数值计算方法数值积分共77页文档
- 格式:ppt
- 大小:3.47 MB
- 文档页数:77
数值积分方法求解积分方程
数值积分方法是通过对被积函数进行离散化,将积分方程转化为求和问题,从而利用数值求和的方法进行求解。
常用的数值积分方法包括梯形法则(Trapezoidal rule)、中点法
则(Midpoint rule)、辛普森法则(Simpson's rule)等。
以梯形法则为例进行说明:
梯形法则是将积分区间分成若干个小区间,每个小区间都近似看做一个梯形,然后对所有梯形的面积进行求和。
具体步骤如下:
1. 将积分区间 [a,b] 平均分成 n 个子区间,每个子区间长度为
h=(b-a)/n。
2. 在每个子区间中,用梯形近似替代被积函数。
假设第 i 个子
区间为[xi, xi+1],则梯形的面积为(f(xi)+f(xi+1))*(xi+1-xi)/2,其中 f(x) 是被积函数。
3. 对所有子区间的梯形面积进行求和,即 S = (h/2) * [f(a) +
2*f(x1) + 2*f(x2) + ... + 2*f(xn-1) + f(b)]。
通过上述步骤,就可以利用梯形法则对积分方程进行数值求解。
需要注意的是,选择合适的子区间个数 n 以及采用更高阶的数
值积分方法,可以提高求解的精度。
此外,对于某些特殊形式的积分方程,可能需要采用特定的数值积分方法进行求解。
数值计算数值积分
数值积分是求解定积分的一种数值方法,它通过将定积分区间分割为若干小区间,在每个小区间上选用一个代表点,然后通过求出每个小区间上的面积之和来逼近定积分的值。
常见数值积分方法
矩形法
矩形法是一种最基本的数值积分方法,它将定积分区间分割为若干个相等的小区间,然后在每个小区间的左端点、右端点或中点上求出函数的函数值,最后将这些函数值相加乘以区间长度,即为定积分逼近值。
梯形法
梯形法比矩形法在逼近定积分时更加精确,它将每一小块区间都近似看作平行四边形,通过求出每个小区间上的梯形面积之和来逼近定积分值。
辛普森法
辛普森法是一种更高精度的数值积分方法,它将定积分区间分割为若干个相等的小区间,在每个小区间的两端和中点处分别求出函数的函数值,然后按照一定的公式将这些函数值组合起来求解定积分近似值。
总结
数值积分方法在数学、工程学等领域应用广泛,本文介绍了数值积分的三种常见方法,分别是矩形法、梯形法和辛普森法。
实际应用中可以根据不同的场景选择使用不同的数值积分方法,以更加准确地达到目标求解效果。
插值型求积公式、Newton-Cotes 型求积公式、复化求积公式、Romberg 求积、Guass 求积公式总结 一、 本章知识梳理1、代数精度的概念如果某个求积公式对于次数不超过m 的多项式均准确地成立,但对于1m +次多项式就不准确成立,则称该求积公式具有m 次代数精度。
2、插值型的求积公式 设[,]a b 上有1n +个互异节点01,,,n x x x ,()f x 的n 次Lagrange 插值多项式为∑==nk k k n x f x l x L 0)()()(其中∏=--=nj ik ix x x x x Lk 0)(,插值型求积公式为()()()nbn k k ak I f L x dx A f x =≈=∑⎰ (1.1) 其中(), 0,1,,bk k aA l x dx k n==⎰。
可看出,{}k A 仅由积分区间[,]a b 与插值节点{}k x 确定,与被积函数()f x 的形式无关。
求积公式(1.1)的截断误差为(1)1[]()()()()(1)!b bn aan bn aR f f x dx L x dxf x dxn ξω++=-=+⎰⎰⎰(1.2)3、.Newton-Cotes 型求积公式被积函数在积分区间内变化平缓,可用等距节点插值公式近似。
将积分区间[,]a b 划分为n 等分,步长b a h n -=,等距节点k x a kh =+,0,1,k =,n 。
此时求积公式(1.4)中的系数可得到简化00()()nnbbbjk k a a aj j k j j kj kx x x a jhA l x dx dx dxx x k j h==≠≠---===--∏∏⎰⎰⎰作变换xa th =+,则有000000()(1)()()!()!(1)()()!()!n k nnnn k j j j kj kn k nn j j kt j h h A hdt t j dt k j hk n k b a t j dt k n k n -==≠≠-=≠--==-----=--∏∏⎰⎰∏⎰令()00(1)()!()!n kn n n k j j kC t j dt k n k n -=≠-=--∏⎰则()()n kk A b a C =-,求积公式(1.1)可简化为 ()0()()()nn k k k I f b a C f x =≈-∑ (1.3)称为n 阶Newton-Cotes 公式,简记为N-C 公式,{}()n k C 称为Cotes 系数。