chapter3-4电力系统低频减载
- 格式:pdf
- 大小:105.32 KB
- 文档页数:18
毕业设计开题报告电气工程及其自动化电力系统低频减载自动装置——主电路设计一、前言电力系统按频率自动减载历来被看作防止电力系统发生频率崩溃的重要手段。
前苏联对电力系统低频减载问题早已非常重视,我国在50年代就有感应型低频减载装置投入系统使用。
美国1996年纽约大停电事故时,因无适当的减载装置而导致系统频率崩溃,其后美国各电力系统普遍装设了低频减载装置。
人们之所以对它如此重视,不仅是因为这一装置投资很少,产生的经济效益十分巨大,而且从国内外电力系统发生频率事故时发挥的作用来看,使它被视为电力系统安全控制的基本手段之一。
电力系统的频率自动减载装置历经了一个发展过程。
从40年代至今,大体上经历了感应型、模拟型和数字型三个发展阶段。
这三个发展阶段,不仅反应了电力系统自动装置在技术进步方面的共同发展规律,而且也反应了现代电力系统对低频减载装置在高精度、多功能、高稳定性和高抗干扰性方面提出的愈来愈多的要求。
模拟型的低频减载装置,主要由分立半导体器件或线性电路构成,同感应型的机电式频率继电器相比,无疑在技术上是一个进步。
但从测频精度还比较低、温度稳定性尚比较差、功能还比较单一这几个方面来看,还不能满足现代电力系统对减载的要求。
因此发展数字型减载装置是一个必然的发展趋势。
[1]近年来,在我国发展的数字型低频减载装置主要由数字集成电路构成。
由于这类装置对系统频率采取数字化测频方法,显然在测频精度方面同模拟式相比较有了很大提高。
但这类装置只能由一些硬件构成,因而功能比较单一,增加功能就要增加硬件的复杂程度,对于比较复杂的功能,单由硬件来实现,实际上是比较困难的。
当前微机技术发展是十分迅速的,特别是单片机技术的发展,为我们构成各类自动装置提供了很好的手段。
利用单片机构成低频减载装置,不仅价格比较低廉,而且硬件电路标准化,各种功能可以通过软件设计来实现。
增加功能只需改变软件的内容而无需改变硬件电路本身。
基于以上一些特点,开发以单片机为核心的低频减载装置应是新一代减载装置的发展方向。
毕业设计开题报告电气工程及其自动化电力系统低频减载自动装置——控制电路一、前言电力系统的频率是电能质量的重要指标之一,在稳定状态下电力系统的频率一般是一个全系统统一的运行参数,在正常运行的情况下电力系统能够通过热备用容量来调节正常的有功缺额带来的频率的变化。
但是在系统出现事故的情况下,有可能产生严重的有功缺额,出现系统频率的大幅度下降。
在这个时候系统所缺少的有功功率已经远远大于系统的热备用容量,只能在系统的频率下降到某一预定值的时候,采取切除相应用户来减少系统的缺额,维持系统的频率稳定,这一方法我们称之为电力系统的低频减载。
1、低频减载的发展概况现代电力系统不断通过建设新型大规模变电站、大容量机组不断并入网内,使得电力系统的规模不断扩大,但同时也削弱了系统在大动下维持频率稳定的能力,极易发生恶性频率事故,导致全系统的瓦解。
国内外近些年来发生了一系列频率异常事故以及因此而导致大规模停电时事故,使得频率控制特别是极端事故下的频率控制成为近年来电力系统研究的热点问题之一。
如2007年欧盟“11。
4”停电事故和我国河南电网发生的“7。
1”事故等,故障分析表面都和频率调整有较大的联系。
面对这种严峻的局面,各国电力系统都把研究频率稳定作为十分重要的研究课题。
电力系统的频率稳定一般规划为电力系统的长期动态分析,主要研究电力系统受到扰动后同步稳定过程已基本结束时电力系统的频率动态行为。
与电压的稳定和功角的稳定相比,频率稳定的研究显的很不够。
事实上功角失稳、电压崩溃和频率崩漏的发生许多情况下都是同时存在、相互关联并且相互激发的。
显然不能只重视前两者而忽略第三者。
近些年多次惨痛的大停电事故表明电力系统的频率稳定已经成为相当严重问题。
[1]2、电力系统低频减载的意义《电力系统安全稳定导则》将电力系统的扰动分为三类:第一类为常见的普通故障,要求系统在承受此类故障时能保持稳定运行与正常供电;第二类故障为出现概率较低的较严重的故障,要求系统在承受此类故障时能保证稳定运行,但允许损失部分负荷;第三类故障为罕见的严重复杂故障,电力系统在承受此类故障时,如不能保持系统稳定运行,则必须防止系统崩溃并尽量减少负荷损失。
第四节电力系统低频减载一、概述1)事故情况下,系统可能产生严重的有功缺额,因而导致系统频率大幅度下降。
2)所缺功率已经大大超过系统热备用容量,只能在系统频率降到某值以下,采取切除相应用户的办法来减少系统的有功缺额,使系统频率保持在事故允许的限额之内。
3)这种办法称为按频率自动减负荷。
中文简拼为“ZPJH”,英文为UFLS(Under Frequency Load Shedding)。
二、系统频率的事故限额(1)系统频率降低使厂用机械的出力大为下降,有时可能形成恶性循环,直至频率雪崩。
(2)系统频率降低使励磁机等的转速也相应降低,当励磁电流一定时,发送的无功功率会随着频率的降低而减少,可能造成系统稳定的破坏。
发生在局部的或某个厂的有功电源方面的事故可能演变成整个电力系统的灾难。
(3)电力系统频率变化对用户的不利影响主要表现在以下几个方面:①频率变化将引起异步电动机转速的变化,有这些电动机驱动的纺织、造纸等机械产品的质量将受到影响,甚至出现残、次品。
②系统频率降低将使电动机的转速和功率降低,导致传动机械的出力降低。
③国防部门和工业使用的测量、控制等电子设备将因为频率的波动而影响准确性和工作性能,频率过低时甚至无法工作。
“电力工业技术管理法规”中规定的频率偏差范围为±0.2~±0.5Hz。
(4)汽轮机对频率的限制。
频率下降会危及汽轮机叶片的安全。
因为一般汽轮机叶片的设计都要求其自然频率充分躲开它的额定转速及其倍率值。
系统频率下降时有可能因机械共振造成过大的振动应力而使叶片损伤。
容量在300MW 以上的大型汽轮发电机组对频率的变化尤为敏感。
例如我国进口的某350MW机组,频率为48.5Hz时,要求发瞬时信号,频率为47.5Hz时要求30s跳闸,频率为47Hz时,要求0s跳闸。
进口的某600MW机组,当频率降至47.5Hz时,要求9s跳闸。
(5)频率升高对大机组的影响。
电力系统因故障被解列成几个部分时,有的区域因有功严重缺额而造成频率下降,但有的区域却因有功过剩而造成频率升高,从而危及大机组的安全运行。
1 电力系统中,应装设足够数量的自动低频减载装置。
当电力系统因事故发生功率缺额时,由自动低频减载装置断开一部分次要负荷,以防止频率过度降低,并使之很快恢复到一定数值,从而保证电力系统的稳定运行和重要负荷的正常工作。
2 自动低频减载装置的配置及其断开负荷的容量,应根据最不利的运行方式下发生事故时,整个电力系统或其各部分,实际可能发生的最大功率缺额来确定。
例如考虑断开孤立发电厂中容量最大的发电机,断开输送功率最大的线路或断开容量最大发电厂,以及考虑由于联络线事故断开,而引起电力系统解列等。
3 电力系统中应装设具有下列特点的自动低频减载装置:1)基本段快速动作。
基本段一般按频率分为若干级。
装置的频率整定值应根据电力系统的具体条件,保证大型火电厂安全运行,以及由继电器本身的特性等因素决定。
起始运行频率,宜取为49HZ。
2)后备段带较长时限。
后备段可分为若干级,最小动作时间约为10~15S。
4 对局部地区事故,如功率缺额很大,为了防止电压急剧下降时,自动低频减载装置失效,宜装设其他自动减载装置。
其他自动减载装置可由下列因素起动:发电机、线路或变压器断开或过负荷;输送功率方向改变、频率下降的变化率以及母线电压下降等。
5 如在小容量电力系统的短路过程中,由于短路功率突增使频率下降,可能引起自动低频减载装置误动作时,以及在自动重合闸装置或备用电源自动投入装置动作过程中,由于同步调相机和电动机反馈的影响可能误动作时,应采取相应措施。
电网低频减载管理与分析系统(一)、总体介绍低频减载是控制电力系统一般故障及大面积复杂故障重要而有效的手段,是电力系统维持频率稳定的最后一道防线。
合理而快速地切除负荷或解列,可以使整个电网在最短的时间内恢复至稳定运行状态,切负荷的整定计算必须合理精确,以最小的切负荷量在最短的时间内使系统频率恢复正常。
电网低频减载管理与分析系统软件应由系统数据库建立、数据转换和导入、频率计算和分析以及切负荷方案优化、在线监测、统计等模块组成,能根据系统的参数特性和运行要求给出最优方案,且具有友好的人机界面和便于维护更新的系统数据库。
第七章电力系统低频减载第一节概述一、基本概念a)正常电网频率的允许变化范围:正负0.2Hz~0.5Hz,(49.8~50.5)。
b)事故异常情况下的频率:不能低于47Hz下长期运行,瞬时值不能低于45Hz。
c)正常符合变动引起的频率变化由发电机调速系统处理(包括频率升高)。
d)事故情况下(线路断开、发电机组异常退出等),无其它备用有功容量时,系统出现功率缺额,频率会大幅度下降,只能采取自动切除部分负荷的方法使频率下降到允许范围内,e)自动低频减载是电网重要的反事故措施。
f)低频减载装置的要求:事故时候自动切除的负荷不能过多也不能过少。
g)中文“ZDPJ”或“ZJPH”;英文UFLS(UnderFrequency Load Shedding)二、系统频率的事故限额a) 厂用电机械出力下降导致的频率雪崩。
(<47Hz 时出力显著下降,发电机出力下降,恶性循环) b) 发电机无功出力减少引起电压水平降低,可能导致稳定破坏。
(励磁机转速降低,<45Hz 时出现) c) 对电动机转速、功率的影响。
(包括影响产品质量、出力降低、测量误差等)d) 危及汽轮机叶片(48.5Hz 发信号、47.5Hz 时30s 跳闸、47Hz 时0s 跳闸;52Hz 时0.3s 跳)e) 核能电厂冷却介质泵对频率要求很高,不能满足时自动跳闸。
三、 系统频率的动态特性系统出现功率缺额时,频率从正常状态过渡到另一个稳定值所经理的过程,称为电力系统的动态频率特性。
决定因素:有功缺额的大小、系统转动部分的机械惯性、负荷的调节效应。
变化方程式:f tT e f f f f -∞∞=+(-)e上式包含最后稳定频率、初始额定频率以及频率变化的时间常数(4~10s)。
其中时间常数取决于机组的惯性时间常数和负荷调节效应系数,对于大的系统较大。
第二节低频减载的工作原理一、基本原理过程逐次逼近原理:进行一次次的计算,直到找到系统功率缺额的数值(同时也断开了相应的用户)。