微小尺寸零件表面缺陷光学检测方法
- 格式:pdf
- 大小:361.05 KB
- 文档页数:6
外观检测方法引言外观检测是一种常见的质量控制方法,用于评估产品的外观质量。
通过外观检测,可以及时发现产品表面的缺陷和问题,并采取相应的措施进行修复或退货。
本文将介绍几种常见的外观检测方法,包括目视检测、显微镜检测、光学检测和机器视觉检测。
一、目视检测目视检测是最简单直接的外观检测方法之一。
它通过人眼直接观察产品的外观,判断是否存在缺陷或问题。
目视检测的优点是操作简单、成本低廉,适用于各种产品。
然而,目视检测受到人眼视力和主观因素的影响,可能存在误判的情况。
因此,在进行目视检测时,需要训练有素的检测人员,并且需要建立明确的检测标准。
二、显微镜检测显微镜检测是一种高放大倍率的外观检测方法,可以用于观察微小的缺陷和细节。
显微镜检测通常使用光学显微镜或电子显微镜。
光学显微镜适用于观察表面缺陷,如划痕、气泡等。
电子显微镜可以放大更高倍数,适用于观察微小的结构和颗粒。
显微镜检测的优点是能够提供清晰的图像和精确的测量数据,但缺点是操作复杂、设备昂贵。
三、光学检测光学检测是一种利用光学原理检测产品外观的方法。
常用的光学检测方法包括透射光学检测和反射光学检测。
透射光学检测适用于透明或半透明材料的检测,如玻璃、塑料等。
反射光学检测适用于不透明材料的检测,如金属、陶瓷等。
光学检测的优点是非接触式检测,可以快速扫描大面积的产品外观,但受到光线和环境的影响,可能存在误判的情况。
四、机器视觉检测机器视觉检测是一种利用计算机视觉技术进行外观检测的方法。
它通过摄像机和图像处理算法,对产品的图像进行分析和判断。
机器视觉检测可以实现自动化和高速检测,减少了人为因素的干扰。
它适用于各种产品的外观检测,如电子产品、汽车零部件等。
机器视觉检测的缺点是设备和算法的复杂性,需要专业知识和技术支持。
结论外观检测是一种重要的质量控制方法,可以帮助企业及时发现和解决产品外观质量问题。
不同的外观检测方法具有各自的优缺点,可以根据产品特性和要求选择适合的方法。
零件光学超精密加工检测技术摘要:随着数字数控机床和加工平台的产生与发展,机械零件的加工方式也向着大批量、专一化方向发展。
导致对机械零件的需求也逐渐加大,零件的尺寸和表面加工质量是否符合标准使用要求是影响机械零件正常工作的关键,因此,对机械零件的光学超精密检测成为主要研究任务。
机械零件表面的加工质量和尺寸大小虽然对零件的正常使用影响较低,但直接影响零件的可靠性、质量和使用寿命,而机械零件使用时间决定零件经济效益。
随着光学超精密加工技术的不断发展,零件光学超精密加工检测技术已成为超精密加工迫在眉睫的关键难题。
人工智能技术是一种新兴的用于模拟、延伸和扩展的智能理论、方法、技术及应用系统的一门新的技术科学。
人工智能技术中的机械学习法,使机械零件的光学超精密检测过程大大简化,并将操作结果保存在存储器中,便于后续光学超精密检测过程的快速执行。
关键词:光学检测;现状;发展引言单参数精密测量是精密测量中最简单的问题,近年来在复杂探测等问题中有了重要应用。
多参数精密测量复杂得多,参数之间存在精度制衡。
如何减少参数之间的精度制衡以实现多参数最优测量,是多参数精密测量的重要问题之一。
为了消除参数之间的精度制衡,研究人员将单参数测量实验中控制增强的次序测量技术应用到多参数测量中,通过调控测量系统动力学演化,完全解决了正演化算法中参数之间的精度制衡问题,实现了最优测量。
1测量系统将四组视觉传感器单元(包括CCD相机和激光器)分别竖直放置于精密零件两侧,垂直于精密零件中轴线,安装在精密零件两侧的立柱上;其中两组视觉传感器单元放置于精密零件一侧立柱上,另外两组视觉传感器单元放置于精密零件另一侧立柱上。
首先利用激光跟踪仪建立基坐标系统,然后对每个视觉传感器单元进行相机参数标定、光平面参数方程标定以及全局标定,最终得到相机的内参矩阵、相机到基坐标系下的全局标定矩阵以及激光平面在基坐标系下的平面方程,完成系统使用以及测量前的预处理。
学零件表面疵病标准擦痕、麻点说明(美国军用标准:MIL-O-13830A/)1.目的:光学零件表面质量说明及可接受缺陷(defects)规定,陆军用擦痕、麻点说明,MIL-13830A为了在实际检验中领会,执行此标准,特做以下文字规定。
擦痕(scratch)和麻点(dig)用两个代表其限制尺寸的号数来标记。
第二个号为麻点号。
擦痕指相对较长的缺陷,一般长比宽在20:1左右,如:擦痕、划丝、划伤等。
麻点指点状缺陷,一般为圆的如麻点、麻坑包含物等。
擦痕的判断可参考有关擦痕标准。
2.擦痕擦痕号(第一个号)表示擦痕最大宽度。
球面光学零件:擦痕的宽度等于最大宽度时其长度不能大于零件直径或有效孔径的25%。
每个零件不能多于两条擦痕。
柱面光学零件在直径20mm的范围内。
擦痕宽度等于最大宽度时,擦痕长度不大于5mm可以允许。
允许擦痕的最多数目为该有效柱面上直径为20mm的区域的多少。
例如:πDH=柱面面积(有效面积)其中:D=柱面镜的过光长度(高度)H=柱面镜的过光长度(高度)π=有效柱面面积/π20mm2=允许擦痕最大数当存在最宽擦痕,如果较小宽度的擦痕符合下面公式,可以接受。
∑(N×(L/D))≤(Nmax)/2其中:D=直径,N=测量的擦痕数,L=擦痕长度,Nmax=规定的擦痕号光学零件中擦痕数乘以擦痕长度和零件直径之比的和不大于擦痕号(规定)的一般可以接受。
一个擦痕其宽度大于擦痕规定数的(英寸),则不能接收。
当无最宽擦痕时,擦痕不能超过以下公式:光学零件中擦痕数乘以擦痕长度和零件直径之比的和不大于擦痕号,则可以接受。
小于10(宽)可以忽略。
3.麻点麻点号表示最大直径的麻点。
麻点号是以最大麻点的直径给出,单位为1/100mm(一丝)。
直径为20mm 的范围内最大直径的麻点不能超过一个。
如果麻点的直径超过规定尺寸则不接受(不规则麻点的直径为长径和短径之和除2)。
当最大直径麻点存在时,麻点符合以下尺寸则认为合格:∑D≤(Dmax)其中:D=麻点直径Dmax=规定允许的最大麻点直径。
无损检测技术中的光学检测方法详解光学检测在无损检测技术中占据着重要的地位,它不仅能够快速准确地检测材料表面的缺陷,而且具有非破坏性的特点。
本文将详细介绍光学检测在无损检测中的应用及其原理。
光学检测方法主要包括视觉检测、红外热像检测和激光检测等。
其中,视觉检测是最常用的一种方法,通过人眼观察材料表面的变化来判断是否存在缺陷。
这种方法简单直观,适用于对表面缺陷进行初步检测,但对于微小缺陷的检测效果有限。
红外热像检测则利用物体发出的热能辐射来探测其表面的温度变化。
通过红外热像仪,可以将物体的表面温度转化为可见的图像,从而判断是否存在缺陷。
由于热像检测可以实时观测到物体的温度分布,因此可以非常准确地检测到潜在的缺陷。
激光检测是一种利用激光光源和光学传感器对材料进行扫描的方法。
通过测量激光的反射或散射,可以判断材料表面是否有缺陷。
激光检测具有高分辨率、高灵敏度和快速检测的特点,可以对微小缺陷进行准确的定位和识别。
除了以上几种方法,还有一些高级的光学检测技术,如照相测距法、摄影测距法、干扰法等。
这些方法利用光学原理和成像技术,对材料进行更加细致和精确的检测。
例如,照相测距法通过测量物体在两张照片上的位置差异来计算出物体的大小和形状。
摄影测距法则通过测量摄影图像中物体的像素大小来推测物体的实际大小。
干扰法则利用干涉现象来观察材料表面的微小变化,从而判断是否存在缺陷。
光学检测技术在无损检测中的应用非常广泛。
在制造业中,光学检测可以用来检测产品的外观缺陷、尺寸偏差和形状变化等。
在航空航天领域,光学检测可以用来检测飞机表面的裂纹和疲劳损伤。
在医学领域,光学检测可以用来检测人体表面的皮肤病变和眼睛疾病等。
在光学检测技术的发展过程中,还出现了一些新的技术和方法,如数字图像处理、光学成像和机器视觉等。
这些技术的应用使得光学检测更加智能化和自动化,大大提高了检测的准确性和效率。
总之,光学检测技术在无损检测中具备独特的优势,它能够快速准确地检测材料表面的缺陷,为生产和生活中的各个领域提供了重要的支持。
光学零件表面疵病标准-擦痕、麻点说明(美国军用标准:MIL-O-13830A/11.Sep63)1.目的:光学零件表面质量说明及可接受缺陷(defects)规定,陆军用擦痕、麻点说明MIL-O-13830A 为了在实际检验中领会,执行此标准,特做以下文字规定。
1.1擦痕(scratch)和麻点(dig)用两个代表其限制尺寸的号数来标记。
第二个号为麻点号。
擦痕指相对较长的缺陷,一般长比宽在20:1左右,如:擦痕、划丝、划伤等。
麻点指点状缺陷,一般为圆的如麻点、麻坑包含物等。
1.2擦痕的判断可参考有关擦痕标准。
2.擦痕2.1擦痕号(第一个号)表示擦痕最大宽度。
2.1.1球面光学零件:擦痕的宽度等于最大宽度时其长度不能大于零件直径或有效孔径的25%。
每个零件不能多于两条擦痕。
2.1.2柱面光学零件在直径20mm的范围内。
擦痕宽度等于最大宽度时,擦痕长度不大于5mm可以允许。
允许擦痕的最多数目为该有效柱面上直径为20mm的区域的多少。
例如:πDH=柱面面积(有效面积)其中:D=柱面镜的过光长度(直径)H=柱面镜的过光长度(高度)π=3.1416有效柱面面积/0.25π20mm2=允许擦痕最大数2.1.3当存在最宽擦痕,如果较小宽度的擦痕符合下面公式,可以接受。
∑(N×(L/D)≤(Nmax)/2其中:D=直径,N=测量的擦痕数,L=擦痕长度,Nmax=规定的擦痕号光学零件中擦痕数乘以擦痕长度和零件直径之比的和不大于擦痕号(规定)的一般可以接受。
2.1.4 一个擦痕其宽度大于擦痕规定数的(0.0001英寸)0.00025mm,则不能接受。
2.1.5 当无最宽擦痕时,擦痕不能超过以下公式:光学零件中擦痕数乘以擦痕长度和零件直径之比的和不大于擦痕号,则可以接受。
2.1.6 小于10(0.01mm宽)可以忽略。
3. 麻点3.1 麻点号表示最大直径的麻点。
麻点号是以最大麻点的直径给出,单位为1/100mm(0.01mm一丝)。
第37卷,增刊红外与激光工程2008年4月V ol.37SupplementInfrared and Laser EngineeringApr.2008收稿日期:2008-04-21作者简介:葛文谦(1977-),男,黑龙江大庆人,博士生,主要从事视觉检测和图像处理等方面的研究。
Email:gewenqian@导师简介:赵慧洁(66),女,辽宁沈阳人,教授,主要从事机器视觉、光电精密测试、遥感信息处理等方面的研究。
jz @高曲率微小零件表面缺陷及外形尺寸测量系统研究葛文谦,赵慧洁(北京航空航天大学仪器科学与光电工程学院,北京100083)摘要:针对高曲率零件表面缺陷检测及外形尺寸测量的问题,设计实现了基于机器视觉的兼顾缺陷检测及外形尺寸测量两种功能的测量系统。
在同一系统中,固定的光学系统放大倍数能满足检测表面微米级大小缺陷的要求,对外形尺寸测量要移动零件,拍摄多幅边缘图像,记录移动距离并计算零件两侧边缘在图像中的距离,得到最终的外形尺寸。
解决了表面缺陷高精度检测和外形尺寸大范围测量的矛盾。
实验证明:系统具有可靠、高效的特点。
关键词:表面缺陷;图像处理;机器视觉;尺寸测量中图分类号:TP391文献标识码:A文章编号:1007-2276(2008)增(几何量)-0274-05Measure system of sur face flaw and contour dimension of highcurvature bitty partGE Wen-qian ,ZHAO Hui-jie(Coll ege of Ins trument Sci ence and Phot o-Electricity Engineering,Beij ing University of Aeronautics and Astronaut ics,Beijing 100083)Abstr act:Aimed at the problem of high curvature bitty part surface flaw and boxed dimension,a whole based on machine vision program which balances between the flaw detection and dimension measurement is designed,the requirement of micron flaw in surface detection is satisfied,the boxed dimension measurement is accomplished by moving the part and taking several edge images,recording the moving distance and counting the distance of edges in image,combining the two distances then getting the boxed dimension.Resolve the contradiction of high precision surface flaw detection and boxed dimension large-scale m easure.Experiment showed that the system is dependable and efficient.Key wor ds:Surface flaw;Im age processing;Machine vision;Dim ension m easurement0引言工业生产中一些微小零件往往决定着产品的关键性能,其加工和测量的难度大,对外形尺寸和表面光洁度都有较高的要求。
光学零件检验方法光学零件的检验方法是确保光学零件质量和性能的重要步骤。
以下是常见的光学零件检验方法:1.外观检验:外观检验是最简单和最常见的检验方法之一、它涉及对光学零件表面的检查,以确保没有明显的缺陷、瑕疵或污染。
常用的外观检查仪器有放大镜、显微镜和光谱仪等。
2.尺寸检验:尺寸检验是测量光学零件尺寸和形状的方法。
常用的尺寸测量仪器有投影仪、坐标测量机和光学分光计等。
这些仪器可以精确测量光学零件的长度、宽度、直径、圆度和平面度等。
3.表面粗糙度检验:表面粗糙度是表面微小不规则性的度量标准,对光学零件的性能具有重要影响。
常用的表面粗糙度检测仪器有光学轮廓仪、表面粗糙度仪和压电表面粗糙度仪等。
4.平整度检验:平整度是表面平坦性的度量标准,对光学零件的质量和性能有着重要影响。
常用的平整度测量仪器有检测平台和激光干涉仪等。
5.光学性能检验:光学性能检验涉及到对光学零件传输、透射、反射、折射、散射等光学性能的测量和评估。
常用的光学性能测量仪器有光谱仪、干涉仪、激光测距仪和分光光度计等。
6.工作环境检验:在一些特殊应用中,光学零件需要在特定的环境条件下工作,比如高温、低温、高湿度或低湿度等。
在这种情况下,光学零件的工作环境稳定性也需要进行检验。
7.强度检验:一些光学零件可能会经受较大的外力作用,因此需要进行强度检验。
常用的强度检验方法包括拉伸测试、弯曲测试、冲击测试和疲劳测试等。
总之,光学零件的检验方法是多样的,根据具体需要选择合适的检验方法进行检验,以确保光学器件的质量和性能符合要求。
无损检测技术中的光学检测方法详解无损检测技术在工业领域中扮演着重要的角色,其中光学检测方法是一种经常被使用的方法。
光学检测方法可以通过利用光的传播特性来分析和评估材料或物体的性能和质量。
本文将详细解释光学检测方法在无损检测技术中的应用和原理。
光学检测方法是利用光的特性来观察和分析材料或物体的方法。
它可以通过光的吸收、反射、散射等现象来获取有关材料或物体的信息。
这种方法广泛建立在两个基本原理上:光的传播特性和材料的相互作用。
首先,光的传播特性是光学检测方法的基础。
光可以以波或粒子的形式传播,它在不同材料中的传播速度、折射率和衍射等特性会因材料的性质而有所不同。
通过观察和分析光的传播行为,可以获得有关材料或物体的特征信息。
其次,材料与光的相互作用也是光学检测的重要原理之一。
当光通过材料时,它会与材料进行吸收、反射、散射和折射等交互作用。
这些相互作用会改变光的传播路径和特性,从而提供关于材料性质和质量的信息。
在无损检测技术中,光学检测方法有着广泛的应用。
下面将介绍几种常见的光学检测方法及其原理。
首先是透射光学检测方法。
透射光学检测方法是通过观察光通过被检测材料的透射率来获取材料内部信息的一种方法。
透射率可以反映材料的透明度、均匀性以及内部缺陷的存在与否。
通过测量透射率的变化,可以评估材料的质量和性能。
第二种是反射光学检测方法。
反射光学检测方法是通过观察光从材料表面反射回来的特性来分析材料的性能。
反射光学检测可以用于表面缺陷的检测、膜的厚度测量以及材料的光学性质分析等。
通过测量反射光的强度和特性,可以获得材料的表面状态和性能信息。
另外一种常见的光学检测方法是散射光学检测方法。
散射光学检测方法是通过观察被材料散射的光的特性来评估材料中的颗粒、缺陷以及微观结构等信息。
散射光的强度和分布可以提供关于材料内部结构和组成的重要指示。
此外,干涉光学检测方法也是一种常用的光学检测方法。
干涉光学检测方法是通过观察光的干涉现象来分析材料的性能和质量。