11.3 多边形及其内角和 同步练习及答案
- 格式:doc
- 大小:137.00 KB
- 文档页数:4
11.3 多边形及其内角和同步练习一、选择题(共10小题)1. 下列图形中,能镶嵌成平面图案的是( )A. 正六边形B. 正七边形C. 正八边形D. 正九边形2. 一个多边形的每个内角均为108∘,则这个多边形是( )A. 七边形B. 六边形C. 五边形D. 四边形3. 从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m,n的值分别为( )A. 4,3B. 3,3C. 3,4D. 4,44. 某市“佳美大剧院”即将完工,现需选用同一批地砖进行装修,以下不能密铺的地砖是( )A. 正五边形地砖B. 正三角形地砖C. 正六边形地砖D. 正四边形地砖5. 若从多边形的一个顶点可以引出7条对角线,则这个多边形是( )A. 七边形B. 八边形C. 九边形D. 十边形6. 已知实数x,y满足∣x−4∣+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对7. 下列边长相等的正多边形能够密铺的组合是( )A. 正八边形和正方形B. 正五边形和正九边形C. 正方形和正六边形D. 正方形和正七边形8. 在下列四种边长均为a的正多边形中,能与边长为a的正三角形进行平面密铺的正多边形有( )①正方形;②正五边形;③正六边形;④正八边形.A. 4种B. 3种C. 2种D. 1种9. 如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A. 90∘B. 180∘C. 210∘D. 270∘10. 一个多边形的内角和是外角和的 1.5倍,则这个多边形是( )A. 四边形B. 五边形C. 六边形D. 八边形二、填空题(共6小题;共48分)11. 一个多边形的内角和为540∘,则这个多边形是边形.12. 过10边形的一个顶点可作条对角线,可将10边形分成个三角形.13. 用4个全等的正八边形进行拼接,使相邻的两个正八边形有一个公共边,围成一圈后中间形成一个正方形,如图①.用n个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n的值为.14. n边形的边数增加1条,其内角增加,对角线增加条.15. 如图所示的是某广场地面的一部分,地面中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖密铺,从里向外共铺了12层(不包括中央的正六边形),每一层的外界都围成一个多边形,若中央正六边形地砖的边长为0.5m,则第12层的外界所围成的多边形的周长是.16. 如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2,B3,则直线l与A1A2的夹角α=∘.三、解答题(共4小题;共52分)17. 试说明正八边形不能铺满平面的理由.18. 正三角形、正方形、正六边形(如图1)是我们熟悉的特殊多边形.(1)这些图形中的边与角有什么共同特征?一般地,我们把各边相等、各内角也相等的多边形叫做正多边形(regularpolygon).边数为五的正多边形叫做正五边形(如图2),边数为六的正多边形叫做正六边形,如图3的两个正多边形分别是正七边形和正八边形.正多边形有许多优良的性质,匀称美观,常被人们用于图案设计和镶嵌平面(既不留空隙,又不相重叠地拼接)(图4)(2)做一做:分别用若干个全等的正三角形、正方形、正六边形纸片,在桌面上设计镶嵌图.你发现这三种正多边形哪些能单独镶嵌平面,哪些不能?你能说明其中的原因吗?(3)想一想:用若干个全等的正五边形能镶嵌平面吗?为什么?事实上,如果用正多边形来键嵌平面,那么共顶点的各个角之和必须等于360∘.例如,用正六边形镶嵌平面(图5),共顶点的3个角之和为3×120∘=360∘.因此能镶嵌平面的正多边形的内角度数一定能整除360,所以,能单独镶嵌平面的正多边形只有3种,即正三角形、正方形、正六边形.如果用多种正多边镶嵌平面,则能镶嵌平面的正多边形就不止上面所说的这3种.(4)探究:用边长相等的正八边形和正方形能镶嵌平面吗?请说明理由.如果能,画出镶嵌图(只要求画出示意图).19. 如图,凸六边形ABCDEF的六个角都是120∘,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?20. 奥地利数学家皮克发现了一个计算正方形网格纸中多边形面积的公式:S=a+1b−1,方格纸中每个小正方形的边长为1,其中a表示多边形内部的格点数,b 2表示多边形边界上的格点数,S表示多边形的面积.注:①由n条线段依次首尾连接而成的封闭图形叫做n边形,这些线段的端点叫做顶点.②网格中小正方形的顶点叫格点.如:在图①中,点A,B,C,D都正好在格点上,那么四边形ABCD的面积S= 8+1×4−1=9.2(1)求图②中四边形ABCD的面积.(2)若多边形的顶点都在格点上,且面积为6,请在图③④⑤中画出这样三个形状不同的多边形(多边形的边数≥6).并写出相应的a,b的值.图③中,a=,b=;图④中,a=,b=;图⑤中,a=,b=.参考答案第一部分1. A2. C3. C4. A 【解析】五边形每个内角是180∘−360∘÷5=108∘,不是360∘的约数,不能密铺,符合题意;正三角形的一个内角度数为180∘−360∘÷3=60∘,是360∘的约数,能密铺,不符合题意;正六边形的一个内角度数为180∘−360∘÷6=120∘,是360∘的约数,能密铺,不符合题意;正四边形的一个内角度数为180∘−360∘÷4=90∘,是360∘的约数,能密铺,不符合题意5. D【解析】因为从多边形的一个顶点可引出(n−3)条对角线,所以n−3=7,所以n=10.6. B7. A8. C 【解析】①③可以9. B 【解析】如答图,延长AB,BC,∵AB∥CD,∴∠ABC=∠5,∠ABC+∠4=180∘,∴∠4+∠5=180∘.根据多边形的外角和定理,得∠1+∠2+∠3+∠4+∠5=360∘,∴∠1+∠2+∠3=360∘−180∘=180∘.10. B【解析】设这个多边形n边形,根据题意,得(n−2)×180∘=1.5×360∘,解得:n=5.即这个多边形为五边形.第二部分11. 五12. 7,813. 614. 180∘,n−1【解析】n边形的对角线有n(n−3)2条,(n+1)边形的对角线有(n+1)(n−2)2条,(n+1)(n−2)2−n(n−3)2=n−1 .15. 39m【解析】第1层是6×1+6=12边形,第2层是6×2+6=18边形,⋯每层都比前一层多6条边第12层是6×12+6=78边形,78×0.5=39m.16. 48第三部分17. 正八边形一个内角的度数是135∘,360∘不能被135∘整除,两个内角的和小于360∘,三个内角的和大于360∘,所以正八边形不能铺满平面.18. (1)正三角形、正方形、正六边形的共同特征是各个内角都相等,各条边都相等.(2)做一做:正三角形、正方形、正六边形都能单独镶嵌平面,因为正三角形的一个内角为60∘,将6个正三角形拼在一起,共顶点的6个角之和为360∘,刚好拼成一个周角.(3)想一想:正五边形不能单独镶嵌平面,因为正五边形的一个内角为108∘.3个内角和为324∘<360∘,4个内角和为432∘>360∘,不能拼成周角.(4)探究:用边长相等的正八边形和正方形能镶嵌平面因为正八边形的内角135∘,正方形的内角为90∘,由于135∘×2+90∘=360∘,所以两个正八边形和一个正方形能拼成一幅镶嵌图(如图).19. 如图,分别作直线AB、CD、EF的延长线使它们交于点G、M、N.因为六边形ABCDEF的六个角都是120∘,所以六边形ABCDEF的每一个外角的度数都是60∘.所以三角形AMF、三角形BNC、三角形DGE、三角形GMN都是等边三角形.所以NC=BC=8cm,DG=DE=6cm.所以GN=8+11+6=25cm,FA=MA=MN−AB−BN=25−2−8=15cm,EF=MG−MF−EG=25−15−6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.20. (1)由题意,得a=5,b=6,∴S=a+12b−1=5+12×6−1=7.(2)由题意得,图象可以如图所示.则图③中,a=3,b=8;图④中,a=1,b=12;图⑤中,a=3,b=8.。
人教版2021年八年级上册11.3《多边形及其内角和》同步练习一.选择题1.下列多边形中,内角和最大的是()A.B.C.D.2.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.43.正多边形的一个外角等于60°,这个多边形的边数是()A.3B.6C.9D.124.如图,四边形ABCD中,∠1、∠2、∠3分别为∠A、∠B、∠C的外角,下列判断正确的是()A.∠1+∠3=∠ABC+∠D B.∠1+∠3=180°C.∠2=∠D D.∠1+∠2+∠3=360°5.如图,正五边形ABCDE中,∠CAD的度数为()A.72°B.45°C.36°D.35°6.如图,小明从A点出发,沿直线前进6米后向左转45°,再沿直线前进6米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()米.A.60B.72C.48D.367.如果一个正多边形的一个内角与一个外角的度数之比是7:2,那么这个正多边形的边数是()A.11B.10C.9D.88.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题9.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.10.如图,则x的值为.11.如果一个多边形的每个外角都是60°,那么这个多边形内角和的度数为.12.一个凸n边形的内角和是540°,则n=.13.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠CDE相邻的外角,则∠1+∠2等于度.14.如图,小亮从A点出发前进2m,向右转15°,再前进2m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.15.为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是度.16.如图,∠A+∠B+∠C+∠D+∠E=°.三.解答题17.求出下列图形中x的值.18.已知,四边形ABCD中,∠C+∠D=200°,∠B=3∠A,求∠A和∠B的度数.19.在一个各内角都相等的多边形中,每一个内角都比与它相邻外角的3倍还大20°,求这个多边形的边数以及它的内角和.20.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?21.观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数3456 (18)∠α的度数…(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.22.如图①,在四边形ABCD中,∠A=x°,∠C=y°.(1)∠ABC+∠ADC=°(用含x,y的代数式表示);(2)BE、DF分别为∠ABC、∠ADC的外角平分线,①当x=y时,BE与DF的位置关系是;②当y=2x时,若BE与DF交于点P,且∠DPB=10°,求y的值.(3)如图②,∠ABC的平分线与∠ADC的外角平分线交于点Q,则∠Q=(用含x,y的代数式表示).参考答案一.选择题1.解:A.三角形的内角和为180°;B.四边形的内角和为360°;C.五边形的内角和为:(5﹣2)×180°=540°;D.六边形的内角和为:(6﹣2)×180°=720°;故选:D.2.解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.3.解:∵正多边形的外角和为360°,∴此多边形的边长为:360°÷60°=6.故选:B.4.解:∵∠1+∠DAB=180°,∠3+∠BCD=180°,∴∠1+∠3+∠DAB+∠BCD=360°,∵∠ABC+∠BCD+∠D+∠DAB=360°,∴∠1+∠3=∠ABC+∠D,故A符合题意;∵∠1+∠3只有∠ABC和∠D互补时才等于180°,故B不符合题意;∵只有∠ABC和∠D互补时,∠2=∠D,故C不符合题意;∵多边形的外角和是360°,∴∠1+∠2+∠3<360°,故D不符合题意;故选:A.5.解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,故选:C.6.解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×6=48(米).故选:C.7.解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=360,解得:n=9,故选:C.8.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.二.填空题9.解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:110.解:因为四边形的内角和是360°,根据题意得,x+x+90+120=360,解得,x=75,故答案为:75.11.解:∵一个多边形的每个外角都是60°,∴n=360°÷60°=6,则内角和为:(6﹣2)•180°=720°,故答案为:720°.12.解:根据题意得,(n﹣2)•180°=540°,解得n=5,故答案为:5.13.解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=(180°﹣∠ABC)+(180°﹣∠EDC)=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故答案为:90.14.解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为:360°÷15°=24,则一共走了:24×2=48(m),故答案为:48.15.解:如图,∵正五角星中,五边形FGHMN是正五边形,∴∠GFN=∠FNM==108°,∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.故答案是:36.16.解:如图,设线段BD,BE分别与线段AC交于点N,M.∵∠AMB=∠A+∠E,∠DNC=∠B+∠AMB,∠DNC+∠D+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.三.解答题17.解:(1)由三角形的外角性质得,x+(x+10)=x+70,即2x+10=x+70,解得,x=60.(2)根据四边形的内角和为360°得,x+(x+10)+90+60=360,解得,x=100.18.解:∵四边形内角和360°,∠C+∠D=200°,∴∠B+∠A=360°﹣200°=160°,∵∠B=3∠A,∴3∠A+∠A=160°,∴∠A=40°,∴∠B=120°.答:∠A和∠B的度数分别是40°和120°.19.解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20°)+α=180°,解得α=40°,即多边形的每个外角为40°,又∵多边形的外角和为360°,∴多边形的外角个数==9,∴多边形的边数=9,∴多边形的内角和=(9﹣2)×180°=1260°.20.解:如图,由三角形的外角性质得,∠AGE=∠A+∠C,∠DFE=∠B+∠D,∵∠AGE+∠DFE+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.21.解:(1)填表如下:正多边形的边数3456 (18)∠α的度数60°45°36°30°……10°故答案为:60°,45°,36°,30°,10°;(2)不存在,理由如下:假设存在n边形使得∠α=21°,得∠α=21°=()°,解得:n=8,又n是正整数,所以不存在正n边形使得∠α=21°.22.解:(1)在四边形ABCD中,∠ABC+∠ADC=360°﹣∠A﹣∠DCB,∵∠A=x°,∠DCB=y°,∴∠ABC+∠ADC=360﹣x﹣y=(360﹣x﹣y)°,故答案为:(360﹣x﹣y),(2)①如图①中,连接AC,过点C作CG∥DF,则有:∠MDC═∠DAC+∠DCA,∠NBC═∠CAB+∠CBA,∵BE、DF分别为∠NBC、∠MDC的角平分线,∠DAB═∠DCB═x°═y°,∴∠FDC+∠CBE═(∠MDC+∠NBC)═(∠DAC+∠DCA+∠CAB+∠CBA)═(∠DAB+DCB)═x°,∴∠FDC═∠GCD,∵∠DCG+∠BCG═∠DCB═x°,∠FDC+∠CBE═x°,∴∠CBE═∠BCG,∴CG∥BE,∴BE∥DF,故答案为:BE∥DF.②由(1)可知:∠ABC+∠ADC=(360﹣x﹣y)°,∵∠ADC+∠MDC=180°,∠ABC+∠NBC=180°,∴∠NBC+∠MDC=(x+y)°,∵BE、DF分别为∠ABC、∠ADC的外角平分线,∴∠PBC=∠NBC,∠PDC=∠MDC,∴∠PBC+∠PDC=[(x+y)]°,∵∠BCD=∠PDC+∠PBC+∠P,∴y=10+(x+y),即y﹣x=20,∵y=2x,∴x=20°,y=40°.(3)如图②中,由题意:∠DNQ=∠ANB=180°﹣x°﹣∠ABC,∠QDN=(180°﹣∠ADC),∴∠Q=180°﹣∠DNQ﹣∠QDN=180°﹣(180°﹣x°﹣∠ABC)﹣(180°﹣∠ADC),=x°+(∠ABC+∠ADC)﹣90°,=x°+180°﹣(x+y)°﹣90°,=[90+(x﹣y)]°,故答案为:[90+(x﹣y)]°.。
多边形及其内角和同步练习一.选择题1.正多边形的每个内角为135度,则多边形为()A.4B.6C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∥A=∥C,∥1=∥3,∥AEF=2∥2,则下列结论正确的是()∥∥1=∥2 ∥AB∥CD ∥∥AED=∥A ∥CD∥DEA.1个B.2个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α (0°<α<90°),若DE∥B′C′,则∥α为()A.36°B.54°C.60°D.72°8.如图,在四边形ABCD中,∥DAB的角平分线与∥ABC的外角平分线相交于点P,且∥D+∥C=210°,则∥P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∥APB=126°,∥AQF=100°,则∥A-∥F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∥C=90°,若沿图中虚线剪去∥C,则∥1+∥2等于()B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∥A+∥B+∥C+∥D=500°,∥DEF与∥AFE的平分线交于点G,则∥G等于()A.55°B.65°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∥A+∥B+∥C+∥D+∥E+∥F的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∥A+∥C=135°,∥ADE=125°,则∥B= .16.如图所示,若∥DBE=78°,则∥A+∥C+∥D+∥E= °.17.如图所示,∥A+∥B+∥C+∥D+∥E+∥F+∥G+∥H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD∥CD,EF∥CD,且∥1=∥2.(1)求证:AD∥BC;(2)若BD平分∥ABC,∥A=130°,求∥C的度数.20.如图,四边形ABCD中,∥BAD=106°,∥BCD=64°,点M,N分别在AB,BC上,将∥BMN沿MN翻折得∥FMN,若MF∥AD,FN∥DC.求(1)∥F的度数;(2)∥D的度数.21.将纸片∥ABC沿DE折叠使点A落在点A'处【感知】如图∥,点A落在四边形BCDE的边BE上,则∥A与∥1之间的数量关系是;【探究】如图∥,若点A落在四边形BCDE的内部,则∥A与∥1+∥2之间存在怎样的数量关系?并说明理由.【拓展】如图∥,点A落在四边形BCDE的外部,若∥1=80°,∥2=24°,则∥A的大小为.22.已知,在四边形ABCD中,∥A+∥C=160°,BE,DF分别为四边形ABCD的外角∥CBN,∥MDC的平分线.(1)如图1,若BE∥DF,求∥C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∥C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.。
人教版八年级数学上册11.3 多边形及其内角和同步训练(含答案)一、选择题(本大题共7道小题)1. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62. 将一个n边形变成(n+2)边形,内角和将()A.减少180° B.增加180°C.减少360° D.增加360°3. 下列哪一个度数可以作为某一个多边形的内角和()A.240° B.600°C.540° D.2180°4. 设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°6. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180° D.180°×n-360°7. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)二、填空题(本大题共7道小题)8. 如图所示,x的值为________.9. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.10. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.11. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.12. 一个正五边形和一个正六边形按如图所示的方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是________.13. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.14. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.三、解答题(本大题共3道小题)15. “X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.16. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?17. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学上册11.3 多边形及其内角和同步训练-答案一、选择题(本大题共7道小题)1. 【答案】B2. 【答案】D[解析] (n+2)边形的内角和比n边形的内角和大n·180°-(n-2)·180°=360°.3. 【答案】C[解析] ∠多边形内角和公式为(n-2)×180°,∠多边形内角和一定是180°的倍数.∠540°=3×180°,∠540°可以作为某一个多边形的内角和.4. 【答案】B【解析】∠四边形的内角和为360°,五边形的外角和为360°,∴a =b.5. 【答案】B[解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.6. 【答案】D7. 【答案】C【解析】点A(0,a),∴y轴过点A,点C、D纵坐标相同,∴CD 与x轴平行,∵正五边形是轴对称图形,∴点E和点B关于y轴对称,∴点E的坐标为(3,2).二、填空题(本大题共7道小题)8. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x+2x =360°,解得x=55°.9. 【答案】100°10. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n,正多边形的外角和为360°,内角和为(n-2)×180°,每个内角的度数为180°×(n-2)n.11. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.12. 【答案】84°[解析] 由题意,得∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∠∠EOF=180°-72°-60°=48°.∠∠AOB=360°-108°-48°-120°=84°.13. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.三、解答题(本大题共3道小题)15. 【答案】解:(1)360°+360°=720°.(2)设X的边数为n,则Y的边数为3n.由题意,得180(n-2)+180(3n-2)=1440,解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.16. 【答案】解:(1)∠n 边形的内角和是(n -2)×180°, ∠多边形的内角和一定是180°的整倍数. ∠2020÷180=11……40, ∠多边形的内角和不可能为2020°.(2)设小华求的是n 边形的内角和,这个内角为x°,则0<x <180. 根据题意,得(n -2)×180°-x +(180°-x)=2020°,解得n =12+2x +40180. ∠n 为正整数,∠2x +40必为180的整倍数. 又∠0<x <180, ∠40180<2x +40180<400180. ∠n =13或14.∠小华求的是十三边形或十四边形的内角和.17. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中,∠G =360°-(∠A +∠B +∠E)=50°, ∠P =∠FCD -∠CDP =12(∠DCB -∠CDG)=12∠G =12×50°=25°.。
第11章《三角形》同步练习(§11.3 多边形及其内角和)班级学号姓名得分1.填空:(1)平面内,由____________________________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,多边形的边与它的邻边的______组成的角叫做多边形的外角.连结多边形________________的线段叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称作凸多边形.(3)各个角______,各条边______的______叫做正多边形.2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.(2)请按下面给出的思路,进行推理填空.如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-( )=( )×180°.3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.4.正n边形的每一个内角等于______,每一个外角等于______.5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.9.选择题:(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).(A)四边形(B)五边形(C)六边形(D)七边形(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.(A)五(B)六(C)七(D)八(4)如果一个多边形的边数增加1,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).(A)都是钝角(B)都是锐角(C)一个是锐角,一个是直角(D)互为补角10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.图1(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.图212.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.图1如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;图2则2环四边形的内角和为_____________________________________________度;2环五边形的内角和为________________________________________________度;2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.参考答案1.略.2.(1)(n -2)×180°,n -3,n -2,n -2.(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).3.360°,边数. 4.⋅⨯-n nn oo 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°11.(1)360°;(2)360°.12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.13.180°或360°或540°.14.九.提示:设多边形的边数为n ,某一个外角为α.则(n -2)×180+α =1350. 从而1809071801350)2(αα-+=-=-n . 因为边数n 为正整数,所以α =90,n =9.15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -2)×180=2570+x . 从而⋅++=-18050142x n 因为边数n 为正整数,所以x =130.16.可以走回到A 点,共走100米.。
初中数学·人教版·八年级上册——第11 章三角形11.3多边形及其内角和同步练习题测试时间 :30 分钟一、选择题1. 正十二边形的每一个内角的度数为()A.120 °B.135 °C.150°D.1 080 °答案C正十二边形的每一个外角的度数是=30°, 则每一个内角的度数是180°-30 ° =150°. 应选 C.2. 一个多边形的边数增添2, 则这个多边形的外角和()A. 增添 180°B. 增添 360°C.增添 540°D.不变答案D由多边形的外角和为360°, 知一个多边形的边数增添2, 这个多边形的外角和不变.3. 假如一个多边形的每个内角都相等, 且内角和为 1 800 °, 那么这个多边形的一个外角是()A.30°B.36°C.60°D.72°答案A设多边形是n边形,依据题意得(n-2)·180°=1 800°,解得n=12,那么这个多边形的一个外角是360°÷ 12=30°, 即这个多边形的一个外角是30°. 应选 A.二、填空题4. 从一个多边形的一个极点出发, 一共可作 10 条对角线 , 则这个多边形的内角和是度.答案 1 980分析(10+3-2) × 180°=1 980 °, 则这个多边形的内角和是 1 980 度.5. 如图 , 在七边形 ABCDEFG中, 线段 AB、 ED的延伸线订交于O 点. 若∠ 1、∠ 2、∠ 3、∠ 4 极点处的外角的度数和为220°, 则∠ BOD的度数为.答案40°分析∵∠ 1、∠ 2、∠ 3、∠ 4 极点处的外角的度数和为220° , ∴∠ 1+∠ 2+∠3+∠4+220° =4×180°,∴∠ 1+∠ 2+∠ 3+∠ 4=500° , ∵五边形 OAGFE的内角和 =(5-2) × 180°=540°,∴∠ 1+∠ 2+∠ 3+∠ 4+∠BOD=540°, ∴∠ BOD=540°-500 °=40° .6. 一个多边形的内角和与它的一个外角的和为570°, 那么这个多边形的边数为.答案 5分析设多边形的边数为n, 此中一个外角为x°, 则 0<x<180, 依据题意 , 得 (n-2) ·180°+x°=570° , ∴n=5-.又∵ 0<x<180, ∴4<n<5, ∵ n 为大于或等于 3 的整数 , ∴n=5.三、解答题7.请依据下边 X 与 Y 的对话 , 解答以下各小题 :X: 我和 Y 都是多边形 , 我们俩的内角和相加的结果为 1 440 ° .Y:X 的边数与我的边数之比为1∶3.(1)求 X 与 Y 的外角和相加的度数 ;(2)分别求出 X与 Y 的边数 ;(3)试求出 Y 共有多少条对角线 .分析(1)360 °+360°=720°. 故 X 与 Y 的外角和相加的度数为720°.(2) 设 X 的边数为 n, 则 Y 的边数为 3n, 由题意得 180(n-2)+180(3n-2)=1 440,解得n=3,∴3n=9,∴X与Y的边数分别为 3 和 9.(3)×9× (9-3)=27( 条 ), 故 Y 共有 27 条对角线 .8. 如图, 四边形ABCD中,AE 均分∠BAD,DE均分∠ADC.(1) 假如∠ B+∠C=120°, 则∠ AED的度数为( 直接写出结果 );(2)依据 (1) 的结论 , 猜想∠ B+∠C 与∠ AED之间的关系 , 并证明 .分析(1)60 °.(2) ∠AED=( ∠B+∠C).证明 : 在四边形 ABCD中, ∵∠ BAD+∠ CDA+∠B+∠C=360°, ∴∠ BAD+∠CDA=360°-( ∠B+∠C),又∵ AE均分∠ BAD,DE均分∠ ADC,∴∠ EAD=∠ BAD,∠EDA=∠ADC,∴∠ EAD+∠EDA=∠ BAD+∠ ADC=×[360°-(∠ B+∠C)],∴在△ AED中,∠AED=180°-(∠EAD+∠EDA)=180°-×[360° -(∠ B+∠C)]=( ∠B+∠ C), 故∠ AED=( ∠B+∠C).内容总结。
11.3多边形及其内角和1、若一个凸多边形的内角和为720°,则这个多边形的边数为().A. 4B. 5C. 6D. 72、若多边形的边数由3增加到n(n为大于3的整数),则其外角和的度数().A. 增加B. 减少C. 不变D. 不能确定3、如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是().A. 三角形B. 四边形C. 五边形D. 六边形4、正十边形的每一个内角的度数为().A. 120°B. 135°C. 140°D. 144°5、一个多边形的每一个外角都是45°,则这个多边形的边数为().A. 6B. 7C. 8D. 96、如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前12米,又向左转36°⋯照这样走下去,他第一次回到出发地A点时,一共走了米.7、若一个正多边形的内角和为720°,则这个正多边形的每一个内角是().A. 60°B. 90°C. 108°D. 120°8、如果过一个多边形的一个顶点的对角线有6条,则该多边形是().A. 九边形B. 八边形C. 七边形D. 六边形9、从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是().A. n个B. (n−1)个C. (n−2)个D. (n−3)个10、下面的平面图形中,不能镶嵌平面的图形是().A. 正三角形B. 正六边形C. 正四边形D. 正五边形11、如图,将一个长方形剪去一个角,则剩下的多边形为().A. 五边形B. 四边形或五边形C. 三角形或五边形D. 三角形或四边形或五边形12、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为().A. 5B. 5或6C. 5或7D. 5或6或713、如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.14、如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是.15、若正多边形的内角和是1080°,则该正多边形的边数是.16、一个多边形的每一个外角都等于40°,则它的边数为.17、如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是().A. 8B. 9C. 10D. 1118、某多边形的内角和加上其外角和等于1080°,则此多边形的边数是().A. 4B. 5C. 6D. 719、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为().A. 8B. 9C. 10D. 1220、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,⋅⋅⋅,照这样走下去,他第一次回到出发地A点时,一共走的路程是().A. 140米B. 150米C. 160米D. 240米21、经过多边形一个顶点的所有对角线把多边形分成10个三角形,多边形的边数是().A. 8条B. 9条C. 12条D. 11条22、如果一个多边形的每个外角是40°,那么从这个多边形的一个顶点出发,可以引出条对角线.23、如果限于用一种正多边形镶嵌,下列正多边形不能镶嵌成一个平面图形的是().A. 正三角形B. 正方形C. 正五边形D. 正六边形24、如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.25、一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是().A. 17B. 16C. 15D. 16或15或1726、如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=().A. 50°B. 55°C. 60°D. 65°27、如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=°.28、如图,∠A+∠B+∠C+∠D+∠E+∠F=°.1 、【答案】 C;【解析】设这个多边形的边数为n,则(n−2)×180°=720°,解得n=6,故这个多边形为六边形.故选C.2 、【答案】 C;【解析】因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:C.3 、【答案】 D;【解析】设多边形为n边形,由题意,得(n−2)⋅180=360×2,解得n=6.故选D.4 、【答案】 D;【解析】方法一 : ∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°−36°=144°;故选:D.方法二 : 由多边形的内角和公式可知,正十边形的内角和为180°×(10−2)=1440°.所以每个内角的度数为1440°÷10=144°.故选D.5 、【答案】 C;【解析】由多边形外角和为360°,=8,则边数:360°45°所以多边形为8边形.故选C.6 、【答案】120;【解析】由题意得:360°÷36°=10,则他第一次回到出发地A点时,一共走了12×10=120(米).7 、【答案】 D;【解析】(n−2)×180°=720°,∴n−2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.8 、【答案】 A;【解析】∵过一个多边形的一个顶点的对角线有6条,∴多边形的边数为6+3=9,∴这个多边形是九边形.9 、【答案】 C;【解析】从n边形的一个顶点作对角线,把这个n边形分成(n−2)个三角形.10 、【答案】 D;【解析】 A选项 : 正三角形的一个内角度数为180°−360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意,故A错误;B选项: 正六边形的一个内角度数为180°−360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意,故B错误;C选项 : 正四边形的一个内角度数为180°−360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意,故C错误;D选项 : 正五边形的一个内角度数为180°−360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意,故D正确;11 、【答案】 D;【解析】沿对角线剪则剩下三角形.剪痕过一个顶点,并与一面相交得四边形.剪痕与相邻的两边相交,得五边形.12 、【答案】 D;【解析】如图:剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为720°的多边形的边数是n,则(n−2)⋅180°=720°,解得:n=6,则原多边形的边数为5或6或7,故选:D.13 、【答案】425;【解析】∠A+∠B+∠C+∠D+∠AED=180°×(5−2)=540°,∵∠1+∠AED=180°,∠1=65°,∴∠AED=180°−65°=115°,∴∠A+∠B+∠C+∠D=540°−∠AED=540°−115°=425°.14 、【答案】100°;【解析】如图:∵五边形ABCDE的外角和是360°,∴∠5=360°−70°×4=80°,∴∠AED=180°−80°=100°.15 、【答案】8;【解析】根据n边形的内角和公式,得:(n−2)⋅180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.16 、【答案】9;【解析】解法一:360°÷40°=9.多边形外角和是360°,边数=外角数=内角数.解法二:∵外角都是40°,∴内角都是140°,设它为n边形则度数总和为140n°,又∵n边形的度数和是(n−2)×180°,所以140n=(n−2)×180,解得n=9.17 、【答案】 A;【解析】设该多边形边数为n,则内角和为180°(n−2),外角和为360°,∴180°⋅(n−2)=3×360°,解得n=8,故选A.18 、【答案】 C;【解析】多边形外角和为360°,则此多边形内角和为720°,+2=6.∴边数为=720°180°19 、【答案】 C;【解析】由外角与它相邻的内角是邻补角可得:x+4x=180°,一个外角度数x=36°,∴正多边形的边数为360°÷36°=10.20 、【答案】 B;【解析】∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.21 、【答案】 C;【解析】从n边形的一个顶点出发可引出(n−3)条对角线,可组成(n−2)个三角形,即可得n−2=10,解得n=12.故选C.22 、【答案】6;【解析】多边形的边数:360°÷40°=9,从一个顶点出发可以引对角线的条数:9−3=6(条).23 、【答案】 C;【解析】 A选项 : 正三角形每个内角是60°,能整除360°,能镶嵌.B选项 : 正方形每个内角是180°−360°÷4=90°,能整除360°,能镶嵌.C选项 : 正五边形每个内角为180°−360°÷5=108°,不能整除360°,不能镶嵌.D选项 : 正六边形每个内角为180°−360°÷6=120°,能整除360°,能镶嵌.24 、【答案】540°或360°或180°;【解析】n边形的内角和是(n−2)⋅180°,所得新的多边形的边数增加1,则新的多边形的内角和是(4+1−2)×180°=540°,所得新的多边形的边数不变,则新的多边形的内角和是(4−2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4−1−2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.25 、【答案】 D;【解析】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或者减少了一条,根据(n−2)×180°=2520°,解得n=16.∴多边形的边数为15,16或17.故选D.26 、【答案】 C;【解析】方法一 : ∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°−(∠PDC+∠PCD)=180°−120°=60°.方法二 : 五边形的内角和为(5−2)×180°=540°∵∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°.∵DP、CP分别平分∠EDC,∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠PDC+∠PCD=12(∠EDC+∠BCD)=12×240°=120°∴∠P=60°.故选C.27 、【答案】360;【解析】∠1+∠2+∠3+∠4+∠5=(180°−∠BAE)+(180°−∠ABC)+(180°−∠BCD)+(180°−∠CDE)+(180°−∠DEA)=180°×5−(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°−(5−2)×180°=900°−540°=360°.故答案为:360°.28 、【答案】360;【解析】如下图所示∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.。
11.3多边形及其内角和练习题一.选择题(共16小题)1.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.(2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.63.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α4.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°5.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°7.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.548.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°10.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或911.(2015•北仑区一模)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.1212.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°13.(2015•无锡模拟)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.1014.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形15.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1616.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.7二.填空题(共8小题)17.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.18.(2014•巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正边形.19.(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是.20.(2013•巴中)若一个多边形外角和与内角和相等,则这个多边形是边形.21.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= .22.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= .23.(2016•太原一模)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 度.24.(2015•崇安区二模)正n边形的一个内角比一个外角大100°,则n 为.三.解答题(共1小题)25.(2015春•沙河市期末)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.11.3多边形及其内角和练习题参考答案与试题解析一.选择题(共16小题)1.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5,则这个多边形是五边形.故选B.【点评】本题比较容易,主要考查多边形的内角和公式.2.(2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6【解答】解:设边数为n,根据题意得(n﹣2)•180°<360°解之得n<4.∵n为正整数,且n≥3,∴n=3.故选A.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.3.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.4.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°【解答】解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,∴∠BPC=∠DPE=180°﹣50°=130°.故选B.【点评】主要考查了垂直的定义以及四边形内角和是360度.注意∠BPC与∠DPE互为对顶角.5.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.6.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55°D.50°【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.7.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54【解答】解:设这个内角度数为x,边数为n,∴(n﹣2)×180°﹣x=1510,∵n为正整数,∴n=11,∴=44,故选:C.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.8.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°【解答】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)解得:n=8.则原多边形的边数为7或8或9.故选:D.【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.11.(2015•北仑区一模)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故选:C.【点评】本题考查了多边形的外角定理:多边形的外角和为360°.也考查了邻补角的定义.12.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.【点评】本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.13.(2015•无锡模拟)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.10【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9,故选C.【点评】本题考查了多边形的内角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.14.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.15.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16【解答】解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.16.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.7【解答】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【点评】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.二.填空题(共8小题)17.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8 .【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.18.(2014•巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正八边形.【解答】解:∵内角与外角互为邻补角,∴正多边形的一个外角是180°﹣135°=45°,∵多边形外角和为360°,∴360°÷45°=8,则这个多边形是八边形.故答案为:八.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.19.(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是18 .【解答】解:因为外角是20度,360÷20=18,则这个多边形是18边形.故答案为:18【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.20.(2013•巴中)若一个多边形外角和与内角和相等,则这个多边形是四边形.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=360°,解得n=4.故答案为:四.【点评】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.21.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= 225°.【解答】解:∵∠A=45°,∴∠B+∠C+∠D=360°﹣∠A=360°﹣45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5﹣2)•180°,解得∠1+∠2=225°.故答案为:225°.【点评】本题考查了多边形的内角和公式,熟记多边形的内角和为(n ﹣2)•180°是解题的关键,整体思想的利用也很重要.22.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= 240°.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点评】主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.23.(2016•太原一模)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 36 度.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.24.(2015•崇安区二模)正n边形的一个内角比一个外角大100°,则n 为9 .【解答】解:设内角为x°,则外角为(x﹣100)°,根据题意得:x+x﹣100=180,解得:x=140,所以外角为40°,∴360°÷40°=9,故答案为:9.【点评】本题考查了多边形的内角与外角,解题的关键是知道多边形的外角和为360°.三.解答题(共1小题)25.(2015春•沙河市期末)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.【解答】解:设∠A、∠B、∠C的外角分别为∠1=4x度、∠2=3x度、∠3=2x度.(1分)因为∠1、∠2、∠3是△ABC的三个外角,所以4x+3x+2x=360,解得x=40.(2分)所以∠1=160°、∠2=120°、∠3=80°.(1分)因为∠A+∠1=180°,(1分)所以∠A=20°.(1分)【点评】本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和.。
人教版八年级数学上册11.3 多边形及其内角和同步训练(含答案)一、选择题(本大题共7道小题)1. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62. 将一个n边形变成(n+2)边形,内角和将()A.减少180° B.增加180°C.减少360° D.增加360°3. 下列哪一个度数可以作为某一个多边形的内角和()A.240° B.600°C.540° D.2180°4. 设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°6. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180° D.180°×n-360°7. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)二、填空题(本大题共7道小题)8. 如图所示,x的值为________.9. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.10. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.11. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.12. 一个正五边形和一个正六边形按如图所示的方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是________.13. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.14. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.三、解答题(本大题共3道小题)15. “X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.16. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?17. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学上册11.3 多边形及其内角和同步训练-答案一、选择题(本大题共7道小题)1. 【答案】B2. 【答案】D[解析] (n+2)边形的内角和比n边形的内角和大n·180°-(n-2)·180°=360°.3. 【答案】C[解析] ∠多边形内角和公式为(n-2)×180°,∠多边形内角和一定是180°的倍数.∠540°=3×180°,∠540°可以作为某一个多边形的内角和.4. 【答案】B【解析】∠四边形的内角和为360°,五边形的外角和为360°,∴a =b.5. 【答案】B[解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.6. 【答案】D7. 【答案】C【解析】点A(0,a),∴y轴过点A,点C、D纵坐标相同,∴CD 与x轴平行,∵正五边形是轴对称图形,∴点E和点B关于y轴对称,∴点E的坐标为(3,2).二、填空题(本大题共7道小题)8. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x+2x =360°,解得x=55°.9. 【答案】100°10. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n,正多边形的外角和为360°,内角和为(n-2)×180°,每个内角的度数为180°×(n-2)n.11. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.12. 【答案】84°[解析] 由题意,得∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∠∠EOF=180°-72°-60°=48°.∠∠AOB=360°-108°-48°-120°=84°.13. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.三、解答题(本大题共3道小题)15. 【答案】解:(1)360°+360°=720°.(2)设X的边数为n,则Y的边数为3n.由题意,得180(n-2)+180(3n-2)=1440,解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.16. 【答案】解:(1)∠n 边形的内角和是(n -2)×180°, ∠多边形的内角和一定是180°的整倍数. ∠2020÷180=11……40, ∠多边形的内角和不可能为2020°.(2)设小华求的是n 边形的内角和,这个内角为x°,则0<x <180. 根据题意,得(n -2)×180°-x +(180°-x)=2020°,解得n =12+2x +40180. ∠n 为正整数,∠2x +40必为180的整倍数. 又∠0<x <180, ∠40180<2x +40180<400180. ∠n =13或14.∠小华求的是十三边形或十四边形的内角和.17. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中,∠G =360°-(∠A +∠B +∠E)=50°, ∠P =∠FCD -∠CDP =12(∠DCB -∠CDG)=12∠G =12×50°=25°.。
第11章《三角形》
同步练习
(§11.3 多边形及其内角和)
班级学号姓名得分
1.填空:
(1)平面内,由____________________________________________________________叫做
多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,
多边形的边与它的邻边的______组成的角叫做多边形的外角.
连结多边形________________的线段叫做多边形的对角线.
(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称
作凸多边形.
(3)各个角______,各条边______的______叫做正多边形.
2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.
(2)请按下面给出的思路,进行推理填空.
如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-( )=( )×180°.
3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.
4.正n边形的每一个内角等于______,每一个外角等于______.
5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.
6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.
7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______
度.
9.选择题:
(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).
(A)四边形(B)五边形(C)六边形(D)七边形
(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).
(A)随着增加(B)随着减少(C)保持不变(D)无法确定
(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.
(A)五(B)六(C)七(D)八
(4)如果一个多边形的边数增加1,那么它的内角和增加( ).
(A)0°(B)90°(C)180°(D)360°
(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).
(A)只有一个直角(B)只有一个锐角
(C)有两个直角(D)有两个钝角
(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).
(A)都是钝角(B)都是锐角
(C)一个是锐角,一个是直角(D)互为补角
10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.
11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.
图1
(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.
图2
12.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.
图1
如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;
图2
则2环四边形的内角和为_____________________________________________度;
2环五边形的内角和为________________________________________________度;
2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.
14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.
15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.
16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?
若不能,写出理由.
参考答案
1.略.
2.(1)(n -2)×180°,n -3,n -2,n -2.
(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).
3.360°,边数. 4.⋅⨯-n n
n o
o 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.
9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°
11.(1)360°;(2)360°.
12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.
13.180°或360°或540°.
14.九.提示:设多边形的边数为n ,某一个外角为α.
则(n -2)×180+α =1350. 从而180
9071801350)2(αα-+=-=
-n . 因为边数n 为正整数,所以α =90,n =9.
15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -
2)×180=2570+x . 从而⋅++=-180
50142x n 因为边数n 为正整数,所以x =130.
16.可以走回到A 点,共走100米.。