实验三 图像噪声与空域平滑设计
- 格式:doc
- 大小:29.50 KB
- 文档页数:3
实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。
二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。
统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。
另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。
假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。
为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。
1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。
设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。
除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。
这个假设大体上反映了许多图像的结构特征。
∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。
可用模块反映领域平均算法的特征。
对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。
模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。
(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。
它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。
在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。
广州大学学生实验报告开课学院及实验室:电子楼316日期:2014年3月31日学院机械与电气工程年级、专业、班电信112姓名孔志荣学号1107400052实验课程名称多媒体实验成绩实验项目名称实验三空域滤波增强指导老师高星辉实验目的空域滤波就是在图像空间中借助模板对图像进行邻域操作。
输出图像中每一个像素的取值都是通过模板对输入像素相应的邻域内的像素值进行计算得到的。
通过本实验,掌握空域滤波方法进行图像增强的理论基础,并在MATLAB中实现多种空域滤波器及其增强算法,观察增强效果并进行总结。
1.1实验内容(1)利用二个均值滤波模板(3×3和9×9)对一幅图象进行平滑,验证模板尺寸对图象的模糊效果的影响。
(2)利用平滑滤波模板对一幅有噪图象(椒盐噪声)进行滤波,检验两种滤波模板(分别使用一个3×3的线性均值滤波器和一个非线性3×3中值滤波器)对噪声的滤波效果。
(3)对图像分别使用最大值滤波器和最小值滤波器进行滤波,观察对比滤波效果。
(4)选择一幅灰度图象,利用拉普拉斯算子对其进行锐化滤波,观察增强效果。
1.2实验原理(1)使用conv2()函数实现对图像和滤波器的二维卷积,实现空域滤波。
函数说明:conv2(f, h):f为图像,h为滤波器。
(2)对被椒盐噪声污染的图像,使用中值滤波器可以取得非常有效的增强效果。
中值滤波使用medfilt2()函数。
函数说明:medfilt2(f,[m n]):f是一幅图像,[m n]为求中值的邻域大小,默认值为3×3。
(3)使用ordfilt2()函数,实现对图像最大值、最小值等非线性滤波。
函数说明:ordfilt2(f, order, domain):对图像进行非线性滤波。
f是一幅图像;order为将指定邻域元素从小到大排序后,用第order个元素代替模板中心元素;domain定义模板大小,为m×n矩阵。
图像平滑处理的空域算法和频域分析1 技术要求对已知图像添加高斯白噪声,并分别用低通滤波器(频域法)和邻域平均法(空域法)对图像进行平滑处理(去噪处理),并分析比较两种方法处理的效果。
2 基本原理2.1 图像噪声噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。
实际获得的图像一般都因受到某种干扰而含有噪声。
引起噪声的原因有敏感元器件的内部噪声、相片底片上感光材料的颗粒、传输通道的干扰及量化噪声等。
噪声产生的原因决定了噪声的分布特性及它和图像信号的关系。
根据噪声和信号的关系可以将其分为两种形式:(1)加性噪声。
有的噪声与图像信号g(x,y)无关,在这种情况下,含噪图像f(x,y)可表示为f(x,y)=g(x,y)+n(x,y)(2)乘性噪声。
有的噪声与图像信号有关。
这又可以分为两种情况:一种是某像素处的噪声只与该像素的图像信号有关,另一种是某像点处的噪声与该像点及其邻域的图像信号有关,如果噪声与信号成正比,则含噪图像f(x,y)可表示为f(x,y)=g(x,y)+n(x,y)g(x,y)另外,还可以根据噪声服从的分布对其进行分类,这时可以分为高斯噪声、泊松噪声和颗粒噪声等。
如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声,一般为加性噪声。
2.2 图像平滑处理技术平滑技术主要用于平滑图像中的噪声。
平滑噪声在空间域中进行,其基本方法是求像素灰度的平均值或中值。
为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。
(1)空域法在空域中对图像进行平滑处理主要是邻域平均法。
这种方法的基本思想是用几个像素灰度的平均值来代替每个像素的灰度。
假定有一幅N*N 个像素的图像f(x,y),平滑处理后得到一幅图像g(x,y)。
g(x,y)由下式决定式中,x,y=0,1,2,…,N-1;S 是(x,y)点邻域中点的坐标的集合,但其中不包括(x,y)点;M 是集合内坐标点的总数。
实验三空域滤波一实验目的1了解空域滤波的方法。
2掌握几种模板的基本原理。
二实验条件PC微机一台和MATLAB软件。
三实验内容1使用函数fspecial( ) 生成几种特定的模板。
2使用函数imfilter( ) 配合模板对图象数据进行二维卷积。
3比较各种滤波器的效果。
四实验步骤空域滤波一般分为线性滤波和非线性滤波。
空域滤波器根据功能分为平滑滤波器和锐化滤波器。
1)平滑空间滤波:平滑的目的有两种:一是模糊,即在提取较大的目标前去除太小的细节或将目标内的小间断连接起来;另一种是消除噪声。
线性平滑(低通)滤波器:线性平滑空域滤波器的输出是包含在滤波掩膜邻域内像素的简单平均值。
线性平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3*3的模板来说,最简单的是取所有系数为1,为了保持输出图像仍然在原来图像的灰度值范围内,模板与像素邻域的乘积都要除以9。
a用h=fspecial(‘average’) 得到的h 为3×3的邻域平均模板,然后用h来对图象lenna.gif进行平滑处理。
>> x=imread('lenna.gif');h=fspecial('average');y=imfilter(x,h);imshow(x);title('原始图像');subplot(1,2,2);imshow(y);title('均值滤波后图像')实验结果如图:b 把模板大小依次改为7×7,9×9和11×11,观察其效果有什么不同?>>x=imread('lenna.gif');subplot(1,4,1);imshow(x);title('原始图像');h=fspecial('average',7);y=imfilter(x,h);subplot(1,4,2);imshow(y);title('模板大小7*7的图像');h1=fspecial('average',9);y1=imfilter(x,h1);subplot(1,4,3);imshow(y1);title('模板大小9*9的图像');h2=fspecial('average',11);y2=imfilter(x,h2);subplot(1,4,4);title('模板大小11*11的图像')比较效果:造成图像的模糊,n选取的越大,模糊越严重。
数字图像处理实验报告光信13-2班2013210191韩照夏数字图像处理实验报告实验一数字图像空间域平滑一、实验目的掌握图像空间域平滑的原理和程序设计;观察对图像进行平滑增强的效果。
二、实验设备计算机,Matlab程序平台。
三、实验原理图像平滑处理的目的是改善图像质量和抽出对象特征。
任何一幅未经处理的原始图像,都存在着一定程度的噪声干扰。
噪声恶化了图像质量,使图像模糊,甚至淹没特征,给分析带来困难。
消除图像噪声的工作称为图像平滑或滤波。
针对不同噪声源(如光栅扫描、底片颗粒、机械元件、信道传输等)引起的不同种类噪声(如加性噪声、乘性噪声、量化噪声等),平滑方法也不同。
平滑可以在空间域进行,也可以在频率域进行。
1.局部平均法局部平滑法是一种直接在空间域上进行平滑处理的技术。
假设图像由许多灰度恒定的小块组成,相邻象素间存在很高的空间相关性,而噪声则是统计独立的。
因此,可用邻域内各象素的灰度平均值代替该象素原来的灰度值,实现图像的平滑。
对图像采用3×3的邻域平均法,其作用相当于用以下模板与图像进行卷积运算。
2. 超限象素平滑法 对邻域平均法稍加改进,可导出超限象素平滑法。
其原理是将f(x,y)和邻域平均g(x,y)差的绝对值与选定的阈值进行比较,根据比较结果决定点(x,y )的最后灰度g ´(x,y)。
其表达式为3. 二维中值滤波中值滤波就是用一个奇数点的移动窗口, 将窗口中心点的值用窗口内各点的中值代替。
二维中值滤波可由下式表示常用的窗口有:四、实验步骤1.实验准备:打开计算机,进入Matlab 程序界面。
2.输入图像空间域平滑处理程序,程序如下:⎩⎨⎧>-= ),(),(),( ),,(),('其他,当y x f T y x g y x f y x g y x g )},({),(y x f Med y x g A=程序1.1 图像平滑处理clear;clc;I=imread('lena.jpg');subplot(3,2,1);imshow(I);title('原图像');I1=imnoise(I,'salt & pepper',0.02);subplot(3,2,2);imshow(I1);title('对I加椒盐噪声的图像');h2=fspecial('average',[3 3]);I2=imfilter(I1,h2,'replicate');subplot(3,2,3);imshow(I2);title('3×3邻域平滑');h3=fspecial('average',[5 5]);I3=imfilter(I1,h3,'replicate');subplot(3,2,4);imshow(I3);title('5×5邻域平滑');I4=I1;I4((abs(I1-I2))>64)=I2((abs(I1-I2))>64);subplot(3,2,5);imshow(I4);title('3×3超限象素平滑(T=64)'); I5=I1;I5((abs(I1-I3))>48)=I3((abs(I1-I3))>48);subplot(3,2,6);imshow(I5);title('5×5超限象素平滑(T=48)');程序1.2 图像平均平滑与中值滤波clear;clc;I=imread('lena.jpg');subplot(3,3,1);imshow(I);title('原图像');I1=imnoise(I,'gaussian',0.02);subplot(3,3,2);imshow(I1);title('高斯噪声');I2=imnoise(I,'salt & pepper',0.02);subplot(3,3,3);imshow(I1);title('椒盐噪声');h1=fspecial('average',[3 3]);I3=imfilter(I1,h1,'replicate');subplot(3,3,4);imshow(I3);title('对I1 3×3邻域平滑');h2=fspecial('average',[3 3]);I4=imfilter(I2,h2,'replicate');subplot(3,3,5);imshow(I4);title('对I2 3×3邻域平滑');I5=medfilt2(I1,[5 5]);subplot(3,3,6);imshow(I5);title('对I1 5×5中值滤波');I6=medfilt2(I2,[5 5]);subplot(3,3,7);imshow(I6);title('对I2 5×5中值滤波');3.运行图像处理程序,并保存处理结果图像。
数字图像处理作业——空间域滤波器摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。
本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。
平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。
本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。
使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。
不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。
1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。
实验原理分析:空域滤波是直接对图像的数据做空间变换达到滤波的目的。
它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。
如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。
空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。
模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。
如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。
目录1 技术要求 (1)2 基本原理 (1)2.1 图像平滑 (1)2.2 图像噪声 (1)2.3 噪声处理 (1)3 建立模型描述 (1)4 源程序代码 (3)4.1 邻域平均法源程序 (3)4.2 低通滤波法源程序 (4)5 调试过程及结论 (5)6 心得体会 (8)7 参考文献 (8)图像平滑处理的空域算法和频域分析1 技术要求对已知图像添加高斯白噪声,并分别用低通滤波器和邻域平均法对图像进行平滑处理,并分析比较两种方法处理的效果。
2 基本原理2.1 图像平滑图像平滑的目的之一是消除噪声,其二是模糊图像。
在提取大目标之前去除小的细节或弥合目标间的缝隙。
从信号频谱角度看,信号缓慢变化的部分在频率域表现为低频,而迅速变化的部分变现为高频。
对图像而言,它的边缘,跳跃以及噪声等灰度变化剧烈的部分代表图像的高频分量,而大面积背景区和灰度变化区域代表图像低频分量。
因此,可以通过低通滤波即减弱或消除高频分量而不影响低频分量来是想图像平滑。
2.2 图像噪声噪声可以理解为“妨碍人们感觉器官对所接受的信信息理解的因素”。
也可以理解为不可预测的,只能用概率统计方法来认识的随机误差。
噪声可以借用随机过程及其概率密度函数来描述,通常用其数字特征,如均值,方差等。
2.3 噪声处理(1) 领域平均法领域平均法的思想是用像素及其指定领域内像素的平均值或加权平均值作为该像素的新值,以便去除突变的像素点,从而滤除一定的噪声。
(2) 低通滤波法低通滤波器允许低频成分通过,而抑制高频成分。
因此它能够去除图像的噪声,实现图像平滑作用。
当然这必然会引起图像模糊。
常用的是低通巴特沃斯滤波器。
3 建立模型描述1 领域平均法程序一开始利用函数imread()将源图片读入,然后利用函数rgb2gray ()将其转换成灰度图像再利用函数Imnoise()给图像添加高斯白噪声,再利用函数filter2()分别分别生成3*3,5*5,7*7,9*9模板,并利用这些模板对灰度图像进行平滑处理,最后将灰度图像及处理后的图像全部输出,其流程图如图1所示。
实验三图像噪声与空域平滑设计
一、实验目的与要求
1、了解图像噪声的概念,会对图像中的噪声做降噪处理;
2、理解常用的的图像平滑算法;
3、编程实现对所给图像进行噪声的添加,并用多种算法去噪并分析结果。
二、知识点
1、图像噪声
图像去噪是数字图像处理中的重要环节和步骤。
去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。
图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等;
2、常用的空域平滑算法
目前比较经典的图像去噪算法主要有以下三种:
(1)均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。
有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。
(2)中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。
中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。
其算法简单,时间
复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。
很容易自适应化。
(3)Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。
对于去除高斯噪声效果明显。
三、实验内容
1、对一幅图像分别加入椒盐噪声和高斯噪声
利用上述3个梯度算子对给定的位图文件进行边缘检测。
对edge函数中的T和dir给出不同的值,观察结果的不同。
以某一个剃度算子为例,得到T 的默认值,并将T的值分别给出大于和小于默认值,并给出实验结果。
进行分析。
2、利用上述3个梯度算子对所检测边缘的宽度进行对比分析。
3、利用LOG算子对给定的位图文件进行边缘检测。
4、对梯度算子与LOG算子的图像边缘检测效果进行分析。
5、自己定义一个微分算子,如sobel,利用卷积操作进行图像的平滑处理,得到结果。
conv2(h,f),h表示算子模板,f表示要卷积的图像。
将卷积的结果显示出来。
6、利用数字滤波器进行滤波,首先定义一个滤波器,H=fspecial(‘sobel’), 滤波器中的参数可以是‘sobel’、‘prewitt’、‘laplacian’等,然后对图像进行加噪处理,如g1=imnoise(f,’salt&pepper’,0.02),最后进行滤波g3= filter2(H,f,‘same’),对滤波后的图像进行显示,比较常用的算子滤波结果的不同。
四、考核要点
1、3个梯度算子和LOG算子对图像边缘检测的效果图像;
2、3个梯度算子和LOG算子对图像边缘检测的效果对比分析。
五、实验报告要求
1、报告中必须有合理的实验方案;
2、给出相应的实验步骤和程序;
3、根据不同的边缘提取方法,要有相应的实验效果图;
4、对实验结果进行分析,对比。