1.1从梯子的倾斜程度谈起(第二课时)
- 格式:doc
- 大小:199.50 KB
- 文档页数:3
1.1从梯子的倾斜程度谈起学习目标:1理解正切、正弦、余弦的概念。
2会利用三角函数的定义解决问题。
知识点一:正切:在Rt △ABC 中,∠A为锐角,tanA= 。
随着∠A的增大,tanA ;若tanA 增大,则∠A 。
注意:tanA 的值只与∠A的大小有关,与Rt △ABC 的大小无关。
坡度:我们把坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
注意:倾斜角α越大,tan α越大,坡就越陡。
例:甲、乙两个商场分别有A,B 两个自动扶梯,根据现有条件,你能判断出哪一个自动扶梯比较陡吗?练习:1、在Rt △ABC 中,∠C =90°,AC =4,BC =2,Rt △ABC 绕着点C 旋转后,点B 落在AC 边上的点B ′,点A 落在点A ′,那么tan ∠AA 'B '的值为 。
2、某人沿着山坡从山脚到山顶共走了1000m ,他上升了600m ,你能算出这个山坡的坡度吗?3、如图,一次函数的图像经过点M ,与x 轴交与点A ,与y 轴交与点B ,根据途中信息求: (1)这个函数的解析式(2)ta n ∠BAO 的值知识点二:正弦、余弦:在Rt △ABC 中,∠A为锐角,sinA= ,cosA= 。
lαh随着∠A的增大,sinA ,cosA 。
若sinA 增大,则∠A ,若cosA 增大,则∠A 。
注意:sinA 、cosA 的值只与∠A的大小有关,与Rt △ABC 的大小无关。
例:如图,以支教坐标系的原点O 为圆心,以1为半径作圆,若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的锐角∠α,则点P 的坐标是( )A.(cos α,1)B.(1,sin α)C.(sin α,cos α)D.(cos α,sin α)练习:1、在△ABC 中,∠C =90°,sinA=32,则tanB 的值为( ) A 、32 B 、35 C 、52 D 、25 2、若等腰三角形的两边长分别是6,8,则底角的余弦是( )A 、32 B 、83 C 、34 D 、32或83 3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2, 则tan∠DBE 的值是( )A 、21B 、2C 、25D 、554、如图,在正方形ABCD 中,E 为AB 的中点,AF ⊥DE 点O ,那么DOAO= 。
教师备课笔记上课日期月日星期课题 1.1 从梯子的倾斜程度谈起课型新授教学目标1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.重点和难点教学重点1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 教学难点理解正切的意义,并用它来表示两边的比.教具准备多媒体师生活动过程1.创设问题情境,引入新课[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示)(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?[生]梯子AB比梯子EF更陡.[师]你是如何判断的?[生]从图中很容易发现∠ABC>∠EFD,所以梯子AB比梯子EF陡.[生]我觉得是因为AC=ED,所以只要比较BC、FD的长度即可知哪个梯子陡.BC<FD,所以梯子AB比梯子EF陡.Ⅱ.讲授新课[师]我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB和EF哪个更陡?你是怎样判断的?[师]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?[生]在第(1)问的图形中梯子的垂直高度即AC 和ED 是相等的,而水平宽度BC 和FD 不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡. 想一想如图,小明想通过测量B 1C 1:及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2)和111AC C B 222AC CB 和有什么关系? (3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.无论B 2在梯子的什么位置(A 除外),∠A 的对边与邻边的比值是不会改变的. 现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗? [生]∠A 的大小改变,∠A 的对边与邻边的比值会改变. [师]你又能得出什么结论呢?[生]∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.[师]这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?[生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A 是确定的,因此它的对边与邻边的比值也是唯一确定的,与B 1、B 2在梯子上的位置无关,即与直角三角形的大小无关. [生]但我觉得小亮的做法更实际,因为要测量B 1C 1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)如图,在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent),记作tanA ,即 tanA=的邻边的对边A A ∠∠ .注意:1.tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”.2.tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比.3.tanA 不表示“tan ”乘以“A ”.4.初中阶段,我们只学习直角三角形中,∠A 是锐角的正切. 思考:1.∠B 的正切如何表示?它的数学意义是什么?2.前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tanA 有关系吗?[生]1.∠B 的正切记作tanB ,表示∠B 的对边与邻边的比值,即 tanB=的邻边的对边B B ∠∠.2.我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在图1—3中,梯子越陡,tanA 的值越大;反过来,tanA 的值越大,梯子越陡.[师]正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山坡的坡度、堤坝的坡度.如图,有一山坡在水平方向上每前进100m ,就升高60 m ,那么山 坡的坡度(即坡角α的正切——tan α就是tan α=α5310060=. 这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡. Ⅲ.例题讲解 多媒体演示[例1]如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan α、tan β的值,比较大小,越大,扶梯就越陡. 解:甲梯中,tan α=125513522=-=∠∠的邻边的对边αα.乙梯中,tan β=4386==∠∠的邻边的对边ββ.因为tan β>tan α,所以乙梯更陡.[例2]在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值. 分析:要求tanA ,tanB 的值,根据勾股定理先求出直角边AC 的长度. 解:在△ABC 中,∠C =90°,所以AC=22221220-=-BC AB=16(cm), tanA=,431612===∠∠AC BC A A 的邻边的对边 tanB=.341216===∠∠BC AC B B 的邻边的对边所以tanA=43,tanB=34. Ⅳ,随堂练习1.如图,△ABC 是等腰直角三角形, 你能根据图中所给 数据求出tanC 吗?分析:要求tanC.需从图中找到∠C 所在的直角三角形,因为BD ⊥AC ,所以∠C 在Rt △BDC 中.然后求出∠C 的对边与邻边的比,即DCBD的值. 解:∵△ABC 是等腰直角三角形,BD ⊥AC ,∴CD =21AC =21×3=1.5. 在Rt △BDC 中,tanC =DC BD =5.15.1=1.2.如图,某人从山 脚下的点A 走了200m 后 到达山顶的点B ,已知点 B 到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)分析:由图可知,∠A 是坡角,∠A 的正切即tanA 为山的坡度. 解:根据题意:在Rt △ABC 中,AB=200 m ,BC =55 m ,AC=46.385147955520022⨯≈=-=192.30(m). TanA=.286.030.19255≈=AC BC 所以山的坡度为0.286. Ⅴ.课时小结本节课从梯子的倾斜程度谈起,经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“Rt △”中定义了tanA =的邻边的对边A A ∠∠.接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在现实生活中是一个具有实际意义的一个很重要的概念. Ⅵ.课后作业1.习题1.1第1、2题.2.观察学校及附近商场的楼梯,哪个更陡.教后随笔教 师 备 课 笔 记上课日期 月 日 星期课题 §1.1.2 从梯子的倾斜程度谈起(二)课型 新授教学目标1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.重点和难点教学重点1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 教学难点用函数的观点理解正弦、余弦和正切.教具准备 多媒体师 生 活 动 过 程Ⅰ.创设情境,提出问题,引入新课[师]我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切.现在我们提出两个问题:[问题1]当直角三角形中的锐角确定之后,其他边之间的比也确定吗? [问题2]梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系? Ⅱ.讲授新课1.正弦、余弦及三角函数的定义 多媒体演示如下内容:想一想:如图(1)直角三角形AB 1C 1 和直角三角形AB 2C 2有什么关系?(2) 211122BA C A BA C A 和有什么关系? 2112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论?请同学们讨论后回答.[生]∵A 1C 1⊥BC 1,A 2C 2⊥BC 2,∴A 1C 1//A 2C 2.∴Rt △BA 1C 1∽Rt △BA 2C 2.211122BA C A BA C A 和 2112BA BC BA BC 和(相似三角形对应边成比例). 由于A 2是梯子A 1B 上的任意—点,所以,如果改变A 2在梯子A 1B 上的位置,上述结论仍成立.由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角的邻边与斜边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大小无关.[生]如果改变梯子A 1B 的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的比值,邻边与斜边的比值随之改变.[师]我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么关系呢? [生]函数关系.[师]很好!上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示)在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即 sinA =斜边的对边A ∠∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即 cosA=斜边的邻边A ∠锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometricfunction). [师]你能用自己的语言解释一下你是如何理解“sinA 、cosA 、tanA 都是之A 的三角函数”呢?[生]我们在前面已讨论过,当直角三角形中的锐角A 确定时.∠A 的对边与斜边的比值,∠A 的邻边与斜边的比值,∠A 的对边与邻边的比值也都唯一确定.在“∠A 的三角函数”概念中,∠A 是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A 变化时,三个比值也分别有唯一确定的值与之对应. 2.梯子的倾斜程度与sinA 和cosA 的关系[师]我们上一节知道了梯子的倾斜程度与tanA 有关系:tanA 的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA 、cosA 有关系呢?如果有关系,是怎样的关系?[生]如图所示,AB =A 1B 1,在Rt △ABC 中, sinA=ABBC,在Rt △A 1B 1C 中,sinA 1=111B A C B .∵AB BC<111B A C B , 即sinA<sinA 1,而梯子A 1B 1比梯子AB 陡,所以梯子的倾斜程度与sinA 有关系.sinA 的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度. 同样道理cosA=AB AC cosA 1=111B A C A ,∵AB=A 1B 1 AB AC>111B A C A 即cosA>cosA 1,所以梯子的倾斜程度与cosA 也有关系.cosA 的值越小,梯子越陡.[师]同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切. 3.例题讲解 多媒体演示.[例1]如图,在Rt △ABC 中,∠B=90°,AC = 200.sinA =0.6,求BC 的长.分析:sinA 不是“sin ”与“A ”的乘积, sinA 表示∠A 所在直角三角形它的对边与斜边的比值,已知sinA =0.6,ACBC=0.6. 解:在Rt △ABC 中,∠B =90°,AC =200. sinA =0.6,即=ACBC0.6,BC =AC ×0.6=200×0.6=120. 思考:(1)cosA =? (2)sinC =? cosC =?(3)由上面计算,你能猜想出什么结论? 解:根据勾股定理,得 AB =2222120200-=-BC AC =160.在Rt △ABC 中,CB =90°.cosA =54200160==AC AB =0.8, sinC= 54200160==AC AB =0.8, cosC =53200120==AC BC =0.6, 由上面的计算可知 sinA =cosC =O.6, cosA =sinC =0.8.因为∠A+∠C =90°,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”.[例2]做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.∵∠A+∠B=90°,∴sinA :cosB=cos(90-A),即sinA =cos(90°-A); cosA =sinB =sin(90°-A),即cosA =sin(90°-A). Ⅲ.随堂练习 多媒体演示1.在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.分析:要求sinB ,cosB ,tanB ,先要构造∠B 所在的直角三角形.根据等腰三角形“三线合一”的性质,可过A 作AD ⊥BC ,D 为垂足.2.在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.Ⅳ.课时小结本节课我们类比正切得出了正弦和余弦的概念,用函数的观念认识了三种三角函数,即在锐角A 的三角函数概念中,∠A 是自变量,其取值范围是0°<∠A<90°;三个比值是因变量.当∠A 确定时,三个比值分别唯一确定;当∠A 变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题. Ⅴ.课后作业习题1、2第1、2、3、4题教后随笔教 师 备 课 笔 记上课日期 月 日 星期课题 §1.2 30°、45°、60°角的三角函数值课型 新授教学目标1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 重点和难点教学重点1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小. 教学难点进一步体会三角函数的意义.教具准备 投影片师 生 活 动 过 程Ⅰ.创设问题情境,引入新课[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度. (用多媒体演示上面的问题,并让学生交流各自的想法)[生]我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置B 处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C 点,30°的邻边和水平方向平行,用卷尺测出AB 的长度,BE 的长度,因为DE=AB ,所以只需在Rt △CDA 中求出CD 的长度即可.[生]在Rt △ACD 中,∠CAD =30°,AD =BE ,BE 是已知的,设BE=a 米,则AD =a 米,如何求CD 呢?[生]含30°角的直角三角形有一个非常重要的性质:30°的角所对的边等于斜边的一半,即AC =2CD ,根据勾股定理,(2CD)2=CD 2+a 2. CD =33a. 则树的高度即可求出.[师]我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°=aCDAD CD =,则CD=atan30°,岂不简单.你能求出30°角的三个三角函数值吗? Ⅱ.讲授新课1.探索30°、45°、60°角的三角函数值.[师]观察一副三角尺,其中有几个锐角?它们分别等于多少度?[生]一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°.[师]sin30°等于多少呢?你是怎样得到的?与同伴交流.[生]sin30°=21. sin30°表示在直角三角形中,30°角的对边与斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边为a(如图所示),根据“直角三角形中30°角所对的边等于斜边的一半”的性质,则斜边等于2a.根据勾股定理,可知30°角的邻边为a ,所以sin30°=212=a a . [师]cos30°等于多少?tan30°呢? [生]cos30°=2323=a a . tan30°=33313==a a [师]我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?[生]求60°的三角函数值可以利用求30°角三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边.利用上图,很容易求得sin60°=2323=a a , cos60°=212=a a , tan60°=33=a a . [生]也可以利用上节课我们得出的结论:一锐角的正弦等于它余角的余弦,一锐角的余弦等于它余角的正弦.可知sin60°=cos(90°-60°)=cos30°=23cos60°=sin(90°-60°)=sin30°=21. [师生共析]我们一同来求45°角的三角函数值.含45°角的直角三角形是等腰直角三角形.(如图)设其中一条直角边为a ,则另一条直角边也为a ,斜边2a.由此可求得sin45°=22212==a a , cos45°=22212==a a , tan45°=1=a a解:(1)sin30°+cos45°=2212221+=+, (2)sin 260°+cos 260°-tan45° =(23)2+(21)2-1 =43 +41-1 =0. [例2]一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知,∠BOD=60°,OB=OA =OD=2.5 m , ∠AOD =21×60°=30°, ∴OC=OD ·cos30° =2.5×23≈2.165(m). ∴AC =2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度约为0.34 m. Ⅲ.随堂练习 多媒体演示 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°; (3)22sin45°+sin60°-2cos45°. 解:(1)原式=23-1=223-;(2)原式=21+=23213+=(3)原式=22×22+23×22;教 师 备 课 笔 记上课日期月 日 星期课题 §1.3 三角函数的有关计算(一)课型 新授教学目标1.经历用计算器由已知锐角求三角函数值的过程.进一步体会三角函数的意义.2.能够用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题. 重点和难点教学重点1.用计算器由已知锐角求三角函数值.2.能够用计算器辅助解决含三角函数值计算的实际问题. 教学难点用计算器辅助解决含三角函数值计算的实际问题.教具准备 投影片师 生 活 动 过 程Ⅰ.提出问题,引入新课 用多媒体演示:[问题]如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200米,已知缆车行驶的路线与水平面的夹角为∠a =16°,那么缆车垂直上升的距离是多少?[生]在Rt △ABC 中,∠α=16°,AB=200米,需求出BC. 根据正弦的定义,sin16°=200BCAB BC , ∴BC =ABsin16°=200 sin16°(米).[师]200sin16°米中的“sin16°”是多少呢?我们知道,三角函数中,当角的大小确定时,三角函数值与直角三角形的大小无关,随着角度的确定而确定.对于特殊角30°、45°、60°可以根据勾股定理和含这些特殊角的直角三角形的性质,求出它们的三角函数值,而对于一般锐角的三角函数值,我们需借助于科学计算器求出这些锐角的三角函数值.怎样用科学计算器求三角函数值呢?Ⅱ.讲授新课1.用科学计算器求一般锐角的三角函数值.[师]用科学计算器求三角函数值,要用到和键.例如sin16°,cos42°,tan85°和sin72°38′25″的按键顺序如表所示.[师]很好,同学们都能用自己的计算器计算出三角函数值.大家可能注意到用计算器求三角函数值时,结果一般有10个数位,我们的教材中有一个约定.如无特别说明,计算结果一般精确到万分位.下面就清同学们利用计算器求出本节刚开始提出的问题.[生]用计算器求得BC=200sin16°≈55.12(m).[师]下面请同学们用计算器计算下列各式的值.(1)sin56°;(2)sin15°49′;(3)cos20°;(4)tan29°;(5)tan44°59′59″;(6)sin15°+cos61°+tan76°.(以小组为单位,展开竞赛,看哪一组既快又准确)[师]你能用计算器计算说明下列等式成立吗?(用多媒体演示)下列等式成立吗?(1)sin15°+sin25°=sin40°;(2)cos20°+cos26°=cos46°;(3)tan25°+tan15°=tan40°.[生]上面三个等式都不成立.[师]由此.你能得出什么结论?[生]两个锐角的正弦的和不等于这两个锐角的和的正弦.对于余弦、正切也一样.2.用计算器辅助解决含有三角函数值计算的实际问题.[师]看来同学们已能很熟练地用计算器计算一个锐角的三角函数值.下面我们运用计算器辅助解决一个含有三角函数值计算的实际问题.多媒体演示本节开始的问题:当缆车继续由点B到达点D时,它又走过了200 m,缆车由点B到点D的行驶路线与水平面的夹角是∠β=42°,由此你能想到还能计算什么?[生]可以计算缆车从B点到D点垂直上升的高度.[生]可以计算缆车从A点到D点,一共垂直上升的高度、水平移动的距离.[师]下面我们就请三位同学分别就上面的问题用计算器辅助计算出结果.其余同学可在小组内交流、讨论完成.[生]在Rt△DBE中,∠β=42°,BD=200 m,缆车上升的垂直高度DE=BDsin42°=200sin42°≈133.83(米).[生]由前面的计算可知,缆车从A→B→D上升的垂直高度为BC+DE=55.12+133.83=188.95(米).教 师 备 课 笔 记上课日期月 日 星期课题§1.3.2 三角函数的有关计算(二)课型 新授教学目标 1.经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义.2.能够利用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.重点和难点 教学重点1.用计算器由已知三角函数值求锐角.2.能够用计算器辅助解决含三角函数值计算的实际问题. 教学难点用计算器辅助解决含三角函数值计算的实际问题.教具准备 投影片师 生 活 动 过 程Ⅰ.创设问题情境,引入新课[师]随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建10 m 高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m 长的斜道.(如图所示,用多媒体演示)这条斜道的倾斜角是多少?[生]在Rt △ABC 中,BC=10 m ,AC =40 m , sinA =41AB BC .可是我求不出∠A. [师]我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?[生]我们曾学习过两个直角三角形的判定定理——HL 定理.在上图中,斜边AC 和直角边BC 是定值,根据HL 定理可知这样的直角三角形形状和大小是唯一确定的,当然∠A 的大小也是唯一确定的.[师]这位同学能将前后知识联系起来很有条理地解释此问题,很不简单.我们知道了sinA=41时,锐角A 是唯一确定的.现在我要告诉大家的是要解决这个问题,我们可以借助于科学计算器来完成.这节课,我们就来学习如何用科学计算器由锐角三角函数值求相应锐角的大小. Ⅱ.讲授新课1.用计算器由锐角三角函数值求相应锐角的大小.[师]已知三角函数求角度,要用到键的第二功能、、和键.键的第二功能 “sin -1,cos -1,tan -1”和键例如:已知sinA=0.9816,求锐角A , 已知cosA =0.8607,求锐角A ; 已知tanA :0.1890,求锐角A ; 已知tanA =56.78,求锐角A. 上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果. (教学时,给学生以充分交流的时间和空间,教师要引导学生根据自己使用的计算器,探索具体操作步骤) [师]你能求出上图中∠A 的大小吗? [生]sinA=41=0.25.按键顺序为,显示结果为14.47751219°,再按键可显示14°28′39″.所以∠A=14°28′39″.[师]很好.我们以后在用计算器求角度时如果无特别说明,结果精确到1″即可. 你还能完成下列已知三角函数值求角度的题吗?(多媒体演示) 1.根据下列条件求锐角θ的大小:(1)tan θ=2.9888;(2)sin θ=0.3957;(3)cos θ=0.7850;(4)tan θ=0.8972; 2.某段公路每前进100米,路面就升高4米,求这段公路的坡角.(请同学们完成后,在小组内讨论、交流.教师巡视,对有困难的学生予以及时指导) 2.运用计算器辅助解决含三角函数值计 算的实际问题.[例1]如图,工件上有-V 形槽.测得它的上口 宽加20 mm 深19.2mm 。
§1.1从梯子的倾斜程度谈起(第二课时)
在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即
sinA =斜边
的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即 cosA=斜边
的邻边A ∠ 锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometricfunction).
例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.
例2、做一做:
如图,在Rt △ABC 中,∠C=90°,cosA =13
12,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.
随堂练习:
1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.
2、在△ABC 中,∠C =90°,sinA =
5
4,BC=20,求△ABC 的周长和面积.
D
B A
C B A C 3、在△ABC 中.∠C=90°,若tanA=
2
1,则sinA= .
课后练习: 1、在Rt△ABC 中,∠ C=90°,tanA=
34
,则sinB=_______,tanB=______. 2、在Rt△ABC 中,∠C=90°,AB=41,sinA=941
,则AC=______,BC=_______. 3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____. 4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( ) A.sinA=
34 B.cosA=35 C.tanA=34 D.cosB=35
5、如图,在△ABC 中,∠C=90°,sinA=35,则BC AC
等于( ) A.34 B.43 C.35 D.45
6、Rt△ABC 中,∠C=90°,已知cosA=35
,那么tanA 等于( ) A.43 B.34 C.45 D.54 7、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是
A .135
B .1312
C .125
D .5
12 8、如图,在Rt△ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.CD AC B.DB CB C.CB AB D.CD CB
9、如图,分别求∠α,∠β的正弦,余弦,和正切.
10、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.
11、在Rt△ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin∠ACD,cos∠ACD 和tan∠ACD.。