山西省晋中市平遥县第二中学2018_2019学年高一数学上学期第一次月考习题
- 格式:docx
- 大小:90.06 KB
- 文档页数:6
山西省晋中市平遥县第二中学高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知两个等差教列{a n}和{b n}的前n项和分别为和,且,则使得为整数的正整数n的个数是()A. 2B. 3C. 4D. 5参考答案:D【分析】根据等差数列前n项和公式可得,于是将表示为n的关系式,分离常数后再进行讨论,最后可得所求.【详解】由等差数列的前n项和公式可得,,所以当时,为整数,即为整数,因此使得为整数的正整数n共有5个.故选D.【点睛】本题考查等差数列的和与项的关系和推理论证能力,解题时要结合求和公式进行变形,然后再根据变形后的式子进行分析,本题具有一定的综合性和难度,能较好地考查学生的综合素质.2. 若函数对于任意的,都有,则函数的单调递增区间是()A.B.C.D.参考答案:D由题意时,取最小值,即,不妨令,取,即.令,得,故选D.3. 若平面α与β的法向量分别是,则平面α与β的位置关系是()A.平行B.垂直C.相交但不垂直D.无法确定参考答案:B4. 若函数y=x2+2ax+1在上是减函数,则的取值范围是A a=4B a-4C a<-4 D a4参考答案:B5. 将函数f(x)=sin(2x﹣)的图象左移,再将图象上各点横坐标压缩到原来的,则所得到的图象的解析式为()A.y=sinx B.y=sin(4x+)C.y=sin(4x﹣)D.y=sin(x+)参考答案:B【考点】正弦函数的图象. 【专题】三角函数的图像与性质.【分析】先由“左加右减”的平移法则和再将图象上各点横坐标压缩到原来的,即可求出. 【解答】解:将函数f (x )=sin (2x ﹣)的图象左移可得y=sin2[(x+)﹣)]=sin(2x+),再将图象上各点横坐标压缩到原来的,可得y=sin (4x+),故选:B .【点评】本题主要考查三角函数的平移及周期变换.三角函数的平移原则为左加右减上加下减.周期变换的原则是y=sinx 的图象伸长(0<ω<1)或缩短(ω>1)到原理的可得 y=sinωx 的图象. 6. 设偶函数f(x)的定义域为R ,当x 时f(x)是增函数,则f(-2), f(),f(-3)的大小关系是( ) A. f()>f(-3)>f(-2) B. f()>f(-2)>f(-3) C .f()<f(-3)<f(-2) D. f()<f(-2)<f(-3)参考答案:A7. 直线x +2y ﹣3=0与直线2x +ay ﹣1=0垂直,则a 的值为( ) A. ﹣1 B. 4C. 1D. ﹣4参考答案:A 【分析】由两直线垂直的条件,列出方程即可求解,得到答案. 【详解】由题意,直线与直线垂直,则满足,解得,故选:A .【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题. 8. 等比数列的第四项等于A. B. 0 C. 12 D. 24参考答案:A9. 过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8, AC =10,则球的表面积是 ( )A .B .C .D .参考答案:D 10. 已知,,,则a ,b ,c 的大小关系是A .B .C .D .参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 已知等差数列的公差为2,若成等比数列,则等于________.参考答案:-6试题分析:由成等比数列得考点:等差数列与等比数列性质【思路点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12. 设,则函数的最大值为.参考答案:【考点】三角函数的最值.【分析】变形可得2x∈(0,π),y=﹣,表示点(cos2x,sin2x)和(2,0)连线斜率的相反数,点(cos2x,sin2x)在单位圆的上半圆,数形结合可得.【解答】解:∵,∴2x∈(0,π),变形可得y==﹣,表示点(cos2x,sin2x)和(2,0)连线斜率的相反数,而点(cos2x,sin2x)在单位圆的上半圆,结合图象可得当直线倾斜角为150°(相切)时,函数取最大值﹣tan150°=,故答案为:.13. 函数y= sinx+cosx,的值域是_________.参考答案:[0,]14. .如图,正方体ABCD-A1B1C1D1的棱长为,动点P在对角线BD1上,过点P作垂直于BD1的平面,记这样得到的截面多边形(含三角形)的周长为y,设,则当时,函数的值域__________.参考答案:【分析】根据已知条件,所得截面可能是三角形,也可能是六边形,分别求出三角形与六边形周长的取值情况,即可得到函数的值域.【详解】如图:∵正方体的棱长为,∴正方体的对角线长为6,∵(i)当或时,三角形的周长最小.设截面正三角形的边长为,由等体积法得:∴∴,(ii)或时,三角形的周长最大,截面正三角形的边长为,∴(iii)当时,截面六边形的周长都为∴∴当时,函数的值域为.【点睛】本题考查多面体表面的截面问题和线面垂直,关键在于结合图形分析截面的三种情况,进而得出与截面边长的关系.15. 当且时,函数的图象必过定点.参考答案:略16. 不等式的解集是________.参考答案:【分析】将不等式变形,再求出一元二次方程的根,即可写出不等式的解集.【详解】不等式等价于由于方程的解为:或所以故答案为:【点睛】本题主要考查的是一元二次不等式的解法,是基础题.17. 函数的零点所在区间是,则正整数. 参考答案:1∵,又函数单调递增,∴函数在区间内存在唯一的零点,∴.答案:1三、解答题:本大题共5小题,共72分。
平遥县高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________ 姓名__________ 分数__________一、选择题1.已知函数f(x)=x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x2+y2=4内的面积为()A.B.C.πD.2π2.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}3.不等式≤0的解集是()A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2] C.(﹣∞,﹣1)∪[2,+∞) D.(﹣1,2]4.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)5.若点O和点F(﹣2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为()A.B.C.D.6.函数f(x)=3x+x的零点所在的一个区间是()A.(﹣3,﹣2) B.(﹣2,﹣1) C.(﹣1,0)D.(0,1)7.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A .11?B .12?C .13?D .14?8. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对10.sin570°的值是( )A .B .﹣C .D .﹣11.已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧12.直线的倾斜角是( )A .B .C .D .二、填空题13.阅读右侧程序框图,输出的结果i的值为.14.已知实数x,y满足约束条,则z=的最小值为.15.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.16.下列命题:①函数y=sinx和y=tanx在第一象限都是增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;④在△ABC中,A>B的充要条件是cos2A<cos2B;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是(把所有正确命题的序号都写上).17.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.18.函数f(x)=2a x+1﹣3(a>0,且a≠1)的图象经过的定点坐标是.三、解答题19.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.20.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.21.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.22.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥PD ,Q 为PD 的中点. (Ⅰ)证明:CQ ∥平面PAB ;(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.23.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.24.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.平遥县高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.2.【答案】B【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B3.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.4.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C5.【答案】B【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.6.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.7.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.8.【答案】B第9.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.10.【答案】B【解析】解:原式=sin(720°﹣150°)=﹣sin150°=﹣.故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.11.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.12.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A.【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.二、填空题13.【答案】7.【解析】解:模拟执行程序框图,可得S=1,i=3不满足条件S≥100,S=8,i=5不满足条件S≥100,S=256,i=7满足条件S≥100,退出循环,输出i的值为7.故答案为:7.【点评】本题主要考查了程序框图和算法,正确得到每次循环S,i的值是解题的关键,属于基础题.14.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.15.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1816.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.17.【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.18.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).三、解答题19.【答案】【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).20.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x,y1),B(x2,y2),1与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k==2﹣,k2==﹣21此时k1+k2=0,猜想λ=1时成立.证明如下:k+k2=+=2+m=2﹣2=01当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.21.【答案】【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.22.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN ∥CQ .又BN ⊂平面PAB ,且CQ ⊄平面PAB , ∴CQ ∥平面PAB .(Ⅱ)解:取AD 的中点M ,连接BM ;取BM 的中点O ,连接BO 、PO . 由(Ⅰ)知PA=AM=PM=2, ∴△APM 为等边三角形, ∴PO ⊥AM .同理:BO ⊥AM .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PO ⊂平面PAD , ∴PO ⊥平面ABCD .以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,3,0),A (0,﹣1,0),P (0,0,),C (,2,0),Q (0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC 的法向量为=(x ,y ,z ),∴,令y=﹣得=(3,﹣,5).∴cos <,>==﹣.∴直线PD 与平面AQC 所成角正弦值为.23.【答案】(1)3;(2) 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 24.【答案】【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=×2π×2×2=4π;S 圆柱侧=2π×2×4=16π;S 圆柱底=π×22=4π.∴几何体的表面积S=20π+4π;(Ⅱ)沿A 点与B 点所在母线剪开圆柱侧面,如图:则AB===2,∴以从A 点到B 点在侧面上的最短路径的长为2.。
平遥县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .2. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >83. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D64. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣85. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 6. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-< 7. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,58. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .569. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .20152210.在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB11.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 12.某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设全集______.14.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .15.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .16.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).三、解答题(本大共6小题,共70分。
2018-2019学年山西省晋中市平遥县第二中学高一上学期第一次月考英语试题第一部分阅读理解(60分,每小题3分)AWhen we were very small, we realized that having friends was important. Some of us even had imaginary friends. The need for fri ends continued as we grew into our teens. Friends played a big part in forming our personalities(性格). As adults,it is still important for us to have friends.True friends are people who like us though we made mistakes and who listen to us and tell us the truth. Friends support our decisions and tell us when we’re foolish. They laugh with us and share our sadness. They are our partners and share interests with us. They stimulate us when we are feeling down. They are p eople we aren’t afraid of telling our secret wishes to or what is really on our minds.Friends are our supporters. When you can depend on friends, you feel safe and warm. Friends offer acceptance and emotional(情感的)support. At times, they also help with our everyday lives, cooking a meal, doing chores, or giving us a lift when we need one. Friends also are there to offer advice, an ear to listen, or a shoulder to cry on.Friends also help us reduce stress. Not only do they listen to us when we feel stressed, but they also discuss what is stressing us. Sharing interests and doing activities with friends help us forget about problems at work or at home. For a short time, we can lose ourselves in a pleasant activity and perhaps laugh and breathe more easily.1.What is the best title for the passage?A. How to Reduce StressB. The Importance of FriendsC. How to Make New FriendsD. The Qualities of Good Friends2.The underlined word “stimulate” in Paragraph 2 probably means________.A. encourageB. educateC. surpriseD. dislike3.We can learn from the third paragraph that friends always________.A. laugh at us when we’re foolishB. tell us other people’s secretsC. support us when we need helpD. share our sadness and interests4.We can learn from the passage that________.A. people should make friends anytimeB. friends are people who allow you to cryC. good friends are always difficult to meetD. a friend helps you in many waysBWhat is language for? Some people seem to think it's for practicing grammar rules and learning lists of words—the longer the lists,the better. That's wrong. Language is for the exchange of ideas and information. It's meaningless knowing all about a language if you can't use it freely. Many students I have met know hundreds of grammar rules, but they can't speak correctly or fluently. They are afraid of making mistakes. One shouldn't be afraid of making mistakes when speaking a foreign language. Native speakers make mistakes and break rules, too. Bernard once wrote, "Foreigners often speak English too correctly.” But the mistakes that native speakers make are different from those that Chinese students make. They're English mistakes in the English language. And if enough native speakers break a rule, it is no longer a rule. What used to be wrong becomes right. People not only make history, they also make language. But a people can only make its own language. It can't make another people's language. So Chinese students of English should pay attention to grammar, but they shouldn't overdo it. They should put communication first.nguage is used to ________.A. practice grammar rulesB. express oneselfB. talk with foreigners only D. learn lists of words6. Generally, when an American or an Englishman speaks English, he ________.A. can't avoid making mistakesB. often makes mistakesC. never makes mistakesD. always makes mistakes7. “Foreigners often speak English too correctly.” This sentence means that________.A. foreigners speak correct EnglishB. foreigners speak incorrect EnglishC. foreigners speak English according to the grammar rulesD. foreigners never make mistakes when they speak English8. If too m any native speakers break a rule, ________.A. they will become heroesB. they are against the lawC. they should say sorry to othersD. what they use will become right9. When we speak a foreign language, we should ________.A. speak in Chinese wayB. speak by the rulesC. speak to native speakersD. not be afraid of making mistakesCFrank Smithson woke up and leaned over to turn off the alarm clock. "Oh no!" he thought to himself. " Another day at that office; a boss who shouts at me all the time."As Frank went downstairs his eyes fell on a large brown envelope by the door. He was overjoyed when he opened it and read the letter inside. "Bigwoods Football Pools(赌博公司)would like to congratulate you. You have won half a million pounds."Frank suddenly came to life. The cigarette fell from his lips as he let out a shout that could be heard halfway down the street.At 11:30 Frank arrived at work. "Please explain why you're so late," his boss said. "Go and jump in the lake," replied Frank. "I've just come into a little money so this is good-bye. Find yourself someone else to shout at."That evening Frank was smoking a very expensive Havana cigar(雪茄) when a knock was heard on the door. He rushed to the door. Outside were two men, neatly(整洁) dressed in grey suits. "Mr. Smithson," one of them said, "we're from BigwoodsFootball Pools. I'm afraid there's been a terrible mistake…"10. What do we know about Frank?A. He was a lazy man.B. He was a lucky person.C. He didn't make a lot of money.D. He didn't get on well with his boss.11. When he heard the knock at th e door, Frank probably thought ___ .A. someone had come to make an apologyB. someone had come to give him the moneyC. his friends had come to ask about the football poolsD. his friends had come to congratulate him on his luc12. On hearing "…there's been a terrible mistake…" Frank was most likely tobe __ .A. disappointedB. worriedC. nervousD. curiousDBody language is the quiet, secret and most powerful language of all! It is said that our body movements communicate about 50 percent of what we really mean while words only express 7 percent. So, while your mouth is closed, your body is just saying.Arms.How you hold your arms shows how open and receptive you are to people you meet. If you keep your arms to the sides of your body or behind your back, this suggests you are not afraid of taking on whatever comes your way. Outgoing people generally use their arms with big movements, while quieter people keep them close to their bodies. If someone upsets you, just cross your arms to show you're unhappy.Head. When you want to appear confident, keep your head level. If you are a monitor in class, you can also take on this position when you want your words to be taken seriously. However, to be friendly in listening or speaking, you must move your head a little.Legs. Your legs tend to move around a lot more than normal when you are nervous or telling lies. If you are at interviews, try to keep them still.Posture(姿势).A good posture makes you feel better about yourself. If you arefeeling down» you nor mally don't sit straight, with your shoulders inwards. This makes breathing more difficult, which can make you feel nervous or uncomfortable.Mouth.When you are thinking, you often purse your lips. You might also use this position to hold back an angry comment you don't wish to show. However, it will probably still be noticed, and people will know you're not pleased Face. When you lie, you might put on a false face. But that expression would crack briefly, allowing displays of true emotions such as happiness, sadness, disgust(厌恶)and fear to come through.13. When someone is keeping his arms behind his back, he tries to tell youthat .A. he is not afraidB. he is outgoingC. he is angryD. he is cool14. If you want to appear confident, you should .A. move your arms a lotB. cross your armsC. move your head a littleD. keep your head level15. Which of the following can be the best title of the passage?A. Body language, the most commonly used languageB. Body movements give away secrets of mindC. Arms tell more than legsD. Facial expressions tell the truth第二节:(共5小题;每小题2分,满分10分)根据对话内容,从对话后的选项中选出能填入空白处的最佳选项。
平遥县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣22. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( ) A. B. CD3. 若x ,y满足且z=y ﹣x 的最小值为﹣2,则k 的值为( ) A .1B .﹣1C .2D .﹣24.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( ) A. B. C.D.5. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个6. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}7. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}28. 已知变量x 与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( ) A. =﹣0.2x+3.3B. =0.4x+1.5 C. =2x ﹣3.2D. =﹣2x+8.69. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( ) A .20种 B .24种 C .26种 D .30种11.已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .12.由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .360二、填空题13.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .14.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .15.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .16.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.17.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .18.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .三、解答题19.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.20.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos t y =1+sin t (t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.21.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时).ABCDP22.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12(1)求a ,b 的值.(2)当x ∈[1,2]时,求f (x )的最大值.(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x﹣m 的图象恒有两个交点.23.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.24.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.平遥县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=﹣2,x 12=﹣2y 1,x 22=﹣2y 2. 两式相减可得,(x 1+x 2)(x 1﹣x 2)=﹣2(y 1﹣y 2) ∴直线AB 的斜率k=1,∴弦AB 所在的直线方程是y+5=x+1,即y=x ﹣4. 故选A ,2. 【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==∴12122S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质.3. 【答案】B【解析】解:由z=y ﹣x 得y=x+z , 作出不等式组对应的平面区域如图:平移直线y=x+z 由图象可知当直线y=x+z 经过点A 时,直线y=x+z 的截距最小, 此时最小值为﹣2,即y ﹣x=﹣2,则x ﹣y ﹣2=0, 当y=0时,x=2,即A (2,0),同时A也在直线kx﹣y+2=0上,代入解得k=﹣1,故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段.4.【答案】B【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B.【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.5.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.6.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.7.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算8.【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3,=2.7,代入A成立,代入D不成立.故选:A.9.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.10.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.11.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.12.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题.二、填空题13.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.14.【答案】(x﹣5)2+y2=9.【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.15.【答案】(,).【解析】解:设C(a,b).则a2+b2=1,①∵点A(2,0),点B(0,3),∴直线AB的解析式为:3x+2y﹣6=0.如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.则CF=≥,当且仅当2a=3b时,取“=”,∴a=,②联立①②求得:a=,b=,故点C 的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.16.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为111|a a e da e e ==-⎰,∴随机事件“ln a b ≥”的概率为1e e-.17.【答案】 9+4 .【解析】解:∵函数f (x )=x 2+x ﹣b+只有一个零点,∴△=a ﹣4(﹣b+)=0,∴a+4b=1, ∵a ,b 为正实数,∴+=(+)(a+4b )=9++≥9+2=9+4当且仅当=,即a=b 时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.18.【答案】 .【解析】解:复数z==﹣i (1+i )=1﹣i ,复数z=(i 虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.三、解答题19.【答案】【解析】解: (Ⅰ)当13PE PB =时,//CE 平面PAD . 设F 为PA 上一点,且13PF PA =,连结EF 、DF 、EC ,那么//EF AB ,13EF AB =.∵//DC AB ,13DC AB =,∴//EF DC ,EF DC =,∴//EC FD .又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,(1,2,0)C -.由(6)(2PO ==-=知(0,0,2)P . (9分)设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r则00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|||||AP n AP n AP n θ⋅=<>==⋅, ∴πθ=,∴直线PB 与平面PAD 所成角为3π. (13分)20.【答案】【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =cos t y =1+sin t(t 为参数)得 x 2+(y -1)2=1,即x 2+y 2-2y =0,∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程,由圆C 2:x 2+y 2+23x =0得ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程.(2)由题意得A ,B 的极坐标分别为A (2sin α,α),B (-23cos α,α).∴|AB |=|2sin α+23cos α|=4|sin (α+π3)|,α∈[0,π), 由|AB |=2得|sin (α+π3)|=12, ∴α=π2或α=5π6. 当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6, 此时l 的方程为y =x ·tan 5π6(x <0), 即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0),∴C 2到l 的距离d =|3×(-3)|(3)2+32=32, ∴△ABC 2的面积为S =12|AB |·d =12×2×32=32. 即△ABC 2的面积为32. 21.【答案】【解析】解:(Ⅰ) 由题意:当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax+b再由已知得,解得故函数v (x )的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x <20时,f (x )为增函数,故当x=20时,其最大值为60×20=1200当20≤x ≤200时,当且仅当x=200﹣x ,即x=100时,等号成立.所以,当x=100时,f (x )在区间(20,200]上取得最大值.综上所述,当x=100时,f (x )在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ) 函数v (x )的表达式(Ⅱ) 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.22.【答案】【解析】解:(1)∵f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12,∴a ﹣b=2,a 2﹣b 2=12,解得:a=4,b=2;(2)由(1)得:函数f (x )=lg (4x ﹣2x ),当x ∈[1,2]时,4x ﹣2x ∈[2,12],故当x=2时,函数f (x )取最大值lg12,(3)若函数g (x )=a x 的图象与h (x )=b x ﹣m 的图象恒有两个交点.则4x ﹣2x =m 有两个解,令t=2x ,则t >0,则t 2﹣t=m 有两个正解;则,解得:m ∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.23.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-.【解析】试题解析:(1)设()(0)f x kx b k =+>,111]由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩ ∴()5f x x =+,[]3,2x ∈-.(2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法.24.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值.试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为|4cos 3sin 6|5d θθ=+-.则|||5sin()6|sin 305d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取得最大值,最大值为5.当sin()1θα+=时,||PA 取得最小值,最小值为5. 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.。
平遥县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是()A .B .C .D .2. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A .B.C.D.3. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .4. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)5. 已知函数,若存在常数使得方程有两个不等的实根211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩()f x t =12,x x (),那么的取值范围为( )12x x <12()x f x∙A .B .C .D .3[,1)41[831[,1623[,3)86. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为()A .B .2C .D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 若直线与曲线:没有公共点,则实数的最大值为( ):1l y kx =-C 1()1e xf x x =-+kA .-1B .C .1D 12【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.8. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .9. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .10.已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的渐近线方程是( )A .y=±x B .y=±C .xy=±2xD .y=±x11.圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .22512.在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处二、填空题13.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 . 14.在(x 2﹣)9的二项展开式中,常数项的值为 .15.在矩形ABCD 中,=(1,﹣3),,则实数k= .16.设椭圆E : +=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .17.已知平面向量,的夹角为,,向量,的夹角为,与a rb r 3π6=-b ac a -r r c b -r r 23πc a -=r r a 的夹角为__________,的最大值为.ca c ⋅r r 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.18.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题19.设函数.(1)若x=1是f (x )的极大值点,求a 的取值范围.(2)当a=0,b=﹣1时,函数F (x )=f (x )﹣λx 2有唯一零点,求正数λ的值.20.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .21.已知f (α)=,(1)化简f (α);(2)若f (α)=﹣2,求sin αcos α+cos 2α的值.22.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.23.已知椭圆:+=1(a>b>0)的一个顶点为A(2,0),且焦距为2,直线l交椭圆于E、F两点(E、F与A点不重合),且满足AE⊥AF.(Ⅰ)求椭圆的标准方程;(Ⅱ)O为坐标原点,若点P满足2=+,求直线AP的斜率的取值范围.xOy(2,0)y24.在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨C迹为曲线.C(1)求曲线的方程;111](1,0)C A B C E F (2)过点作互相垂直的两条直线,,与曲线交于,两点与曲线交于,两点,AB EF M N MN P P线段,的中点分别为,,求证:直线过定点,并求出定点的坐标.平遥县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】 A 【解析】进行简单的合情推理.【专题】规律型;探究型.【分析】将M 中的元素按从大到小排列,求第2013个数所对应的a i ,首先要搞清楚,M 集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a 1×103+a 2×102+a 3×10+a 4),括号内表示的10进制数,其最大值为 9999;从大到小排列,第2013个数为9999﹣2013+1=7987所以a 1=7,a 2=9,a 3=8,a 4=7则第2013个数是故选A .【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n 个数对应的十进制的数即可.2. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=3. 【答案】B【解析】解:∵f (x )是定义在R 上周期为2的奇函数,∴f (log 35)=f (log 35﹣2)=f (log 3),∵x ∈(0,1)时,f (x )=3x ﹣1∴f (log 3)═﹣故选:B 4. 【答案】D【解析】解:令x=0,则函数f (0)=a 0+3=1+1=2.∴函数f (x )=a x +1的图象必过定点(0,2).故选:D .【点评】本题考查了指数函数的性质和a 0=1(a >0且a ≠1),属于基础题. 5. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程有两上不等的实根,则,由,可得()f x t =314t <<1324x +=,由,可得(负舍),即有,则14x =213x =x =12111,422x x ≤<≤≤221143x ≤≤.故本题答案选C.()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.6. 【答案】 B【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1,即AD •≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD ⊥面ABC ,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B .【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题. 7. 【答案】C【解析】令,则直线:与曲线:没有公共点,()()()()111e xg x f x kx k x =--=-+l 1y kx =-C ()y f x =等价于方程在上没有实数解.假设,此时,.又函()0g x =R 1k >()010g =>1111101e k g k -⎛⎫=-+< ⎪-⎝⎭数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没()g x ()0g x =R ()0g x =R 有实数解”矛盾,故.又时,,知方程在上没有实数解,所以的最大值1k ≤1k =()10e xg x =>()0g x =R k 为,故选C .18. 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m 可以取:0,1,2.故答案为:C 9. 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确;而对角线的方向应该从左上到右下,故B 不正确故A 选项正确.故选:A .【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键. 10.【答案】A【解析】解:抛物线y 2=8x 的焦点(2,0),双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,c=2,双曲线C 过点P (﹣2,0),可得a=2,所以b=2.双曲线C 的渐近线方程是y=±x .故选:A .【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查. 11.【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得,{2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2)解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9,令y=0得,x=-1±,5555∴|MN|=|(-1+)-(-1-)|=2,选D.12.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.二、填空题13.【答案】 [,4] .【解析】解:由题意知≤log 2x≤2,即log2≤log2x≤log24,∴≤x≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x)的定义域是[,2],得到≤log2x≤2”是关键,考查理解与运算能力,属于中档题.14.【答案】 84 .【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.15.【答案】 4 .【解析】解:如图所示,在矩形ABCD 中,=(1,﹣3),,∴=﹣=(k ﹣1,﹣2+3)=(k ﹣1,1),∴•=1×(k ﹣1)+(﹣3)×1=0,解得k=4.故答案为:4.【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目. 16.【答案】 .【解析】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线,于是△OFM ∽△AFB ,且==,即=可得e==.故答案为:.【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键. 17.【答案】,.6π18+【解析】18.【答案】1【解析】三、解答题19.【答案】【解析】解:(Ⅰ)f(x)的定义域为(0,+∞),,由f'(1)=0,得b=1﹣a.∴.…①若a≥0,由f'(x)=0,得x=1.当0<x<1时,f'(x)>0,此时f(x)单调递增;当x>1时,f'(x)<0,此时f(x)单调递减.所以x=1是f(x)的极大值点.…②若a<0,由f'(x)=0,得x=1,或x=.因为x=1是f(x)的极大值点,所以>1,解得﹣1<a<0.综合①②:a的取值范围是a>﹣1.…(Ⅱ)因为函数F(x)=f(x)﹣λx2有唯一零点,即λx2﹣lnx﹣x=0有唯一实数解,设g(x)=λx2﹣lnx﹣x,则.令g'(x)=0,2λx2﹣x﹣1=0.因为λ>0,所以△=1+8λ>0,方程有两异号根设为x1<0,x2>0.因为x>0,所以x1应舍去.当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减;当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增.当x=x2时,g'(x2)=0,g(x)取最小值g(x2).…因为g(x)=0有唯一解,所以g(x2)=0,则即因为λ>0,所以2lnx2+x2﹣1=0(*)设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.因为h(1)=0,所以方程(*)的解为x2=1,代入方程组解得λ=1.…【点评】本题考查函数的单调性、极值、零点等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.20.【答案】【解析】解:(1)设等比数列{a n}的公比为q<4,∵a1+3,3a2,a3+4构成等差数列.∴2×3a2=a1+3+a3+4,∴6q=1+7+q2,解得q=2.(2)由(1)可得:a n=2n﹣1.b n=lna3n+1=ln23n=3nln2.∴数列{b n}的前n项和T n=3ln2×(1+2+…+n)=ln2.21.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)22.【答案】【解析】解:(Ⅰ)∵椭圆C1:的离心率为,∴a2=2b2,令x2﹣b=0可得x=±,∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,∴2=2b,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B(k2,k22﹣1)…∴S1=|MA||MB|=•|k1||k2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.23.【答案】【解析】解:(Ⅰ)由题意可得a=2,2c=2,即c=1,b==,则椭圆的标准方程为+=1;(Ⅱ)设直线AE的方程为y=k(x﹣2),代入椭圆方程,可得(3+4k2)x2﹣16k2x+16k2﹣12=0,由2+x E=,可得x E=,y E=k(x E﹣2)=,由于AE⊥AF,只要将上式的k换为﹣,可得x F=,y F=,由2=+,可得P为EF的中点,即有P(,),则直线AP 的斜率为t==,当k=0时,t=0;当k ≠0时,t=,再令s=﹣k ,可得t=,当s=0时,t=0;当s >0时,t=≤=,当且仅当4s=时,取得最大值;当s <0时,t=≥﹣,综上可得直线AP 的斜率的取值范围是[﹣,].【点评】本题考查椭圆的方程的求法,考查直线和椭圆方程联立,运用韦达定理,考查直线的斜率的取值范围的求法,注意运用基本不等式,考查运算能力,属于中档题.24.【答案】(1) ;(2)证明见解析;.24y x =(3,0)【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,,,11(,)A x y 22(,)B x y 则直线:,,(1)y k x =-1212(,22x x y y M ++由得,24,(1),y x y k x ⎧=⎨=-⎩2222(24)0k x k x k -++=,2242(24)416160k k k ∆=+-=+>考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当不含参数时,可通过解不等式)(x f )0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意),(),0)((0)(''b a x x f x f ∈≤≥参数的取值是不恒等于的参数的范围.)('x f。
山西省晋中市平遥县第二中学2018—2019学年度下学期第一次月考高一数学试题一、选择题(共12小题,每小题5.0分,共60分)1.2 018°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.下列命题正确的是()A.终边在x轴非正半轴上的角是零角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β终边相同3.把化为角度是()A.270°B.280°C.288°D.318°4.设θ是第三象限角,且|cos|=-cos,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角5.已知sin=,则sin的值为()A.B.-C.D.-6.当-≤x≤时,函数f(x)=2sin有()A.最大值1,最小值-1 B.最大值1,最小值-C.最大值2,最小值-2 D.最大值2,最小值-17.若在△ABC中,AB=AC=1,|+|=,则△ABC的形状是()A.正三角形B.锐角三角形C.斜三角形D.等腰直角三角形8.已知||=|a|=3,||=|b|=3,∠AOB=60°,则|a+b|等于()A.B.3 C.2 D.39.设点M是线段BC的中点,点A在直线BC外,2=16,|+|=|-|,则||等于() A.8 B.4 C.2 D.110.设O为△ABC内部的一点,且++2=0,则△AOC的面积与△BOC的面积之比为()A.B.C.2 D.111.为了得到函数y=sin的图象,可以将函数y=cos 2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度12.如果函数y=|cos(+ax)|的图象关于直线x=π对称,则正实数a的最小值是() A.a=B.a=C.a=D.a=1二、填空题(共4小题,每小题5.0分,共20分)13.已知集合A={x|2kπ≤x≤2kπ+π,k∈Z},集合B={x|-4≤x≤4},则A∩B=________.14.已知角θ的终边上一点P(x,3)(x<0)且cosθ=x,则x=______.15.给出下列命题:①函数y=cos是奇函数;②若α,β是第一象限角且α<β,则tanα<tanβ;③y=2sin x在区间上的最小值是-2,最大值是;④x=是函数y=sin的一条对称轴.其中正确命题的序号是________.16.求函数f(x)=的定义域为________.三、解答题(共6小题,共70分)17.已知一扇形的周长为40 cm,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?18.化简:(1)-;(2).19.已知α是第四象限角,且f(α)=.(1)若cos=,求f(α)的值;(2)若α=-1 860°,求f(α)的值.20.设两个非零向量e1和e2不共线.(1)如果=e1-e2,=3e1+2e2,=-8e1-2e2,求证:A、C、D三点共线;(2)如果=e1+e2,=2e1-3e2,=2e1-ke2,且A、C、D三点共线,求k的值.21.函数f(x)=A cos(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,把函数f(x)的图象向右平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.(1)求函数y=g(x)的表达式;(2)若x∈[,]时,函数y=g(x)的图象与直线y=m有两个不同的交点,求实数m的取值范围.22.已知f(x)=x2+2x tanθ-1,x∈[-1,],其中θ∈(-,).(1)当θ=-时,求函数f(x)的最大值;(2)求θ的取值范围,使y=f(x)在区间[-1,]上是单调函数.平遥二中高一三月质检数学答案解析1-6 CDCBCD 7-12 DDCDBA13. [-4,-π]∪[0,π] 14.-1 15.①④16.,k∈Z17.【答案】设扇形的圆心角为θ,半径为r,弧长为l,面积为S,则l+2r =40,∴l=40-2r.∴S=lr=×(40-2r)r=20r-r2=-(r-10)2+100.∴当半径r=10 cm时,扇形的面积最大,最大值为100 cm2,此时θ==rad=2 rad,∴当扇形的圆心角为2 rad,半径为10 cm时,扇形的面积最大为100 cm2. 【解析】18.【答案】(1)-====-2tan2α.(2)==19.【答案】解f(α)===.(1)∵cos=,∴cos=,∴cos=,∴sinα=-,∴f(α)==-5.(2)当α=-1 860°时,f (α)======-. 20.【答案】(1)证明 =e 1-e 2,=3e 1+2e 2,=-8e 1-2e 2,=+=4e 1+e 2=-(-8e 1-2e 2)=-,∴与共线.又∵与有公共点C ,∴A 、C 、D 三点共线.(2)解 =+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴与共线,从而存在实数λ,使得=λ,即3e 1-2e 2=λ(2e 1-ke 2),则⇒21.【答案】(1)由题知A =1,T =4×(-)=π,所以A =1,T =π,ω=2,又点(,0)在曲线上,得cos(2×+φ)=0,|φ|<,解得φ=-,所以函数的解析式为f (x )=cos(2x -).函数f (x )的图象向右平移个单位,得到函数y =cos(2x -)=sin 2x 的图象,再向上平移1个单位,得到函数y =g (x )=sin 2x +1的图象.所求函数y =g (x )的表达式g (x )=sin 2x +1.(2)由题意得g (x )=sin 2x +1,x ∈[,]时,2x ∈[,], g (x )=sin 2x +1关于x =对称,sin 2x +1∈[+1,2],x∈[,]时,函数y=g(x)的图象与直线y=m有两个不同的交点,实数m的取值范围[+1,2).22.【答案】解(1)当θ=-时,f(x)=x2-x-1=(x-)2-,x∈[-1,].∴当x=-1时,f(x)的最大值为.(2)函数f(x)=(x+tanθ)2-(1+tan2θ)图象的对称轴为x=-tanθ,∵y=f(x)在[-1,]上是单调函数,∴-tanθ≤-1或-tanθ≥,即tanθ≥1或tanθ≤-.因此,θ角的取值范围是(-,-]∪[,).。
山西省晋中市平遥县第二中学2018-2019学年高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852 B.0.8192 C.0.8 D.0.75参考答案:D【考点】模拟方法估计概率.【专题】计算题;概率与统计.【分析】由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示种射击4次至少击中3次的有多少组,可以通过列举得到共多少组随机数,根据概率公式,得到结果.【解答】解:由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次至少击中3次的有:7527 0293 9857 0347 4373 8636 9647 4698 6233 2616 8045 3661 9597 7424 4281,共15组随机数,∴所求概率为0.75.故选:D.【点评】本题考查模拟方法估计概率、随机数的含义与应用,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.2. 化简所得结果是()A B C D参考答案:C略3. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是A.B. C.D.参考答案:C4. 将函数(其中)的图象向右平移个单位,若所得图象与原图象重合,则不可能等于()A.0 B.1 C. D.参考答案:D由题意,所以,因此,从而,可知不可能等于.5. 函数f(x)=x3﹣2x﹣3一定存在零点的区间是()A. (2,+∞)B. (1,2)C. (0,1)D. (﹣1,0)参考答案:B【分析】求出,即得解.【详解】由题得,所以,因为函数是R上的连续函数,故选:B【点睛】本题主要考查零点存在性定理,意在考查学生对这些知识的理解掌握水平.6. 设实数x1、x2是函数f(x)=|lnx|﹣()x的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>1参考答案:B【考点】函数零点的判定定理.【分析】能够分析出f(x)的零点便是函数y=|lnx|和函数y=()x交点的横坐标,从而可画出这两个函数图象,由图象懒虫不等式组,然后求解即可.【解答】解:令f(x)=0,∴|lnx|=()x;∴函数f(x)的零点便是上面方程的解,即是函数y=|lnx|和函数y=()x的交点,画出这两个函数图象如下:由图看出<﹣lnx1<1,﹣1<lnx1<0,0<lnx2<;∴﹣1<lnx1+lnx2<0;∴﹣1<lnx1x2<0;∴0<<x1x2<1故选:B.7. 一个三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,且长度分别为1、、3,则这个三棱锥的外接球的表面积为()A.16πB.32πC.36πD.64π参考答案:A【考点】球的体积和表面积.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长:所以球的直径是4,半径为2,球的表面积:16π故选A.8. 若120°的终边上有一点(-1,a),则a =()A.B.C.D.参考答案:D9. 设f(x)是偶函数且在(﹣∞,0)上是减函数,f(﹣1)=0则不等式xf(x)>0的解集为()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)参考答案:C【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】先根据偶函数的性质确定函数在(0,∞)上是增函数,再将不等式等价变形,利用函数的单调性,即可求解不等式.【解答】解:∵f(x)是偶函数且在(﹣∞,0)上是减函数,∴函数在(0,+∞)上是增函数,∵f(﹣1)=0,∴f(1)=0,则不等式xf(x)>0等价于或,解得x>1或﹣1<x<0,故不等式xf(x)>0的解集为(﹣1,0)∪(1,+∞),故选:C.【点评】本题主要考查函数的单调性和奇偶性的应用,体现了分类讨论的数学思想,属于中档题.10. 在R上定义运算:.若不等式的解集是(2,3),则()A.1 B.2 C.4 D.5参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 函数的图象与直线有且仅有两个不同的交点,则k的取值范围是 .参考答案:略12. 在△中,角所对的边分别为,,,,则.参考答案:;略13. 20世纪30年代,里克特制订了一种表明地震能量大小的尺度,已知里氏震级与地震释放的能量的关系为。
山西省晋中市平遥县第二中学2018-2019学年高一数学上学期第一次
月考试题
一、选择题(共12小题,每小题5.0分,共60分)
1.下列各组对象可构成一个集合的是( )
A.与10非常接近的数 B.我校学生中的女生
C.中国漂亮的工艺品 D.本班视力差的女生
2.定义A-B={x|x∈A,且x∉B},若A={1,2,4,6,8,10},B={1,4,8},则A-B等于( )
A. {4,8} B. {1,2,6,10} C. {1} D. {2,6,10}
3.若非空集合S⊆{1,2,3,4,5},且若a∈S,则必有6-a∈S,则所有满足上述条件的集合S
共有( )
A. 6个 B. 7个 C. 8个 D. 9个
4.已知集合A={x|x<1},B={x|3x<1},则( )
A.A∩B={x|x<0} B.A∪B=R
C.A∪B={x|x>1} D.A∩B=∅
5.下面各组函数中是同一函数的是( )
A.y=与y=x
B.y=()2与y=|x|
C.y=·与y=
D.f(x)=x2-2x-1与g(t)=t2-2t-1
6.已知二次函数图象的顶点坐标为(1,1),且过(2,2)点,则该二次函数的解析式为( )
A.y=x2-1 B.y=-(x-1)2+1 C.y=(x-1)2+1D.y=(x-1)2-1
7.函数f(x)=|x-1|的图象是( )
8.已知f(x)=则f(f(f(-2)))等于( )
A.π B. 0 C. 2 D.π+1
9.已知函数f(x)在(-∞,+∞)上是增函数,若a,b∈R且a+b>0,则有( )
A.f(a)+f(b)>-f(a)-f(b) B.f(a)+f(b)<-f(a)-f(b)
C.f(a)+f(b)>f(-a)+f(-b) D.f(a)+f(b)<f(-a)+f(-b)
10.若函数f(x)=为奇函数,则a等于( )
A. 1 B. 2 C. D.-
11.下列大小关系正确的是( )
A. 0.43<30.4<π0 B. 0.43<π0<30.4 C. 30.4<0.43<π0 D.π0<30.4<0.43
12.如果函数f(x)在[a,b]上是增函数,那么对于任意的x1,x2∈[a,b](x1≠x2),下列结论
中不正确的是( )
A.>0 B. (x1-x2)[f(x1)-f(x2)]>0
C.若x1<x2,则f(a)<f(x1)<f(x2)<f(b) D.>0
二、填空题(共4小题,每小题5.0分,共20分)
13.已知集合A={1,3,},B={1,m},A∪B=A,则m=________.
14.函数f(x)=为________函数.(填“奇”或“偶”)
15.指数函数f(x)的图象经过点(2,4),则f(3)=________.
16.已知函数f(x)=x5+ax3-bx-3,且f(-1)=8,则f(1)=________.
三、解答题(共6小题,共70分)
17.求函数y=的定义域、值域.
18.已知集合A={x|1<x<2},B={x|2a-3<x<a-2},且A⊇B,求实数a的取值范围.
19.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.
20.已知函数f(x)=x2+(a+1)x+b满足f(3)=3,且f(x)≥x恒成立,求f(x)的解析式.
21.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)
+f (y )-1,且f (4)=5.
(1)求f (2)的值;
(2)解不等式f (m -2)≥3.
22.已知函数f (x )= x m x -2,且f (4)= 2
7-. (1)求m 的值;
(2)判断f (x )在(0,+∞)上的单调性,并给予证明.
高一数学月考答案解析
1.【答案】B
2.【答案】D【解析】A-B是由所有属于A但不属于B的元素组成,所以A-B={2,6,10}.故选D.
3.【答案】B【解析】∵若a∈S,则必有6-a∈S,∴有1必有5,有2必有4,则S={3};{1,5};{2,4};{1,3,5};{2,3,4};{1,2,4,5};{1,2,3,4,5}.
∴所有满足上述条件的集合S共7个.故选B.
4.【答案】A【解析】∵B={x|3x<1},∴B={x|x<0}.
又A={x|x<1},∴A∩B={x|x<0},A∪B={x|x<1}.故选A.
5.【答案】D【解析】对于A,y=与y=x的值域不同;对于B,y=()2与y=|x|的定义域不同;对于C,y=·与y=的定义域不同;对于D,f(x)=x2-2x-1与g(t)=t2-2t-1的三要素完全相同,故为同一函数.故选D.
6.【答案】C【解析】设二次函数为y=a(x-1)2+1,将(2,2)代入上式,得a=1.所以y=(x -1)2+1.
7.【答案】B【解析】代入特殊点,∵f(1)=0,∴排除A,C;
又f(-1)=2,∴排除D.
8.【答案】D【解析】f(-2)=0,f(0)=π,f(π)=π+1.
9.【答案】C【解析】∵a+b>0,∴a>-b,b>-a,∵f(x)在R上是增函数,∴f(a)>f(-
b),f(b)>f(-a),∴f(a)+f(b)>f(-a)+f(-b).
10.【答案】A【解析】由题意得f(-x)=-f(x),
则==-,则-4x2+(2-2a)x+a=-4x2-(2-2a)x+a,所以2-2a=-(2-2a),所以a=1.
11.【答案】B【解析】0.43<0.40=π0=30<30.4.
12.【答案】C【解析】因为f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),x1-x2与f(x1)-f(x2)的符号相同,故A,B,D都正确,而C中应为若x1<x2,则f(a)≤f(x1)<f(x2)≤f(b).
13.【答案】0或3
14.【答案】奇【解析】定义域关于原点对称,且f(-x)=
==-f(x),所以f(x)是奇函数.
15.【答案】8【解析】因为函数f(x)为指数函数,设其解析式为y=(a>0,且a≠1),由于指数函数f(x)的图象经过点(2,4),所以=4,
所以a=2,则f(x)=2x,所以f(3)=23=8.故答案为8.
16.【答案】-14
【解析】令g(x)=x5+ax3-bx,则f(x)=g(x)-3.
∵g(-x)=(-x)5+a(-x)3-b(-x)=-(x5+ax3-bx)=-g(x),
∴g(x)是奇函数.由f(-1)=8,知g(-1)-3=8,
∴g(-1)=11,∴g(1)=-11,∴f(1)=g(1)-3=-11-3=-14.
17.【答案】解要使函数有意义,则x应满足32x-1-≥0,
即32x-1≥3-2.∵y=3x在R上是增函数,
∴2x-1≥-2,解得x≥-.故所求函数的定义域为.
当x∈时,32x-1∈.∴32x-1-∈[0,+∞).
∴原函数的值域为[0,+∞)
18.【答案】(1)当2a-3≥a-2,即a≥1时,B=∅⊆A,符合题意.
(2)当a<1时,要使A⊇B,需满足这样的实数a不存在.
综上,实数a的取值范围是{a|a≥1}..
19.【答案】令3x=t,∵-1≤x≤1,∴≤t≤3,
∴y=t2-2t-1=(t-1)2-2(其中≤t≤3).
∴当t=1时(即x=0时),y取得最小值-2,当t=3时(即x=1时),y取得最大值2. 20.【答案】解由f(3)=3,得b=-3a-9.由f(x)≥x恒成立可知,x2+ax+b≥0恒成立,所以a2-4b≤0,所以a2+12a+36=(a+6)2≤0,
所以a=-6,b=9.所以f(x)=x2-5x+9.
21.【答案】(1)f(4)=f(2+2)=f(2)+f(2)-1,又f(4)=5,∴f(2)=3.
(2)f(m-2)≥f(2),∴∴2<m≤4.∴m的取值范围为(2,4].
22.【答案】(1)∵f(4)=-4m=-,∴4m=4,∴m=1
(2)f(x)在(0,+∞)上为减函数,证明如下:
由(1)得f(x)=-x,设x1,x2是(0,+∞)上的任意两个实数,且x1>x2,则f(x2)-f(x1)=-x2-+x1=(-)+(x1-x2)=+(x1-x2)=,∵x2>x1>0,∴x1x2>0,2
+x1x2>0,x1-x2<0,
∴f(x2)-f(x1)<0,即f(x2)<f(x1),∴f(x)=-x在(0,+∞)上为减函数.。