食品分离技术
- 格式:ppt
- 大小:1.48 MB
- 文档页数:70
食品中营养成分有效提取与分离技术食品中营养成分的有效提取与分离技术一直是营养学领域研究的热点之一。
随着人们对健康意识的不断增强和对营养需求的深入研究,开发新的提取与分离技术有助于更好地利用食品中的营养成分,满足人们对营养的需求。
食品中的营养成分往往以复杂的形式存在,如蛋白质、脂肪、碳水化合物、维生素、矿物质等。
为了有效提取和分离这些营养成分,科学家们采用了多种技术手段。
一种常用的技术是溶剂提取法。
通过选择合适的溶剂,将食品中的目标成分溶解出来,然后通过蒸发、浓缩等步骤得到纯净的营养物质。
例如,利用酒精或醋酸乙酯可以提取植物中的天然色素、香料和营养素,高温蒸发后得到纯净的提取物。
超声波提取技术是一种快速高效的提取方法。
通过利用超声波在液体中产生的剧烈震荡和微小气泡的爆破效应,可打破食物组织细胞结构,使得其中的营养成分能够更快速地释放出来。
这种方法不仅提高了提取效率,还能更好地保留食品中的活性物质。
离子交换技术也是一种常用的分离方法。
通过加入具有特定交换功能的树脂,可以吸附并分离食物中的离子形态的营养成分。
这种方法可以广泛应用于脂肪酸、矿物质、氨基酸等的纯化和分离过程中。
除了这些传统的提取与分离技术,现代科技为我们提供了更多的选择。
纳米技术的应用使得我们可以精确控制材料的物理和化学性质,从而实现对营养成分的高效提取和分离。
纳米材料能够提高提取效率、减少成本、改善产品品质,在食品工业中具有广阔的应用前景。
另外,基于生物技术的提取与分离方法也呈现出新的活力。
通过利用微生物发酵、酶解等生物反应过程,可以高效地提取和分离食品中的活性物质。
这种方法不仅具有高效性和温和性,还能更好地保留营养成分的生物活性。
食品中营养成分的有效提取和分离技术对于改善食品品质、提高利用率、满足人们不断增长的健康需求具有重要意义。
通过不断探索和创新,我们可以发现更多的技术手段,并将其应用于食品工程中,为人类提供更多更好的营养选择。
总之,食品中营养成分的有效提取与分离技术的研究和应用对于人们的健康和生活质量至关重要。
食品加工中的微生物分离技术食品加工过程中的微生物检测和分离是保障食品安全的关键环节之一。
微生物是一类细小但强大的生命体,有些能够生长在食品中,产生毒素,对人体健康造成危害。
因此,采用适宜的微生物检测和分离技术可以帮助食品企业及时掌握食品质量,确保食品的健康和安全。
一、微生物的检测和分离技术1. 培养检测法: 培养检测法是最常用的一种微生物检测方法,利用营养富集培养基来寻找可能存在的微生物。
但缺点是有些微生物会被掩盖,无法检测到。
2. 分子诊断法: 分子诊断法是一种通过分析微生物的核酸(DNA、RNA)来确定它们的数量和种类的方法。
优点是准确性高、速度快,但成本较高。
3. 免疫学方法: 免疫学方法利用抗原与抗体之间特异性互相结合的原理,通过检测特定抗原或抗体来检测微生物的存在。
但有些微生物的抗原或抗体水平极低,很难检测出来。
4. 生物传感器技术: 生物传感器技术是一种检测微生物的新型方法,它可以通过测量微生物与生物材料的相互作用来检测微生物的存在。
二、微生物分离技术微生物分离是将微生物从样品中分离出来以便进行下一步的检测和分析。
这个过程中,需要先确定分离的微生物种类,再选择相应的分离技术。
1. 培养法: 培养法是一种传统的微生物分离方法,通过将样品分别接种在营养富集培养基上来寻找微生物。
优点是应用广泛,但繁琐、耗时、有时会产生误差。
2. 过滤法: 过滤法是通过将待检样品过滤来分离微生物,通常与细胞数统计配合使用。
3. 凝胶扩散法: 凝胶扩散法是一种通过凝胶扩散的原理来分离微生物的方法。
4. 核磁共振技术: 核磁共振技术是一种无损检测微生物的方法,可以通过核磁共振图谱来快速分离、鉴定微生物。
三、微生物分离技术的应用微生物分离技术的应用范围很广,特别是在食品加工中,常用于食品样品的检测和分离。
1. 牛奶中的微生物分离: 牛奶中可能含有多种有害微生物,使用适当的微生物分离技术,可以使各种微生物得到完整分离。
食品分离技术的现状及研究进展1 分离操作在食品工业中的作用随着食品工业的发展,化工单元操作不断向食品工业渗透并在食品加工领域内实践和提高,形成了适应食品加工特殊规定的新的单元操作。
由于食品加工所用的动植物性原料几乎都为固态和液态,为了使固体和液体原料成为多种美味可口、营养丰富的食品,一方面必须提取其精华,扬弃其糟粕,分离出不同成分并组合成不同种类的制品。
同时为了做到有益无毒,风味别致,又必须反复提纯和精制。
因此分离操作已在食品工业中占有相称重要的地位,研究分离技术在食品加工中的应用,对食品加工的科学化具有重要意义[1]。
食品分离技术在食品工业中具有相称重要的地位。
其重要性表为以下几个方面:(1)食品分离技术是食品工业的基础[2]。
绝大多数食品工业都分离不开食品分离技术,其中不少行业都是以分离工程为重要生产工序的。
例如植物油的提取,淀粉的分离,糖制品的分离以及精练提纯等等。
(2)食品分离技术能提高食品原料的综合运用限度。
在食品加工工程中运用分离技术可以有效的运用食品原料中的各种成分,提高原料的综合运用限度,就提高了食品原料的运用价值。
例如采用有效的分离方法可以从茶叶下脚料中分离出茶多酚、茶碱等,从柑橙中分离甘橙油、果胶等,使原料运用率大为增值。
制糖行业中色谱分离技术的应用使得产糖率大大提高。
(3) 食品分离技术能保持和改善食品的营养和风味。
采用现代分离技术可以将一些需在高温下完毕的工艺改为在常温下进行,这样就可以大大地改善食品的色、香、味及营养。
如用膜分离技术代替常规的蒸发浓缩和真空浓缩咖啡、果汁、茶汁等[3-4]。
(4) 食品分离技术使产品符合食品卫生规定。
食品分离技术涉及提取原料中的有益组分和去除其中的有害成分。
如花生、玉米等油制品易受黄曲霉污染而产生黄曲霉素,所以在加工过程中必须用适当的方法将其去除。
(5)现代食品分离技术能改变食品行业的生产面貌。
现代分离技术在食品工业中的应用,往往可以使行业的生产面貌大为改观。
一、萃取1、从萃取剂角度分:(1)有机溶剂萃取;(2)反萃取;(3)液膜萃取;(4)双水相萃取;(5)反胶团萃取;(6)超临界萃取。
2、萃取是利用在两个不相混溶的相中各组分溶解度的不同,从而增浓和提取分离目标产物的过程3、有机溶剂萃取:将待萃取组分由亲水性转化为疏水性,使其萃入有机相中;反萃取:就是萃取的逆过程,即用水(或其他极性大的溶剂)将在有机溶剂中的某些物质萃取到水中,所以反萃取剂主要是水(或其他极性大的溶剂),要与有机溶剂互不相溶,与被萃取的物质不反应.对应的反萃取物应该是在水中溶解度较大的物质;液膜萃取(Liquid membrane extraction )一种以液膜为分离介质,以浓度差为推动力的分离操作。
通常将含有被分离组分的料液作连续相,称为外相;接受被分离组分的液体称内相,成膜的液体处于两者之间称为膜相,三者组成液膜分离体系。
3、液膜是指悬浮在液体中的很薄的一层乳液微粒。
乳液通常是由溶剂(水或有机溶剂)、表面活性剂、载体和添加剂形成的。
其中溶剂构成膜基体;表面活性剂起乳化作用,可以促进液膜传质速度和提高其选择性;添加剂用于控制液膜的稳定性和渗透性。
支撑液膜是将固体膜浸在膜溶剂(如有机溶剂中)使膜溶剂充满膜的孔隙形成液膜。
与乳状液膜相比,支撑液膜结构简单,放大容易。
4、聚合物的不相溶性(incompatibility):当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大,分子间的相互排斥作用与混合过程的熵增加相比占主导地位,一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。
这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相容性。
5、双水相萃取:利用双水相的成相现象及待分离组分在两相间分配系数的差异,进行组分分离或多水相提纯的技术。
6、亲水性大分子物质溶解于水池中的水分,从而被以反胶团的形式萃取出来,称之为反胶团(胶束)萃取。
食品分离技术第一章绪论第一节分离技术的概念分离过程就是通过一定的手段,将混合物分成互不相同的几种产品的操作过程,它包括提取和除杂两个部分。
分离技术是一门研究如何从混合物中把一种或几种物质分离出来的科学技术。
要实现混合物的分离,需要某种专门的设备和专门的过程,并且要提供相应的能量和物质。
这是因为物质的混合过程是一个熵的增加过程,可以自发地进行;而从混合物中进行分离,是一个熵减少的过程。
熵减的过程必须要有外加能量才能进行。
第二节分离技术的分类及特点所有的分离技术,都可以分为机械分离和传质分离两大类。
机械分离处理的是两相或者两相以上的混合物,其目的是简单地将各相加以分离,过程中不涉及传质过程。
如:过滤、沉降、离心分离、旋风分离等。
传质分离过程的特点是过程中有传质现象发生。
传质分离技术处理的物料可以是均相体系,也可以是非均相体系。
传质分离过程包括平衡分离过程和速率分离过程。
平衡分离过程是指借助于分离媒介(热能、溶剂、吸附剂),使均相混合物变成两相系统,再以各处组分扩散速度的差异来实现分离的过程。
如:闪蒸、萃取、精馏、吸附、吸收、离子交换、结晶以及泡沫分离等。
速率分离控制分离过程则主要是根据混合物中各个组分扩散速度的差异来实现分离的过程。
如:反渗透、超滤、电流等,分离过程所处理的原料产品通常属于同一相态,仅仅是组成上存在差异,利用浓度差、压力差以及温度差等作为分离推动力。
如果按分离性质分类则有:①物理分离法:以被分离对象在物理性质方面的差异作为分离依据,采用有效的化学手段进行分离,包括热扩散法、梯度磁性分离法以及过滤、沉淀、离心分离等各种机械分离法。
②化学分离法:依据被分离对象在化学性质方面的差异,采用有效的化学手段进行分离的技术,如沉淀分离法、溶剂萃取法、离子交换技术等。
③物理化学分离法:被分离对象中,有时存在着不止一个特征方面的差异,包括在物理和化学方面的差异,据此可以采用物理手段与化学手段相结合的技术进行分离。
食品分离技术
嘿,朋友们!今天咱来聊聊食品分离技术这个神奇的玩意儿。
你想想啊,咱平常吃的那些美食,从原材料到摆在咱面前那香喷喷的样子,这中间可少不了食品分离技术的功劳呢!就好像一个魔法师,能把各种食材变变变,变得更纯净、更美味。
比如说榨果汁吧,那就是把水果里的汁水和果肉分离开呀。
这看似简单的操作,背后可藏着大学问呢。
没有食品分离技术,咱能喝到那么纯纯的果汁吗?那肯定不能啊!再想想牛奶,要把奶油和奶水分开,这也是食品分离技术在大显身手呢。
食品分离技术就像是一个超级挑剔的整理大师,把好的挑出来,把不好的去掉。
这不就跟咱收拾房间一样嘛,把有用的东西留下,没用的垃圾扔掉。
它能让食品变得更健康、更安全。
你看那些加工食品,要是没有精确的分离技术,那得有多少杂质混在里面呀。
就好像你吃个蛋糕,结果里面有沙子,那多倒胃口呀!所以说食品分离技术可重要了。
而且啊,这技术还在不断进步呢。
就像咱的手机一代代更新,越来越厉害。
以后说不定食品分离技术能做到把食物里的每一种营养成分都精确分离出来,那咱吃起来不就更放心、更营养啦?
还有啊,咱平时吃的那些保健品,很多不也是通过食品分离技术提取出来的精华嘛。
这就像是从一堆宝藏里挖出最闪亮的宝石,多厉害呀!
咱中国的美食文化那可是博大精深,食品分离技术在其中也发挥了很大的作用呢。
没有它,咱那些传统美食怎么能流传这么久,还越来越受欢迎呢?
总之啊,食品分离技术就是食品界的大功臣,默默为我们的美食生活贡献着力量。
咱可得好好珍惜它,感谢它让我们的生活变得这么有滋有味呀!这就是我对食品分离技术的看法,你们说是不是这么个理儿呢?。
液相色谱:是指用液体作为流动相的色谱法。
色谱法又称色层法或层析法,是一种物理化学分析方法;它是利用不同溶质与固定相和流动相之间的作用力的差别,当两相做相对移动是,各溶质在两相间进行多次平衡,是各溶质达到相互分离的一种分离方法。
不对称膜:指膜的化学结构或物理结构随膜的部位而异,即各向异性的膜,是按膜结构分类的一种,膜是分离两相和作为选择性传递物质的屏障。
程序升温:是气相色谱中控制温度的一种方法,是指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。
各组分的保留值可用色谱峰最高处的相应温度即保留温度表示。
萃取精馏:是指向精馏系统添加第三组分,通过它对原溶液中各组分间的不同作用,提高原溶液各组分间的α(相对挥发度),使原来难以用精馏分离的物系变得易于分离的一种特殊精馏方法。
微胶囊技术:是指将固体、液体或气体物质包埋、封存在一种微型胶内成为一种固体微粒产品的技术,这样能够保护被包裹的物料,使之与外界不宜环境相隔绝,达到最大限度地保持原有的色香味、性能和生物活性,防止营养物质的破坏与损失。
阐述热导池、氢火焰和电子捕获检测器的检测原理,它们各自适合于哪类样品的检测?热导池检测器的检测原理是基于不同组分与载气之间有不同的热导系数,热导池检测工作时,接通载气并保持池体恒温,此时流经的载气成份和流量都是稳定的。
流经热敏元件电流也是稳定的,由热敏元件组成的电桥处于平衡状态。
当经色谱柱分离后的组份被载气带入热导池中由于组份和载气的热传导率不同,因而使热敏元件温度发生变化,并导致电阻发生变化,从而导致电桥不平衡,输出电压信号,此信号的大小与被测组份的浓度成函数关系,再由记录仪或色谱数据处理机进行换算并记录下来。
热导池检测器具有结构简单,性能稳定,灵敏度适宜等特点,对各种能作色谱分析的物质都有响应,最适合作常量分析电子捕获检测器的检测原理:由柱流出的载气及吹扫气进入ECD池,在放射源放出β-射线的轰击下被电离,产生大量电子。