初二数学教案
- 格式:doc
- 大小:429.50 KB
- 文档页数:83
初中数学教案设计〔共12篇〕篇1:初中数学教案设计一、教学目的:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联络。
4、掌握直线的平移法那么简单应用。
5、能应用本章的根底知识纯熟地解决数学问题。
二、教学重、难点:重点:初步构建比拟系统的函数知识体系。
难点:对直线的平移法那么的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,假设y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联络:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
根底训练:1、写出一个图象经过点(1,— 3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、假如P(2,k)在直线y=2x+2上,那么点P到x轴的间隔是:4、正比例函数 y =(3k—1)x,,假设y随x的增大而增大,那么k是:5、过点(0,2)且与直线y=3x平行的直线是:6、假设正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,那么m的取值范围是:7、假设y—2与x—2成正比例,当x=—2时,y=4,那么x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,那么b的值为。
9、圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
第1篇教学设计作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。
那要怎么写好教案呢?下面是小编帮大家整理的菱形人教版数学八年级上册教案,仅供参考,希望能够帮助到大家。
一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系;2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;二、重点、难点1、教学重点:菱形的性质1、2;2、教学难点:菱形的性质及菱形知识的综合应用;三、例题的意图分析本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;四、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念;《18、2、2菱形》课时练习含答案;5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )A、矩形B、菱形C、正方形D、梯形答案:B知识点:等边三角形的性质;菱形的判定解析:解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、分析:此题主要考查了等边三角形的性质,菱形的定义、6、用两个边长为a的等边三角形纸片拼成的四边形是( )A、等腰梯形B、正方形C、矩形D、菱形答案:D知识点:等边三角形的性质;菱形的`判定解析:解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、分析:本题利用了菱形的概念:四边相等的四边形是菱形、《菱形的性质与判定》练习题一选择题:1、下列四边形中不一定为菱形的是( )A、对角线相等的平行四边形B、每条对角线平分一组对角的四边形C、对角线互相垂直的平行四边形D、用两个全等的等边三角形拼成的四边形2、下列说法中正确的是( )A、四边相等的四边形是菱形B、一组对边相等,另一组对边平行的四边形是菱形C、对角线互相垂直的四边形是菱形D、对角线互相平分的四边形是菱形3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )A、菱形B、对角线互相垂直的四边形C、矩形D、对角线相等的四边形第2篇教学设计1、教材分析(1)知识结构(2)重点、难点分析本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.本节内容的.难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.2、教法建议本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:(1)参与探索发现,领略知识形成过程学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.(2)采用“类比”的学习方法,获取逆定理线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.第3篇教学设计一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。
理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。
初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)元一次方程教学设计篇一一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。
用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。
本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。
以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。
结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。
八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
初二人教版数学教学设计〔精选12篇〕篇1:初二人教版数学教学工作总结本学期来,我担任八年级二班的数学老师,在教学期间认真备课、上课、听课、评课,及时修改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,不断进步自己的业务程度,充实自己的头脑,严格要求学生,尊重学生,使学生学有所得,不断进步,并顺利完成教育教学任务。
一、坚持认真备课备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。
每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学反思。
二、努力增强我的上课技能进步教学质量,使讲解明晰化,条理化,准确化,情感化,生动化,做到线索明晰,层次清楚,言简意赅,深化浅出。
在课堂上特别注意调动学生的积极性,加强师生交流,充分表达学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习才能,让各个层次的学生都得到进步。
如今学生普遍反映喜欢上数学课,就连以前极讨厌数学的学生都乐于上课了。
三、与同事交流,虚心请教其他老师在教学上,有疑必问。
在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克制自己的缺乏,并常常邀请其他老师来听课,征求他们的意见,改良工作。
四、完善修改作业布置作业做到精读精练。
有针对性,有层次性。
为了做到这点,我常常上网、书店等地去搜集资料,对各种辅助资料进展挑选,力求每一次练习都起到最大的效果。
同时对学生的作业修改及时、认真,分析^p 并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进展透切的评讲,并针对有关情况及时改良教学方法,做到有的放矢。
八年级数学教案15篇八年级数学教案1一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式二、重点难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来难点:让学生识别多项式的公因式.三、合作学习:公因式与提公因式法分解因式的概念.三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)既ma+mb+mc = m(a+b+c)由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练例1、将下列各式分解因式:(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.例2把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.(3) a(x-3)+2b(x-3)通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.首先找各项系数的____________________,如8和12的公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的课堂练习1.写出下列多项式各项的公因式.(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab2.把下列各式分解因式(1)8x-72 (2)a2b-5ab(3)4m3-6m2 (4)a2b-5ab+9b(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2五、小结:总结出找公因式的一般步骤.:首先找各项系数的大公约数,其次找各项中含有的相同的字母,相同字母的指数取次数最小的注意:(a-b)2=(b-a)2六、作业1、教科书习题2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)+(-2)4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3八年级数学教案2教学目标理解平行四边形的定义,能根据定义探究平行四边形的性质.教学思考1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.2.能够根据平行四边形的性质进行简单的推理和计算.解决问题通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.情感态度在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.重点平行四边形的性质的探究和平行四边形的性质的应用.难点平行四边形的性质的应用.教学流程安排活动流程图活动内容和目的活动1欣赏图片,了解生活中的特殊四边形活动2剪三角形纸片,拼凸四边形活动3理解平行四边形的概念活动4探究平行四边形边、角的性质活动5平行四边形性质的应用活动6评价反思、布置作业熟悉生活中特殊的四边形,导出课题.通过用三角形拼四边形的过程,渗透转化思想,激发探索精神.掌握平行四边形的定义及表示方法.探究平行四边形的性质.运用平行四边形的性质.学生交流,内化知识,课后巩固知识.教学过程设计问题与情景师生行为设计意图[活动1]下面的图片中,有你熟悉的哪些图形?(出示图片)演示图片,学生欣赏.教师介绍四边形与我们生活密切联系,学生可再补充列举.从实例图片中,抽象出的特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.问题与情景师生行为设计意图[活动2]拼一拼将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.(1)你拼出了怎样的凸四边形?与同伴交流.(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.学生经过实验操作,开展独立思考与合作学习.教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容八年级数学教案3教学目标:1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。
数学初二下册教案(优秀8篇)八年级数学下册教案篇一一、学习目标:1、经历探索平方差公式的过程。
2、会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点重点:平方差公式的推导和应用;难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999(2)998×1002导入新课:计算下列多项式的积。
(1)(x+1)(x—1);(2)(m+2)(m—2)(3)(2x+1)(2x—1);(4)(x+5y)(x—5y)。
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a—b)=a2—b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x—2);(2)(b+2a)(2a—b);(3)(—x+2y)(—x—2y)。
例2:计算:(1)102×98;(2)(y+2)(y—2)—(y—1)(y+5)。
随堂练习计算:(1)(a+b)(—b+a);(2)(—a—b)(a—b);(3)(3a+2b)(3a—2b);(4)(a5—b2)(a5+b2);(5)(a+2b+2c)(a+2b—2c);(6)(a—b)(a+b)(a2+b2)。
五、小结(a+b)(a—b)=a2—b2数学初二下册教案篇二一、学生知识状况分析学生的技能基础:学生已经有了初步的统计意识,在第一课时的学习中,学生已经接触了极差、方差与标准差的概念,并进行了简单的应用,但对这些概念的理解很单一,认为方差越小越好。
学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用。
课堂主要采用实验讨论、自主探索、合作交流等学习方式,学生有一定的活动基础,具备了一定的合作与交流的能力。
二、教学任务分析在学生对极差、方差、标准差等概念都有了一定的认识之后,学生对这些刻画数据离散程度的三个统计量的认识上还存在一个误区,那就是认为方差或标准差越小越好。
八年级上册数学教案(优秀6篇)初二数学上册教案篇一教学目标1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
教学重点:1.等腰三角形的概念及性质。
2.等腰三角形性质的应用。
教学难点:等腰三角形三线合一的性质的理解及其应用。
教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,Ⅰ并且能够作出一个简单平面图形关于某一直线的轴对称图形,Ⅰ还能够通过轴对称变换来设计一些美丽的图案。
这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。
来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,Ⅰ也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅰ.导入新课:要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。
同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?Ⅰ底边上的高所在的直线呢?结论:等腰三角形是轴对称图形。
它的对称轴是顶角的平分线所在的直线。
因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
(此文档为word格式,下载后您可任意编辑修改!)11.1全等三角形学习目标:1.理解什么是全等形、全等三角形。
2.理解并识记全等三角形的性质,能正确运用符号表示两个三角形全等。
3.能熟练地找出两个全等三角形的对应点、对应角、对应边。
学习过程:一、板书课题,揭示目标同学们,今天我们来学习11.1全等三角形(板书课题),本节课的学习目标是:(小黑板展示)二、指导自学为了使同学们顺利地达到本节课的学习目标,请大家认真看自学指导。
自学指导:认真看课本第十一章前图至P3结束。
①注意“思考云图”中的问题②结合图形认真看“思考”中的问题。
思考怎样判断两个三角形全等,全等三角形的对应边、对应角有什么关系。
5分钟后,看谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生看书、思考,教师巡视,督促每个学生都认真紧张地自学。
2、检测自学效果:出示检测题:P4练习1、2题。
学生检测:让两位学生上堂板演,其他学生在练习本上做。
教师下去巡视,收集学生出现的问题,进行第二次备课。
四、更正,讨论,归纳1、自由更正请大家认真看两位同学的板演内容是否正确,找一找有没有错误,比谁能找出错误并更正。
2、讨论、归纳评:第1题:第一步:看对应边找得对不对?为什么?(教师板书“对应边”)。
引导学生回答:重合的边是对应边(教师板书“重合的边”)第二步::看对应角找得对不对?为什么?(教师板书“对应角”)。
引导学生回答:重合的边是对应角(教师板书“重合的角”)评:第2题第一步:看相等的边找得对不对?为什么?(教师板书“相等的边”)。
引导学生回答:对应边是相等的边(教师板书“找对应边”)第二步::看相等的角找得对不对?为什么?(教师板书“相等的角”)。
引导学生回答:对应角是相等的角(教师板书“找对应角”)小结:本节课学习了全等形、全等三角形,大家会找全等形、也会找全等三角形,找全等三角形时要看清图形的变换和找准对应点,以后可运用全等三角形的对应边和对应角得到一些相等的线段和相等的角。
五、课堂作业必做题: P4:1、2选做题: P4: 3思考题: P4: 4六、课后作业(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角D D D(2)将沿直线BC 平移,得到,说出你得到的结论,说明理由?(3)如图, AB 与AC ,AD 与AE 是对应边,已知,求的大小。
教后反思:11.1 全等三角形的判定(1)学习目标:(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.(2)掌握三角形全等的判定定理——SSS,并能正确运用“SSS”定理证明三角形全等。
(3)了解三角形的稳定性.学习过程:一、板书课题,揭示目标同学们,今天我们来学习11.1全等三角形判定(1)——sss(板书课题),本节课的学习目标是:(小黑板展示)二、指导自学为了使同学们顺利地达到本节课的学习目标,请大家认真看自学指导。
自学指导:认真看课本P6——P8练习之前①注意“黄色书签”中的提示和“思考云图”中的问题;②注意“探究”中的问题③注意P7例1的格式和步骤,思考运用sss定理需那些条件,如何正确地做出与例题类似的习题6分钟后,看谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生看书、思考,教师巡视,督促每个学生都认真紧张地自学。
2、检测自学效果:出示检测题:P8练习学生检测:让两位学生上堂板演,其他学生在练习本上做。
教师下去巡视,收集学生出现的问题,进行第二次备课。
四、更正,讨论,归纳1、自由更正请大家认真看两位同学的板演内容是否正确,找一找有没有错误,比谁能找出错误并更正。
2、讨论、归纳评:练习题练习题:证OC是不是∠AOB的平分线,需要证明什么?引导学生回答:证∠MOC=∠NOC。
要证∠MOC=∠NOC,第一步要证什么?引导学生回答:证明三角形全等,三角形全等的证明对不对?为什么?引导学生回答:三边对应相等的两个三角形全等。
(引导学生注意条件:公共边OC=OC,教师板书“三边对应相等的两个三角形全等——SSS”)第二步:看相等的角找得对不对?为什么?引导学生回答:对应角相等。
第三步:结论对不对?为什么?引导学生回答:根据角平分线的定义小结:本节课学习了全等三角形的判定方法——SSS,大家要找对条件,书写规范,同时注意“对应”五、课堂练习必做题:P15:1、2选做题:P16: 9六、课后作业思考:求证:1.BD=CE 2. ∠B= ∠C 3. ∠ADB= ∠AEC变式1:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证:△DAC≌△EABBE=DC ∠B= ∠C ∠D= ∠E BE⊥CD教后反思:11.2.2全等三角形的判定(2)学习目标:理解三角形全等的判定定理——SAS,并能正确运用“SAS”证明简单的三角形全等问题。
学习过程:一、板书课题,揭示目标同学们,今天我们来学习11.2.2全等三角形的判定(2)——SAS(板书课题),本节课的学习目标是:(小黑板展示)二、指导自学为了使同学们顺利地达到本节课的学习目标,请大家认真看自学指导。
自学指导:认真看课本P8——P10练习前面。
①注意“思考云图”中的问题;②注意“探究”中的问题。
通过画图来回答;③注意P9例2的格式和步骤,思考如何(运用SAS)正确书写两个三角形全等的步骤。
6分钟后,看谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生看书、思考,教师巡视,督促每个学生都认真紧张地自学。
2、检测自学效果:出示检测题:P69练习1、2题。
学生检测:让两位学生上堂板演,其他学生在练习本上做。
教师下去巡视,收集学生出现的问题,进行第二次备课。
四、更正,讨论,归纳1、自由更正请大家认真看两位同学的板演内容是否正确,找一找有没有错误,比谁能找出错误并更正。
2、讨论、归纳评:练习题(两道题一起评)第1题和第2题分别需要证明什么?引导学生回答:第1题证明边相等即BC=BD。
第2题要证明角相等,要证边相等或角相等,第一步要先证什么?引导学生回答:证明三角形全等。
三角形全等的证明对不对?为什么?引导学生回答:两边和它们的夹角对应相等的两个三角形全等。
(教师板书“两边和它们的夹角对应相等的两个三角形全等——SAS)第二步:对不对?为什么?引导学生回答:全等三角形的对应边相等、对应角相等。
小结:本节课学习了全等三角形的判定(2)——SAS,大家要找对条件,书写规范,同时注意“对应”和夹角的位置。
五、课堂练习必做题:P15:3、4选做题:P16: 10六、课后练习思考:求证:1.BD=CE 2. ∠B= ∠C 3. ∠ADB= ∠AEC变式1:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证:△DAC≌△EABBE=DC ∠B= ∠C ∠D= ∠E BE⊥CD教后反思:11.2 .3全等三角形的判定(3)学习目标:理解三角形全等的判定定理——SAS和AAS并能正确运用学习过程:一、板书课题,揭示目标同学们,今天我们来学习11.2 .3全等三角形的判定(3)——ASA和AAS(板书课题),本节课的学习目标是:(小黑板展示)二、指导自学为了使同学们顺利地达到本节课的学习目标,请大家认真看自学指导。
自学指导认真看课本P11——P12练习前面。
(1)注意“探究”中的问题, 通过画图来回答;(2)注意P12例3的格式和步骤,思考如何(运用ASA)书写两个三角形全等的步骤。
(3)回答P12“探究”中的问题6分钟后,看谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生看书、思考,教师巡视,督促每个学生都认真紧张地自学。
2、检测自学效果:出示检测题:P13练习1、2题。
学生检测:让两位学生上堂板演,其他学生在练习本上做。
教师下去巡视,收集学生出现的问题,进行第二次备课。
四、更正,讨论,归纳1、自由更正请大家认真看两位同学的板演内容是否正确,找一找有没有错误,比谁能找出错误并更正。
2、讨论、归纳评:练习题(1)要证明DE=AB,须要证明什么?引导学生回答:证△CDE≌△CBA。
(2)这两个三角形全等证明对吗?为什么?引导学生回答:运用了“ASA”定理。
(3)第3步对吗?为什么?引导学生回答:运用三角形的性质。
评:第2题(1)要证AB=AD,须证什么?引导学生回答:证△ABC≌△ADC。
(2)三角形全等证明对吗?为什么?引导学生回答:运用了“AAS”定理。
(教师板书AAS及内容)。
(3)第3步对吗?为什么?引导学生回答运用了三角形的性质。
小结:本节课学习了全等三角形的判定方法——ASA,大家要找对条件,书写规范,同时注意“对应”和夹角的位置。
五、课堂练习必做题:P15:5、6选做题:P16 : 11六、课后练习:P16: 12教后反思:11.2 三角形全等的判定(4)学习目标:理解直角三角形全等的判定定理——HL,并正确运用。
学习过程一、板书课题,揭示目标同学们,今天我们来学习11.2 三角形全等的判定(4)(板书课题),本节课的学习目标是:(小黑板展示)二、指导自学为了使同学们顺利地达到本节课的学习目标,请大家认真看自学指导。
自学指导:认真看课本P13——P14练习前面。
①注意“思考”中的问题;②注意“探究”中的问题及“黄色书签”中的提示。
③注意例4的解题格式和步骤,思考是如何运用“HL”证明三角形全等的。
6分钟后,看谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生看书、思考,教师巡视,督促每个学生都认真紧张地自学。
2、检测自学效果:出示检测题:P14练习1、2题。
学生检测:让两位学生上堂板演,其他学生在练习本上做。
教师下去巡视,收集学生出现的问题,进行第二次备课。
四、更正,讨论,归纳1、自由更正请大家认真看两位同学的板演内容是否正确,找一找有没有错误,比谁能找出错误并更正。
2、讨论、归纳评:(1)第1题要证什么?引导学生回答证:DA=EB(2)看1、2题,要证边相等,须证什么?引导学生回答证明两直角三角形全等。
(3)证明的对不对?为什么?引导学生归纳HL定理。
教师板书:HL 斜边和一条直角边对应相等的两个三角形全等。
注意:引导学生写清在直角三角形中才能运用HL定理。
(4)对不对?为什么?引导学生回答全等三角形的性质。
小结:(1)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法,而且还有直角三角形特殊的判定方法:HL(2)两直角三角形中,由于已具备直角相等的条件,所以判定两个直角三角形全等,只须找两个条件。
五、课堂练习必做题:P16:7、8选做题:P17 : 13六、课后练习1、如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。