中等.有时出现在解答题第一问.热点课题6导数与函数的单调性与最值[感悟体验]已知函数f(x)=ax2-(a+2)x+ln x,其中a∈R.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值范围.[解] (1)当a =1时,f (x )=x 2-3x +ln x (x >0),所以f ′(x )=2x -3+1x =2x 2-3x +1x, 所以f (1)=-2,f ′(1)=0.所以切线方程为y =-2.(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域为(0,+∞),当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x=(2x -1)(ax -1)x, 令f ′(x )=0,解得x =12或x =1a .①当0<1a ≤1,即a ≥1时,f (x )在[1,e]上单调递增.所以f (x )在[1,e]上的最小值为f (1)=-2,符合题意;②当1<1a <e ,即1e <a <1时,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,e 上单调递增,所以f (x )在[1,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a <f (1)=-2,不符合题意; ③当1a ≥e ,即0<a ≤1e 时,f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值为f (e)<f (1)=-2,不符合题意; 综上,实数a 的取值范围是[1,+∞).专题跟踪训练(十二)一、选择题1.(2018·福建福州八校联考)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( )A .-eB .2C .-2D .e[解析] 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2,故选B.[答案] B2.函数f (x )=x +1x 的极值情况是( )A .当x =1时,取极小值2,但无极大值B .当x =-1时,取极大值-2,但无极小值C .当x =-1时,取极小值-2;当x =1时,取极大值2D .当x =-1时,取极大值-2;当x =1时,取极小值2[解析] 求导得f ′(x )=1-1x 2,令f ′(x )=0,得x =±1,函数f (x )在区间(-∞,-1)和(1,+∞)上单调递增,在(-1,0)和(0,1)上单调递减,所以当x =-1时,取极大值-2,当x =1时,取极小值2,故选D.[答案] D3.(2018·聊城模拟)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),则下面四个图象中,y =f (x )的图象大致是( )[解析] 由题图知当0<x <1时,xf ′(x )<0,此时f ′(x )<0,函数f (x )递减,排除A 、B.当x >1时,xf ′(x )>0,此时f ′(x )>0,函数f (x )递增.所以当x =1时,函数f (x )取得极小值.当x <-1时,xf ′(x )<0,此时f ′(x )>0,函数f (x )递增,当-1<x <0时,xf ′(x )>0,此时f ′(x )<0,函数f (x )递减,所以当x =-1时,函数取得极大值,排除D.符合条件的只有C 项,故选C.[答案] C4.(2018·南昌一模)若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .(-∞,0)D .(0,+∞)[解析] 由题意知x >0,f ′(x )=1+a x ,要使函数f (x )=x +a ln x 不是单调函数,则方程1+a x =0在x >0上有解,则x =-a ,所以a <0,故选C.[答案] C5.(2018·海南八校联考)已知函数f (x )=3ln x -x 2+⎝ ⎛⎭⎪⎫a -12x 在区间(1,3)上有最大值,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,5 B.⎝ ⎛⎭⎪⎫-12,112 C.⎝ ⎛⎭⎪⎫12,112 D.⎝ ⎛⎭⎪⎫12,5 [解析] 因为f ′(x )=3x -2x +a -12,所以结合题意可得f ′(x )=3x-2x +a -12在(1,3)上只有一个零点且单调递减,则问题转化为⎩⎪⎨⎪⎧ f ′(1)>0,f ′(3)<0,即⎩⎪⎨⎪⎧ a +12>0,a -112<0,解得-12<a <112,故选B.[答案] B6.(2018·石家庄二中一模)已知对∀x ∈(0,+∞),不等式ln x +1≥m -n x (n >0)恒成立,则m n 的最大值是( )A .1B .-1C .eD .-e[解析] 不等式ln x +1≥m -n x 可化为ln x +1-m +n x ≥0,令F (x )=ln x +1-m +n x (x >0),则F ′(x )=1x -n x 2=x -n x 2,所以当x =n 时,F (x )min=ln n +2-m ,则ln n +2-m ≥0⇒m ≤2+ln n (n >0).所以m n ≤2+ln n n .令G (n )=2+ln n n ,则令G ′(n )=-1-ln n n 2=0,可得n =1e ,故G (n )max =2-11e=e ,即m n ≤2+ln n n ≤e ,故选C.[答案] C二、填空题7.(2018·武汉模拟)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =________.[解析] 因为y =x +1x -1,所以y ′=-2(x -1)2,则曲线y =x +1x -1在点(3,2)处的切线的斜率为y ′| x =3=-12.又因为切线与直线ax +y +1=0垂直,所以-12·(-a )=-1,解得a =-2.[答案] -28.(2018·南宁二模)曲线f (x )=x ln x 在点(1,f (1))处的切线与两坐标轴围成的三角形的面积是________.[解析] 因为f ′(x )=1+ln x ,且f (1)=0,f ′(1)=1,所以切线l 的斜率k =1,切线方程为y =x -1.令x =0,得y =-1,令y =0,得x =1,∴切线l 与两坐标轴的交点坐标分别为A (0,-1),B (1,0),则|OA |=1,|OB |=1,∴S △ABO =12×1×1=12.[答案] 129.(2018·河南安阳调研)已知函数f (x )=ln x +12ax 2-2x 存在单调递减区间,则实数a 的取值范围为________.[解析] f ′(x )=1x +ax -2=ax 2-2x +1x(x >0),函数f (x )存在单调递减区间,即定义域(0,+∞)内存在区间使ax 2-2x +1≤0,等价于a 小于2x -1x 2在x ∈(0,+∞)上的最大值,设g (x )=2x -1x 2,则g ′(x )=-2x +2x 3,可知,函数g (x )在区间(0,1)为增函数,在区间(1,+∞)为减函数,所以当x =1时,函数g (x )取得最大值,此时g (x )=1,所以a <1,故填(-∞,1).[答案] (-∞,1)三、解答题10.(2018·贵阳模拟)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数).[解] (1)f (x )=x -1x -ln x =1-1x -ln x ,f (x )的定义域为(0,+∞).∵f ′(x )=1x 2-1x =1-x x 2,由f ′(x )>0⇒0<x <1,由f ′(x )<0⇒x >1,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[1,e]上单调递减, ∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为f (1)=1-11-ln1=0. 又f ⎝ ⎛⎭⎪⎫1e =1-e -ln 1e =2-e ,f (e)=1-1e -lne =-1e ,且f ⎝ ⎛⎭⎪⎫1e <f (e),∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为f ⎝ ⎛⎭⎪⎫1e =2-e. 综上,f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为0,最小值为2-e. 11.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )是否为R 上的单调减函数?若是,求出a 的取值范围?若不是,请说明理由.[解] (1)当a =2时,f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0, 解得-2<x < 2.所以函数f (x )的单调递增区间是(-2,2).(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x , 所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x >0,所以-x 2+(a -2)x +a ≥0,则a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令g (x )=(x +1)-1x +1, 则g ′(x )=1+1(x +1)2>0.所以g (x )=(x +1)-1x +1在(-1,1)上单调递增. 所以g (x )<g (1)=(1+1)-11+1=32. 所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. (3)若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立,因为e x >0,所以x 2-(a -2)x -a ≥0对x ∈R 都成立. 所以Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能在R 上单调递减.12.(2018·辽宁五校模拟)已知函数f (x )=2ln x +x 2-2ax (a >0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),且f (x 1)-f (x 2)≥32-2ln2恒成立,求a 的取值范围.[解] (1)由题意知,函数f (x )的定义域是(0,+∞),f ′(x )=2(x 2-ax +1)x,令x 2-ax +1=0,则Δ=a 2-4, ①当0<a ≤2时,Δ≤0,f ′(x )≥0恒成立,函数f (x )在(0,+∞)上单调递增;②当a >2时,Δ>0,方程x 2-ax +1=0有两个不同的实根,分别设为x 3,x 4,不妨令x 3<x 4,则x 3=a -a 2-42,x 4=a +a 2-42,此时0<x 3<x 4, 因为当x ∈(0,x 3)时,f ′(x )>0,当x ∈(x 3,x 4)时,f ′(x )<0,当x ∈(x 4,+∞)时,f ′(x )>0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递增.综上:当0<a ≤2时,f (x )在(0,+∞)上单调递增;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递增. (2)由(1)得f (x )在(x 1,x 2)上单调递减,x 1+x 2=a ,x 1·x 2=1,则f (x 1)-f (x 2)=2ln x 1x 2+(x 1-x 2)(x 1+x 2-2a )=2ln x 1x 2+x 22-x 21x 1x 2=2ln x 1x 2+x 2x 1-x 1x 2, 令t =x 1x 2,则0<t <1,f (x 1)-f (x 2)=2ln t +1t -t , 令g (t )=2ln t +1t -t (0<t <1),则g ′(t )=-(t -1)2t 2<0,故g (t )在(0,1)上单调递减且g ⎝ ⎛⎭⎪⎫12=32-2ln2, 故g (t )=f (x 1)-f (x 2)≥32-2ln2=g ⎝ ⎛⎭⎪⎫12,即0<t ≤12, 而a 2=(x 1+x 2)2=x 1x 2+x 2x 1+2=t +1t +2,其中0<t ≤12, 令h (t )=t +1t +2,t ∈⎝ ⎛⎦⎥⎤0,12, 所以h ′(t )=1-1t 2<0在t ∈⎝ ⎛⎦⎥⎤0,12上恒成立, 故h (t )=t +1t +2在⎝ ⎛⎦⎥⎤0,12上单调递减,从而a 2≥92, 故a 的取值范围是⎣⎢⎡⎭⎪⎫322,+∞.。
一、选择题1.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A .12B .1C .2D .e解析:选B.由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.2.(2019·成都第二次诊断性检测)已知直线l 既是曲线C 1:y =e x 的切线,又是曲线C 2:y =14e 2x 2的切线,则直线l 在x 轴上的截距为( ) A .2 B .1 C .e 2D .-e 2解析:选B.设直线l 与曲线C 1:y =e x 的切点为A (x 1,e x 1),与曲线C 2:y =14e 2x 2的切点为B ⎝⎛⎭⎫x 2,14e 2x 22.由y =e x ,得y ′=e x ,所以曲线C 1在点A 处的切线方程为y -e x 1=e x 1(x -x 1),即y =e x 1x -e x 1(x 1-1) ①.由y =14e 2x 2,得y ′=12e 2x ,所以曲线C 2在点B 处的切线方程为y -14e 2x 22=12e 2x 2(x -x 2),即y =12e 2x 2x -14e 2x 22②. 因为①②表示的切线为同一直线,所以⎩⎨⎧e x 1=12e 2x 2,e x 1(x 1-1)=14e 2x 22,解得⎩⎪⎨⎪⎧x 1=2,x 2=2,所以直线l的方程为y =e 2x -e 2,令y =0,可得直线l 在x 上的截距为1,故选B.3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B .⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C.由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4,a ≥-5⇔a ≥-26,故选C.4.函数f (x )(x >0)的导函数为f ′(x ),若xf ′(x )+f (x )=e x ,且f (1)=e ,则( )A .f (x )的最小值为eB .f (x )的最大值为eC .f (x )的最小值为1eD .f (x )的最大值为1e解析:选A.设g (x )=xf (x )-e x , 所以g ′(x )=f (x )+xf ′(x )-e x =0, 所以g (x )=xf (x )-e x 为常数函数. 因为g (1)=1×f (1)-e =0, 所以g (x )=xf (x )-e x =g (1)=0, 所以f (x )=e xx ,f ′(x )=e x(x -1)x 2,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 所以f (x )≥f (1)=e.5.若函数f (x )=e x -(m +1)ln x +2(m +1)x -1恰有两个极值点,则实数m 的取值范围为( )A .(-e 2,-e)B .⎝⎛⎭⎫-∞,-e2 C .⎝⎛⎭⎫-∞,-12 D .(-∞,-e -1)解析:选D.由题意,函数的定义域为(0,+∞),f ′(x )=e x -(m+1)⎝⎛⎭⎫1x -2=0在(0,+∞)上有两个不相等的实数根,所以m +1=x e x 1-2x 在(0,+∞)上有两个不相等的实数根,令g (x )=x e x1-2x ,则g ′(x )=-e x (x -1)(2x +1)(1-2x )2,所以函数g (x )在⎝⎛⎭⎫0,12,⎝⎛⎭⎫12,1上单调递增,在(1,+∞)上单调递减,其图象如图所示,要使m +1=x e x1-2x在(0,+∞)上有两个不相等的实数根,则m +1<g (1),即m +1<-e ,m <-e -1,所以实数m 的取值范围是(-∞,-e -1).故选D.6.(多选)对于函数f (x )=xe x ,下列说法正确的有( )A .f (x )在x =1处取得极大值1eB .f (x )有两个不同的零点C .f (4)<f (π)<f (3)D .πe 2>2e π解析:选AC.由函数f (x )=xe x ,可得函数f (x )的导数为f ′(x )=1-x ex .当x >1时,f ′(x )<0,f (x )单调递减;当x <1时,f ′(x )>0,f (x )单调递增.可得函数f (x )在x =1处取得极大值1e ,且为最大值,所以A 正确;因为f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,且f (0)=0,当x >0时,f (x )>0恒成立,所以函数f (x )只有一个零点,所以B 错误;由f (x )在(1,+∞)上单调递减,且4>π>3>1,可得f (4)<f (π)<f (3),所以C 正确;由f (x )在(1,+∞)上单调递减,且π>2>1,可得πe π<2e2,即πe 2<2e π,所以D 错误.故选AC.二、填空题7.(2019·高考全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________. 解析:因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .答案:y =3x8.函数f (x )=x 2-ln x 的最小值为________.解析:因为f (x )=x 2-ln x (x >0),所以f ′(x )=2x -1x ,令2x -1x =0得x =22,令f ′(x )>0,则x >22;令f ′(x )<0,则0<x <22.所以f (x )在⎝⎛⎭⎫0,22上单调递减,在⎝⎛⎭⎫22,+∞上单调递增,所以f (x )的极小值(也是最小值)为⎝⎛⎭⎫222-ln 22=1+ln 22.答案:1+ ln 229.(2019·甘肃兰州一中期末改编)若x =-2是函数f (x )=(x 2+ax -1)e x 的极值点,则f ′(-2)=________,f (x )的极小值为________.解析:由函数f (x )=(x 2+ax -1)e x 可得f ′(x )=(2x +a )e x +(x 2+ax -1)e x ,因为x =-2是函数f (x )的极值点,所以f ′(-2)=(-4+a )e -2+(4-2a -1)e -2=0,即-4+a +3-2a =0,解得a=-1.所以f ′(x )=(x 2+x -2)e x .令f ′(x )=0可得x =-2或x =1.当x <-2或x >1时,f ′(x )>0,此时函数f (x )为增函数,当-2<x <1时,f ′(x )<0,此时函数f (x )为减函数,所以当x =1时函数f (x )取得极小值,极小值为f (1)=(12-1-1)×e 1=-e.答案:0 -e 三、解答题10.已知函数f (x )=ln x -ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程; (2)讨论f (x )的单调性.解:(1)当a =0时,f (x )=ln x +x, f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e ,所以曲线y =f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝⎛⎭⎫1+1e (x -e),即y =⎝⎛⎭⎫1e +1x .(2)f ′(x )=1x -2ax +1=-2ax 2+x +1x,x >0,①当a ≤0时,显然f ′(x )>0,所以f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x =0,则-2ax 2+x +1=0,易知其判别式为正,设方程的两根分别为x 1,x 2(x 1<x 2), 则x 1x 2=-12a<0,所以x 1<0<x 2,所以f ′(x )=-2ax 2+x +1x =-2a (x -x 1)(x -x 2)x,x >0.令f ′(x )>0,得x ∈(0,x 2),令f ′(x )<0得x ∈(x 2,+∞),其中x 2=1+8a +14a.所以函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝⎛⎭⎪⎫1+8a +14a ,+∞上单调递减. 11.已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 解:(1)由已知得f (x )的定义域为(0,+∞), f ′(x )=ax +2=a +2x x .当a =-4时,f ′(x )=2x -4x. 所以当0<x <2时,f ′(x )<0, 即f (x )单调递减;当x >2时,f ′(x )>0,即f (x )单调递增.所以f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2. (2)因为f ′(x )=a +2xx,所以当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在x ∈(0,+∞)上单调递增,没有最小值; 当a <0时,由f ′(x )>0得,x >-a2,所以f (x )在⎝⎛⎭⎫-a2,+∞上单调递增; 由f ′(x )<0得,x <-a2,所以f (x )在⎝⎛⎭⎫0,-a2上单调递减. 所以当a <0时,f (x )的最小值为极小值,即f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a2-a . 根据题意得f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a2-a ≥-a , 即a [ln(-a )-ln 2]≥0.因为a <0,所以ln(-a )-ln 2≤0,解得a ≥-2, 综上实数a 的取值范围是[-2,0).12.(2019·广州市调研测试)已知函数f (x )=x e x +a (ln x +x ). (1)若a =-e ,求f (x )的单调区间;(2)当a <0时,记f (x )的最小值为m ,求证:m ≤1.解:(1)当a =-e 时,f (x )=x e x -e(ln x +x ),f (x )的定义域是(0,+∞). f ′(x )=(x +1)e x -e ⎝⎛⎭⎫1x +1=x +1x (x e x-e). 当0<x <1时,f ′(x )<0;当x >1时.f ′(x )>0.所以函数f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). (2)证明:f (x )的定义域是(0,+∞),f ′(x )=x +1x(x e x+a ), 令g (x )=x e x +a ,则g ′(x )=(x +1)e x >0,g (x )在(0,+∞)上单调递增. 因为a <0,所以g (0)=a <0,g (-a )=-a e -a +a >-a +a =0,故存在x 0∈(0,-a ),使得g (x 0)=x 0e x 0+a =0. 当x ∈(0,x 0)时,g (x )<0,f ′(x )=x +1x(x e x+a )<0,f (x )单调递减; 当x ∈(x 0,+∞)时,g (x )>0,f ′(x )=x +1x(x e x+a )>0,f (x )单调递增. 故x =x 0时,f (x )取得最小值,即m =f (x 0)=x 0e x 0+a (ln x 0+x 0). 由x 0e x 0+a =0得m =x 0e x 0+a ln(x 0e x 0)=-a +a ln(-a ), 令x =-a >0,h (x )=x -x ln x ,则h ′(x )=1-(1+ln x )=-ln x , 当x ∈(0,1)时,h ′(x )=-ln x >0,h (x )=x -x ln x 单调递增, 当x ∈(1,+∞)时,h ′(x )=-ln x <0,h (x )=x -x ln x 单调递减, 故x =1,即a =-1时,h (x )=x -x ln x 取得最大值1,故m ≤1.。