第十一章 无穷级数(已改)
- 格式:doc
- 大小:979.50 KB
- 文档页数:18
第十一章 无穷级数一、常数项级数1. 基本概念(1)无穷级数的定义: +++++=∑∞=n n n u u u u u 3211(2)级数的收敛与发散如果 s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, s 叫做级数∑∞=1n n u 的和,且1n n s u ∞==∑;如果n s 没有极限,则称无穷级数∑∞=1n n u 发散.(3)性质性质1线性性质:设级数1n n u s ∞==∑,1n n v σ∞==∑,,αβ为常数,则1()n n n u v s αβαβσ∞=+=+∑.性质2 (级数收敛的必要条件)级数∑∞=1n n u 收敛.0lim =⇒∞→n n u如果级数的一般项不趋于零, 则级数发散。
(4)柯西审敛原理级数∑∞=1n n u 收敛⇔对任意给定的0ε>,总存在自然数N ,当n >N 时,对任意的自然数p ,有 12n n n p n p n u u u s s ε+++++++=-< 成立(5)几个典型常数项级数的敛散性 ① 等比级数 (几何级数)2n n n aq a aq aq aq ∞==+++++=∑ ⎪⎩⎪⎨⎧<-≥∞+)( 1||,1)( 1||,收敛发散q q a q② 调和级数:=∑∞=11n n+++++n 131211 (发散)③ P-级数: ++++++=∑∞=pp p p n p n n1413121111 ⎩⎨⎧≤>发散时当收敛时当,1,1p p 【例1】判别级数1213nn n ∞=-∑的收敛性,并求级数的和。
解:由于12131133333n n n n n n n n n n n u --++==-=-,由定义2231223341(1)()()()3333333n n n n n S -+=-+-+-++-113nn +=- ∴1lim lim(1)13n n n n n S S →∞→∞+==-=所以原级数收敛,且和为1。
无穷级数1、无穷级数:表达式 +++++n u u u u 321 称为无穷级数,简称级数.记作∑∞=1n nu, 其中n u 称为级数的一般项.2、部分和: 级数∑∞=1n nu的前n 项和 ∑==nk kn uS 1称为级数∑∞=1n nu的部分和.3、收敛的定义: 如果级数∑∞=1n nu的部分和数列}{n S 有极限S ,即S S n n =∞→lim ,则称级数∑∞=1n nu收敛.S 称为级数∑∞=1n nu的和, 并写成: ++++=321u u u S ∑∞==1n nu.如果}{n S 没有极限, 则称级数∑∞=1n nu发散.4、常数项级数收敛的必要条件:若级数∑∞=1n nu收敛,则必有0lim =∞→n n u ,反之若0lim ≠∞→n n u ,则级数一定发散5常用级数敛散性判定方法: ①等比级数:∑∞=0n n aq ,当 1q < 收敛,且级数收敛于qa -111q ≥ 发散当然等比级数的敛散性也可以由等比级数的部分和数列来判断:若S 存在则收敛,反之则发散. ②P-级数:∑∞=1n P n 11p >收敛,1p ≤发散(p=1时为调和级数);③常数级数:∑∞=0n C 当0≠C 时级数发散,0=C 时,级数收敛.6、级数收敛的性质 以下假设∑∞=1n nu与∑∞=1n nv收敛于S 与T , 则①∑∑∞=∞==11n n n nu u λλ, (λ为常数). ②∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.③∑∞=1n nu收敛⇔对任意的非负整数m ,有∑∞+=1m n nu收敛.即: 在级数前面去掉或加上有限项不影响级数的敛散性. ④若S un n=∑∞=1,则将级数的项任意加括号后所成的级数S n n=∑∞=1σ. 反之不然.7、正项级数敛散性的判定方法: ①充要条件:部分和数列有界②比较法:对级数的缩放,利用已知的级数来判断未知级数的敛散性;适用于含有P(型)-级数、、多项式和正余弦的级数.其中P(型)-级数、对数、多项式主要是删减低次项和常数项,而正余弦主要是利用其小于1的性质.③比阶法:找到一个已知敛散性的级数,通过其与需求级数作商曲极限,来判断需求级数的敛散性.适用于P(型)-级数,等比级数、多项式等.定义如下:设∑∞=1n n u 与∑∞=1n n v 均为正项级数,若L v u nnn =∞→lim,则(1)当L=0时,若∑∞=1n nv收敛,则∑∞=1n nu也收敛;(2)当L=+∞时,若∑∞=1n nv发散,则∑∞=1n nu也发散.(3)当0<L<+∞时,∑∞=1n nv与∑∞=1n nu有相同敛散性.④比值法:通过对级数通向第n+1项与第n 项作商取极限来判断级数敛散性.不适用含有对数、多项式和正余弦的级数.定义如下:设∑∞=1n n u 为正项级数,若ρ=+∞→nn n u u 1lim,则(1)1<ρ时, 级数∑∞=1n nu收敛;(2) 1>ρ或+∞=ρ时, 级数∑∞=1n nu发散;(3)1=ρ时, 级数∑∞=1n nu可能收敛也可能发散.⑤其他常用方法(1)关于级数中带有多项式的分式方程的:ⅰ分子最高次≥分母最高次则级数一定发散; ⅱ分子最高次<分母最高次,则用比阶法来判断. 设sn n V 1=(s 为分子最高项-分母最高项的差值) (2)关于级数中带有对数的:用比阶法题目中()c n U tn +=ln ,就设tn n V 1=作商取极限,需要用L ,hospital 定理8、交错级数的审敛法:(莱布尼茨定理) 设∑∞=--11)1(n n n u 为交错级数, 若满足(1) n n u u ≤+1, ,2,1=n ; (2) 0lim =∞→n n u , 则 ∑∞=--11)1(n n n u 收敛,9、任意项级数的绝对收敛和条件收敛 ①绝对收敛的级数∑∞=1n nu :∑∞=1||n nu 收敛;②条件收敛的级数∑∞=1n n u:∑∞=1||n nu发散, 但∑∞=1n n u 收敛.③∑∞=1||n nu收敛 ⇒ ∑∞=1n n u 收敛. 反之不然.④此类级数多用比值法来判断绝对值级数是否发散 ⑤若任意项级数∑∞=1n nu条件收敛,则其所有正项或者负项构成的级数均为发散的.10、函数项级数①定义: 设 ),(,),(),(21x u x u x u n 是定义在I 上的函数,则++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数.②收敛域(1) 收敛点I x ∈0—— ∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——∑∞=10)(n nx u 发散;(3) 收敛域D —— ∑∞=1)(n nx u 的所有收敛点的全体D ;(4) 发散域G ——∑∞=1)(n n x u 的所有发散点的全体G .(5)解题方法:已知级数∑∞=1)(n nx u,求其收敛域.ⅰ用比值法算出大致收敛域:)(的式子关于x 1Q x lim==+∞→nn n u u ρ,令)(x Q <1,算出x 收敛大范围(a ,b ),收敛半径R=2b-a (()∞++∞∞-∈可以为R R ,,) ⅱ将端点值带入级数∑∞=1)(n nx u中,算出∑∞=1)(n n a u 与∑∞=1)(n n b u 的敛散性,判断端点值是否可以取到,过程可以略过. ⅲ综上所述,写出级数∑∞=1)(n nx u的收敛域③和函数)(x S —— ∑∞==1)()(n nx u x S , D x ∈.解题方法:已知级数∑∞=1)(n nx u,求其和函数.ⅰ求出其收敛域;ⅱ将级数经过求导或者积分,得到一个等比级数 ⅲ用等比级数收敛公式qa -11算出和函数的导数或者原函数的表达式;ⅳ将求出的表达式积分或求导,写成)(x S 的形式,并注明收敛域.【注】已知级数∑∞=1)(n nx u,求∑∞=1n n V 的和ⅰ-ⅳ步骤同上ⅴ将n n V x u 与)(建立起联系,想当x 为何值时n n V x u =)(,然后将x 带入)(x S 中.11、函数项级数的展开式.(1) f (x ) = e x= ∑∞=0!n nn x , x ∈(-∞, +∞);(2) f (x ) = sin x = ∑∞=++-012!)12()1(n n n xn ,x ∈(-∞, + ∞);(3) f (x ) = cos x = ∑∞=-02!)2()1(n nn x n ,x ∈(-∞, + ∞);(4) 11()1n n f x x x ∞===-∑ ,x ∈(-1, 1);(5) 11()()1n n f x x x ∞===-+∑ ,x ∈(-1, 1);(6) f (x ) = ln (1 + x ) = ∑∞=+-11)1(n nn x n , x ∈(-1, 1]。
第5章无穷级数无穷级数是研究函数的一个重要的工具,在许多抽象理论和应用学科中,都处于重要的地位. 无穷级数就其实质而言,是极限理论的深入,它包括常数项级数和函数项级数两部分. 利用级数不仅可表示初等函数,也可以表示很多有用的非初等函数,进而用级数来研究这些函数,例如可用幂级数来研究复杂函数的性质;还可以加深对中小学数学理论的理解,例如关于循环小数的理论,中学数学用表的制作等. 本章先讨论常数项级数,而后在函数项级数中重点介绍幂级数和三角级数.5.1常数项级数的概念和性质5.1.1 常数项级数的概念定义5.1设为无穷数列,对它的各项依次用“+”号连接起来的表达式,(5.4)称为常数项级数或无穷级数,简称为级数,其中称为常数项级数的通项或一般项. 此级数也常写作记称为级数的部分和,部分和构成的数列记为定义5.2若级数的部分和数列有极限,即,则称级数收敛,为其和,此时,如果不存在,则称级数发散.由于级数收敛等价于其部分和数列收敛,因此,级数收敛和数列收敛有着极为密切的关系:级数与数列同时收敛或同时发散. 如果级数收敛于,则部分和,它们之间的差称为级数的余项. 显然有,而是用近似代替所产生的误差.例1判断级数的收敛性.解,,所以,,即级数收敛,其和为1.例2证明发散.证此数项级数的部分和数列为显然这个部分和数列发散,因此由级数收敛的定义知,此数项级数发散.例3讨论等比级数(或称几何级数)(5.5)的收敛性,其中.解当时, 级数的部分和为.当时, 由于,故数列有极限,即级数(5.5)收敛,其和为.当> 1时, 由于, 故,即数列没有极限, 所以级数(5.5)发散.当时, ,数列没有极限, 所以级数(5.5)发散.当时, 级数为,由例2知,此级数发散,即级数(5.5)发散.由上面的讨论可知,等比级数当<1时收敛;当1时发散.例如级数是公比的等比级数,<1,故该级数收敛,且其和为=2 .而级数是公比的等比级数,,则级数发散.例4证明调和级数发散.证所以,调和级数发散.5.1.2 级数收敛的基本性质性质1 如果级数收敛于,则级数收敛于,其中是常数. 也就是说,当级数收敛时, 有= k.证设级数的部分和为,级数的部分和为,则,,这就说明级数收敛,且和为.由极限的性质知道,当0时,极限与必同时存在或同时不存在,故级数与级数具有相同的收敛性.性质2如果级数与级数均收敛,其和分别是与,则级数也收敛,且其和为,即== s.证设级数和级数的部分和分别是和,则级数部分和为于是所以,收敛。
第十一章 无穷级数教学目的:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与P 级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。
教学重点 :1、级数的基本性质及收敛的必要条件。
2、正项级数收敛性的比较判别法、比值判别法和根值判别;3、交错级数的莱布尼茨判别法;4、幂级数的收敛半径、收敛区间及收敛域;5、,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式;6、傅里叶级数。
教学难点:1、比较判别法的极限形式;2、莱布尼茨判别法;3、任意项级数的绝对收敛与条件收敛;4、函数项级数的收敛域及和函数;5、泰勒级数;6、傅里叶级数的狄利克雷定理。
§11. 1 常数项级数的概念和性质一、常数项级数的概念 常数项级数: 给定一个数列 u 1, u 2, u 3, ⋅ ⋅ ⋅, u n , ⋅ ⋅ ⋅, 则由这数列构成的表达式 u 1 + u 2 + u 3 + ⋅ ⋅ ⋅+ u n + ⋅ ⋅ ⋅叫做常数项)无穷级数, 简称常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项u n 叫做级数的一般项. 级数的部分和: 作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和.级数敛散性定义: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, 这时极限s 叫做这级数的和,并写成3211⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.余项: 当级数∑∞=1n n u 收敛时, 其部分和s n 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值r n =s -s n =u n +1+u n +2+ ⋅ ⋅ ⋅ 叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)20⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n aq aq aq a aq的敛散性, 其中a ≠0, q 叫做级数的公比. 例1 讨论等比级数n n aq ∑∞=0(a ≠0)的敛散性.解 如果q ≠1, 则部分和 qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当|q |<1时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当|q |>1时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果|q |=1, 则当q =1时, s n =na →∞, 因此级数n n aq ∑∞=0发散;当q =-1时, 级数n n aq ∑∞=0成为a -a +a -a + ⋅ ⋅ ⋅,时|q |=1时, 因为s n 随着n 为奇数或偶数而等于a 或零, 所以s n 的极限不存在, 从而这时级数n n aq ∑∞=0也发散.综上所述, 如果|q |<1, 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果|q |≥1, 则级数n n aq ∑∞=0发散. 仅当|q |<1时, 几何级数n n aq ∑∞=0a ≠0)收敛, 其和为qa -1.例2 证明级数 1+2+3+⋅ ⋅ ⋅+n +⋅ ⋅ ⋅ 是发散的.证 此级数的部分和为 2)1( 321+=+⋅⋅⋅+++=n n n s n . 显然, ∞=∞→n n s lim , 因此所给级数是发散的. 例3 判别无穷级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 的收敛性. 解 由于 111)1(1+-=+=n n n n u n ,因此 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n从而1)111(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1. 例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1. 提示: 111)1(1+-=+=n n n n u n .二、收敛级数的基本性质性质1 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛,且其和为ks .性质1 如果级数∑∞=1n n u 收敛于和s , 则级数∑∞=1n n ku 也收敛, 且其和为ks .性质1 如果s u n n =∑∞=1, 则ks ku n n =∑∞=1.这是因为, 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为s n 与σn , 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21.这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为s ±σ.性质2 如果s u n n =∑∞=1、σ=∑∞=1n n v , 则σ±=±∑∞=s v u n n n )(1.这是因为, 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为s n 、σn 、τn , 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性. 比如, 级数 )1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的, 级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的, 级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数1-1)+1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的. 推论: 如果加括号后所成的级数发散, 则原来级数也发散. 级数收敛的必要条件:性质5 如果∑∞=1n n u 收敛, 则它的一般项u n 趋于零, 即0lim 0=→n n u .性质5 如果∑∞=1n n u 收敛, 则0lim 0=→n n u .证 设级数∑∞=1n n u 的部分和为s n , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件. 例4 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n 是发散的.例4 证明调和级数∑∞=11n n是发散的. 证 假若级数∑∞=11n n 收敛且其和为s , s n是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面, 2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n , 故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.§11. 2 常数项级数的审敛法 一、正项级数及其审敛法正项级数: 各项都是正数或零的级数称为正项级数.定理1 正项级数∑∞=1n n u 收敛的充分必要条件它的部分和数列{s n }有界.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ ). 若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (k >0, ∀n ≥N ).若∑∞=1n n v 收敛, 则∑∞=1n n u 收敛; 若∑∞=1n n u 发散, 则∑∞=1n n v 发散.设∑u n 和∑v n 都是正项级数, 且u n ≤kv n (k >0, ∀n ≥N ). 若级数∑v n 收敛, 则级数∑u n 收敛; 反之, 若级数∑u n 发散, 则级数∑v n 发散.证 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和s n =u 1+u 2+ ⋅ ⋅ ⋅ +u n ≤v 1+ v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.证 仅就u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ )情形证明. 设级数∑v n 收敛, 其和为σ, 则级数∑u n 的部分和 s n =u 1+ u 2+ ⋅ ⋅ ⋅ + u n ≤v 1+v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界. 因此级数∑u n 收敛.反之, 设级数∑u n 发散, 则级数∑v n 必发散. 因为若级数 ∑v n 收敛, 由上已证明的结论, 级数∑u n 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当n ≥N 时有u n ≤kv n (k >0)成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当n ≥N 时有u n ≥kv n (k >0)成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=p p p p p n n n 的收敛性, 其中常数p >0. 例1 讨论p -级数)0( 11>∑∞=p np n 的收敛性. 解 设p ≤1. 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当p ≤1时级数p n n11∑∞=发散.设p >1. 此时有]1)1(1[111111111-------=≤=⎰⎰p p n n p n n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).对于级数]1)1(1[112--∞=--∑p p n n n , 其部分和111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s .因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s . 所以级数]1)1(1[112--∞=--∑p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数p n n11∑∞=当p >1时收敛.综上所述, p -级数p n n11∑∞=当p >1时收敛, 当p ≤1时发散. 解 当p ≤1时, n n p 11≥, 而调和级数∑∞=11n n发散, 由比较审敛法知,当p ≤1时级数pn n 11∑∞=发散. 当p >1时,]1)1(1[111111111-------=≤=⎰⎰p p n n pn n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).而级数]1)1(1[112--∞=--∑p p n n n 是收敛的, 根据比较审敛法的推论可知,级数pn n 11∑∞=当p >1时收敛.提示: 级数]1)1(1[112--∞=--∑p p n n n 的部分和为111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s . 因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s ,所以级数]1)1(1[112--∞=--∑p p n n n 收敛.p -级数的收敛性: p -级数pn n 11∑∞=当p >1时收敛, 当p ≤1时发散. 例2 证明级数∑∞=+1)1(1n n n 是发散的. 证 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的. 定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果l v u nnn =∞→lim(0<l <+∞),则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,(1)如果l v u n nn =∞→lim (0≤l <+∞), 且级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; (2)如果+∞=>=∞→∞→n nn n n n v u l v u lim 0lim 或, 且级数∑∞=1n n v 发散, 则级数∑∞=1n n u 发散. 定理3(比较审敛法的极限形式) 设∑u n 和∑v n 都是正项级数,(1)如果lim(u n /v n )=l (0≤l <+∞), 且∑v n 收敛, 则∑u n 收敛;(2)如果lim(u n /v n )=l (0<l ≤+∞), 且∑v n 发散, 则∑u n 发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当n >N 时, 有不等式l l v u l l n n2121+<<-, 即n n n lv u lv 2321<<, 再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数∑∞=11sinn n的收敛性.解 因为111sin lim =∞→nn n , 而级数∑∞=11n n发散,根据比较审敛法的极限形式, 级数∑∞=11sinn n发散. 例4 判别级数∑∞=+12)11ln(n n 的收敛性. 解 因为11)11ln(lim22=+∞→n n n , 而级数211n n ∑∞=收敛, 根据比较审敛法的极限形式, 级数∑∞=+12)11ln(n n 收敛. 定理4(比值审敛法, 达朗贝尔判别法)若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ:ρ=+∞→nn n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散; 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 满足ρ=+∞→nn n u u 1lim, 则当ρ<1时级数收敛;当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散. 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法)设∑∞=1n n u 为正项级数, 如果ρ=+∞→n n n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散; 当ρ =1时级数可能收敛也可能发散.例5 证明级数 )1( 3211 3211211111⋅⋅⋅+-⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅++n 是收敛的. 解 因为101lim 321)1( 321lim lim1<==⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅=∞→∞→+∞→nn n u u n n n n n ,根据比值审敛法可知所给级数收敛. 例6 判别级数10! 10321102110132⋅⋅⋅++⋅⋅⋅+⋅⋅+⋅+nn 的收敛性.解 因为∞=+=⋅+=∞→+∞→+∞→101lim ! 1010)!1(lim lim11n n n u u n nn n n n n ,根据比值审敛法可知所给级数发散.例7 判别级数∑∞∞→⋅-n n n 2)12(1的收敛性. 解 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n .这时ρ=1, 比值审敛法失效, 必须用其它方法来判别级数的收敛性.因为212)12(1n n n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛. 解 因为212)12(1n n n <⋅-, 而级数211nn ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.提示: 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n , 比值审敛法失效.因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.定理5(根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项u n 的n 次根的极限等于ρ:ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim)时级数发散; 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 若正项级数∑∞=1n n u 满足ρ=∞→nn n u lim, 则当ρ<1时级数收敛;当ρ>1(或+∞=∞→nn n u lim)时级数发散. 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 设∑∞=1n n u 为正项级数, 如果ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散.例8 证明级数 1 3121132⋅⋅⋅++⋅⋅⋅+++nn 是收敛的. 并估计以级数的部分和s n 近似代替和s 所产生的误差. 解 因为01lim 1lim lim ===∞→∞→∞→nn u n nn n n n n ,所以根据根值审敛法可知所给级数收敛.以这级数的部分和s n 近似代替和s 所产生的误差为 )3(1)2(1)1(1||321⋅⋅⋅++++++=+++n n n n n n n r )1(1)1(1)1(1321⋅⋅⋅++++++<+++n n n n n n + nn n )1(1+=. 例6判定级数∑∞=-+12)1(2n nn的收敛性. 解 因为21)1(221limlim =-+=∞→∞→n n n n n n u ,所以, 根据根值审敛法知所给级数收敛. 定理6(极限审敛法) 设∑∞=1n n u 为正项级数,(1)如果)lim (0lim +∞=>=∞→∞→n n n n nu l nu 或, 则级数∑∞=1n n u 发散;(2)如果p >1, 而)0( lim +∞<≤=∞→l l u n n pn , 则级数∑∞=1n n u 收敛.例7 判定级数∑∞=+12)11ln(n n 的收敛性. 解 因为)(1~)11ln(22∞→+n n n , 故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→nn n n u n n n n n ,根据极限审敛法, 知所给级数收敛.例8 判定级数)cos 1(11nn n π-+∑∞=的收敛性.解 因为 222232321)(211lim )cos 1(1limlimπππ=⋅+=-+=∞→∞→∞→n n n n n n n u n n n nn ,根据极限审敛法, 知所给级数收敛.二、交错级数及其审敛法交错级数: 交错级数是这样的级数, 它的各项是正负交错的. 交错级数的一般形式为∑∞=--11)1(n n n u , 其中0>n u .例如,1)1(11∑∞=--n n n 是交错级数, 但 cos 1)1(11∑∞=---n n n n π不是交错级数.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足条件:(1)u n ≥u n +1 (n =1, 2, 3, ⋅ ⋅ ⋅); (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足: (1)1+≥n n u u ; (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.简要证明: 设前n 项部分和为s n .由s 2n =(u 1-u 2)+(u 3-u 4)+ ⋅ ⋅ ⋅ +(u 2n 1-u 2n ), 及 s 2n =u 1-(u 2-u 3)+(u 4-u 5)+ ⋅ ⋅ ⋅ +(u 2n -2-u 2n -1)-u 2n 看出数列{s 2n }单调增加且有界(s 2n <u 1), 所以收敛.设s 2n →s (n →∞), 则也有s 2n +1=s 2n +u 2n +1→s (n →∞), 所以s n →s (n →∞). 从而级数是收敛的, 且s n <u 1.因为 |r n |=u n +1-u n +2+⋅ ⋅ ⋅也是收敛的交错级数, 所以|r n |≤u n +1. 例9 证明级数 1)1(11∑∞=--n n n收敛, 并估计和及余项.证 这是一个交错级数. 因为此级数满足 (1)1111+=+>=n n u n n u (n =1, 2,⋅ ⋅ ⋅), (2)01lim lim ==∞→∞→nu n nn ,由莱布尼茨定理, 级数是收敛的, 且其和s <u 1=1, 余项11||1+=≤+n u r n n .三、绝对收敛与条件收敛: 绝对收敛与条件收敛:若级数∑∞=1||n n u 收敛, 则称级数∑∞=1n n u 绝对收敛; 若级数∑∞=1n n u收敛, 而级数∑∞=1||n n u 发散, 则称级∑∞=1n n u 条件收敛.例10 级数∑∞=--1211)1(n n n 是绝对收敛的, 而级数∑∞=--111)1(n n n 是条件收敛的.定理7 如果级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定收敛.值得注意的问题:如果级数∑∞=1||n n u 发散, 我们不能断定级数∑∞=1n n u 也发散.但是, 如果我们用比值法或根值法判定级数∑∞=1||n n u 发散,则我们可以断定级数∑∞=1n n u 必定发散.这是因为, 此时|u n |不趋向于零, 从而u n 也不趋向于零, 因此级数∑∞=1n n u 也是发散的.例11 判别级数∑∞=12sin n nna 的收敛性. 解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n n na 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例12 判别级数∑∞=+-12)11(21)1(n n nnn 的收敛性.解: 由2)11(21||n nn n u +=, 有121)11(lim 21||lim >=+=∞→∞→e n u n n n nn ,可知0lim ≠∞→n n u , 因此级数∑∞=+-12)11(21)1(n n nnn 发散.§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x )+ ⋅ ⋅ ⋅ 称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .收敛点与发散点:对于区间I 内的一定点x 0, 若常数项级数∑∞=10)(n n x u 收敛, 则称 点x 0是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n n x u 发散, 则称 点x 0是级数∑∞=1)(n n x u 的发散点.收敛域与发散域:函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数:在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x ),s (x )称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s .∑u n (x )是∑∞=1)(n n x u 的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x ).在收敛域上有)()(lim x s x s n n =∞→或s n (x )→s (x )(n →∞) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是 a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 其中常数a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n , ⋅ ⋅ ⋅叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅ , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x . 注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ ⋅ ⋅ ⋅ +a n (x -x 0)n + ⋅ ⋅ ⋅ , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ ⋅ ⋅ ⋅ +a n t n + ⋅ ⋅ ⋅ . 幂级数1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |≥1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 0≠0)时收敛, 则适合不等式 |x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n 当 x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散. 提示: ∑a n x n是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→nn n x a , 于是存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅).这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n n n x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=. 因为当|x |<|x 0|时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n →0(n →∞) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅). 因为 n n n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||⋅∑∞=收敛, 所以级数∑|a n x n |收敛, 也就是级数∑a nx n 绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |>R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散.收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径. 开区间(-R , R )叫做幂级数∑∞=0n nn xa 的收敛区间. 再由幂级数在x =±R 处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nn x a 的收敛域是(-R , R )(或[-R , R )、(-R , R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n nn x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+∞, 这时收敛域为(-∞, +∞). 定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 1R .定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a , 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .定理2如果ρ=+∞→||lim 1n n n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为: 当ρ≠0时ρ1=R , 当ρ=0时R =+∞, 当ρ=+∞时R =0.简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<ρ<+∞, 则只当ρ|x |<1时幂级数收敛, 故ρ1=R .(2)如果ρ=0, 则幂级数总是收敛的, 故R =+∞. (3)如果ρ=+∞, 则只当x =0时幂级数收敛, 故R =0. 例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n的收敛半径与收敛域. 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的; 当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域. 例2 求幂级数∑∞=0!1n n x n 的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径: 幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2>1即21||>x 时级数发散, 所以收敛半径为21=R . 提示: 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n x n n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n nnt .因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ,所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n , 此级数收敛. 因此级数∑∞=12n n nnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算 设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b xa ,减法:∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ ⋅ ⋅ ⋅+(a 0b n +a 1b n -1+ ⋅ ⋅ ⋅ +a n b 0)x n + ⋅ ⋅ ⋅性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R , R ))连续. 性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径. 性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续.性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式 ∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然s (0)=1. 在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得 )1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x ≠0时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(1100x dx x dx x x x n n--=-==⎰⎰∑∞=, 所以, 当x ≠0时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然S (0)=1. 因为 ⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)()11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx x dx x xx n n, 所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=.从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .由和函数在收敛域上的连续性, 2ln )(lim )1(1==-+-→x S S x .综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s .提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n nx n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n nn .§11. 4 函数展开成幂级数一、泰勒级数要解决的问题: 给定函数f (x ), 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数f (x ). 如果能找到这样的幂级数, 我们就说, 函数f (x )在该区间内能展开成幂级数, 或简单地说函数f (x )能展开成幂级数, 而该级数在收敛区间内就表达了函数f (x ).泰勒多项式: 如果f (x )在点x 0的某邻域内具有各阶导数, 则在该邻域内f (x )近似等于 )(!2)())(()()(200000⋅⋅⋅+-''+-'+=x x x f x x x f x f x f )()(!)(00)(x R x x n x f n n n +-+,其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ介于x 与x 0之间). 泰勒级数: 如果f (x )在点x 0的某邻域内具有各阶导数f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ , 则当n →∞时, f (x )在点x 0的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+= 成为幂级数)(!3)()(!2)())(()(300200000⋅⋅⋅+-'''+-''+-'+x x x f x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f 这一幂级数称为函数f (x )的泰勒级数. 显然, 当x =x 0时, f (x )的泰勒级数收敛于f (x 0).需回答的问题: 除了x =x 0外, f (x )的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于f (x )? 定理 设函数f (x )在点x 0的某一邻域U (x 0)内具有各阶导数, 则f (x )在该邻域内能展开成泰勒级数的充分必要条件是f (x )的泰勒公式中的余项R n (x )当n →0时的极限为零, 即))(( 0)(lim 0x U x x R n n ∈=∞→.证明 先证必要性. 设f (x )在U (x 0)内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设s n +1(x )是f (x )的泰勒级数的前n +1项的和, 则在U (x 0)内s n +1(x )→ f (x )(n →∞). 而f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是R n (x )=f (x )-s n +1(x )→0(n →∞). 再证充分性. 设R n (x )→0(n →∞)对一切x ∈U (x 0)成立.因为f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是s n +1(x )=f (x )-R n (x )→f (x ), 即f (x )的泰勒级数在U (x 0)内收敛, 并且收敛于f (x ). 麦克劳林级数: 在泰勒级数中取x 0=0, 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为f (x )的麦克劳林级数.展开式的唯一性: 如果f (x )能展开成x 的幂级数, 那么这种展式是唯一的, 它一定与f (x )的麦克劳林级数一致. 这是因为, 如果f (x )在点x 0=0的某邻域(-R , R )内能展开成x 的幂级数, 即 f (x )=a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 那么根据幂级数在收敛区间内可以逐项求导, 有 f '(x )=a 1+2a 2x +3a 3x 2+ ⋅ ⋅ ⋅+na n x n -1+ ⋅ ⋅ ⋅ , f ''(x )=2!a 2+3⋅2a 3x + ⋅ ⋅ ⋅ + n ⋅(n -1)a n x n -2 + ⋅ ⋅ ⋅ , f '''(x )=3!a 3+ ⋅ ⋅ ⋅+n ⋅(n -1)(n -2)a n x n -3 + ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ f (n )(x )=n !a n +(n +1)n (n -1) ⋅ ⋅ ⋅ 2a n +1x + ⋅ ⋅ ⋅ , 于是得a 0=f (0), a 1=f '(0), !2)0(2f a ''=, ⋅ ⋅ ⋅, !)0()(n f a n n =, ⋅ ⋅ ⋅.应注意的问题: 如果f (x )能展开成x 的幂级数, 那么这个幂级数就是f (x )的麦克劳林级数. 但是, 反过来如果f (x )的麦克劳林级数在点x 0=0的某邻域内收敛, 它却不一定收敛于f (x ). 因此, 如果f (x )在点x 0=0处具有各阶导数, 则f (x )的麦克劳林级数虽然能作出来, 但这个级数是否在某个区间内收敛, 以及是否收敛于f (x )却需要进一步考察. 二、函数展开成幂级数展开步骤:第一步 求出f (x )的各阶导数: f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ . 第二步 求函数及其各阶导数在x =0 处的值: f (0), f '(0), f ''(0), ⋅ ⋅ ⋅ , f (n )( 0), ⋅ ⋅ ⋅ . 第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(-R , R )内时是否R n (x )→0(n →∞).1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ是否为零. 如果R n (x )→0(n →∞), 则f (x )在(-R , R )内有展开式!)0( !2)0()0()0()()(2⋅⋅⋅++⋅⋅⋅+''+'+=nn x n f x f x f f x f (-R <x <R ).例1 将函数f (x )=e x 展开成x 的幂级数.解 所给函数的各阶导数为f (n )(x )=e x (n =1, 2, ⋅ ⋅ ⋅), 因此f (n )(0)=1(n =1, 2, ⋅ ⋅ ⋅). 于是得级数 ⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x ,它的收敛半径R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(| |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ,而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x .例2 将函数f (x )=sin x 展开成x 的幂级数. 解 因为)2sin()()(π⋅+=n x x f n (n =1, 2, ⋅ ⋅ ⋅),所以f (n )(0)顺序循环地取0, 1, 0, -1, ⋅ ⋅ ⋅ ((n =0, 1, 2, 3, ⋅ ⋅ ⋅), 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(]2)1(sin[||)(|11+≤+++=++n x x n n x R n n n πξ→0 (n →∞). 因此得展开式)( )!12()1( !5!3sin 12153+∞<<-∞⋅⋅⋅+--+⋅⋅⋅-+-=--x n x x x x x n n . )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x . 例3 将函数f (x )=(1+ x )m 展开成x 的幂级数, 其中m 为任意常数. 解: f (x )的各阶导数为 f '(x )=m (1+x )m -1, f ''(x )=m (m -1)(1+x )m -2, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,f (n )(x )=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1)(1+x )m -n , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,所以 f (0)=1, f '(0)=m , f ''(0)=m (m -1), ⋅ ⋅ ⋅, f (n )(0)=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1), ⋅ ⋅ ⋅ 于是得幂级数 !)1( )1( !2)1(12⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++n x n n m m m x m m mx . 可以证明)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x nm .间接展开法:例4 将函数f (x )=cos x 展开成x 的幂级数. 解 已知 )!12()1( !5!3sin 12153⋅⋅⋅+--+⋅⋅⋅-+-=--n x x x x x n n (-∞<x <+∞).对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n . 例5 将函数211)(x x f +=展开成x 的幂级数.解 因为)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn , 把x 换成-x 2, 得)1( 1112422⋅⋅⋅+-+⋅⋅⋅-+-=+n n x x x x (-1<x <1). 注: 收敛半径的确定: 由-1<-x 2<1得-1<x <1. 例6 将函数f (x )=ln(1+x ) 展开成x 的幂级数.解 因为xx f +='11)(,而x +11是收敛的等比级数∑∞=-0)1(n n n x (-1<x <1)的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x.所以将上式从0到x 逐项积分, 得)11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n . 解: f (x )=ln(1+x )⎰⎰+='+=x x dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n n n n x dx x (-1<x ≤1).上述展开式对x =1也成立, 这是因为上式右端的幂级数当x =1时收敛, 而ln(1+x )在x =1处有定义且连续.例7 将函数f (x )=sin x 展开成)4(π-x 的幂级数.解 因为)]4sin()4[cos(22)]4(4sin[sin ππππ-+-=-+=x x x x , 并且有)( )4(!41)4(!211)4cos(42+∞<<-∞⋅⋅⋅--+--=-x x x x πππ, )( )4(!51)4(!31)4()4sin(53+∞<<-∞⋅⋅⋅--+---=-x x x x x ππππ, 所以 )( ] )4(!31)4(!21)4(1[22sin 32+∞<<-∞⋅⋅⋅+-----+=x x x x x πππ.例8 将函数341)(2++=x x x f 展开成(x -1)的幂级数. 解 因为 )411(81)211(41)3(21)1(21)3)(1(1341)(2-+--+=+-+=++=++=x x x x x x x x x f ∑∑∞=∞=-----=004)1()1(812)1()1(41n n nn n n n n x x)31( )1)(2121()1(0322<<----=∑∞=++x x n n n n n .提示: )211(2)1(21-+=-+=+x x x ,)411(4)1(43-+=-+=+x x x . ∑∞=<-<---=-+0)1211( 2)1()1(2111n nn n x x x , ∑∞=<-<---=-+0)1411( 4)1()1(4111n nn n x x x , 收敛域的确定: 由1211<-<-x 和1411<-<-x 得31<<-x .展开式小结:)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn ,。
无穷级数的收敛和发散理论一、无穷级数的基本概念1.无穷级数:一个数列 {a_n},如果从第n=1项起,每一项都可以表示为一个函数f(n)与常数的乘积,即 a_n = f(n) * c(c为常数),则称该数列为无穷级数。
2.收敛性:如果无穷级数 {a_n} 的项趋于0,并且其和函数S(x)在实数范围内存在,那么称该无穷级数为收敛的。
3.发散性:如果无穷级数 {a_n} 的项趋于0,但其和函数S(x)在实数范围内不存在或趋于无穷大,那么称该无穷级数为发散的。
二、无穷级数的收敛性判断方法1.比较检验法:通过比较两个无穷级数的项的大小,判断它们的收敛性是否相同。
2.比值检验法:求出无穷级数的极限比值,判断其收敛性。
3.根值检验法:求出无穷级数的极限根值,判断其收敛性。
4.积分检验法:通过对无穷级数的前n项求积分,判断其收敛性。
5.级数收敛性的一般判定定理:包括交错级数的莱布尼茨判别法、正项级数的比值判别法和根值判别法等。
三、无穷级数的发散性判断方法1.比值发散判别法:求出无穷级数的极限比值,判断其发散性。
2.根值发散判别法:求出无穷级数的极限根值,判断其发散性。
3.积分发散判别法:通过对无穷级数的前n项求积分,判断其发散性。
四、特殊无穷级数的收敛性判断1.幂级数:形如a_n = x^n 的无穷级数,其收敛性取决于x的取值范围。
2.泰勒级数:函数f(x)在某一区间内的泰勒展开式,其收敛性取决于该区间内f(x)的导数存在且连续。
3.傅里叶级数:周期函数f(x)的傅里叶展开式,其收敛性取决于周期函数的性质。
五、无穷级数在数学和物理学中的应用1.数学分析:无穷级数是数学分析中的基本工具,用于求解函数的泰勒展开、积分和微分方程等。
2.物理学:无穷级数在物理学中广泛应用于求解波动方程、热传导方程等,以及模拟连续介质的行为。
无穷级数的收敛和发散理论是数学分析中的重要内容,掌握其基本概念、判断方法和应用,对于深入学习数学和物理学具有重要意义。
第十一章 无穷级数一、常数项级数(A:§11.1,§11.2; B:§10.1,§10.2) Ⅰ、内容要求:(ⅰ)理解无穷级数敛散及和的概念。
(ⅱ)记忆无穷级数收敛的必要条件,了解无穷级数的基本性质。
(ⅲ)记忆等比级数和p 级数的敛散性。
(ⅳ)掌握正项级数的比值审敛法,学会运用正项级数的比较审敛法及其极限形式,了解正项级数收敛的充要条件。
(ⅴ)掌握交错级数的莱布尼兹定理,了解一般项级数绝对收敛与条件收敛的概念及关系。
Ⅱ、基本题型:(ⅰ)无穷级数基本性质的客观题。
1.是非题:(每题4分)(1)∑∞=1n n u 收敛,则0lim =∞→n n u ,反之亦然。
( ⨯ )(2)∑∞=1n n u 收敛,∑∞=1n n v 发散,则∑∞=+1)(n n n v u 必发散。
(√ )(ⅱ)涉及等比级数和p 级数敛散性的客观题。
2.(4')下列级数收敛的是--------------------------------------------------------------------( C )(A)∑∞=11n n(B))1(1∑∞=-n n(C)∑∞=--112)1(n nn (D)∑∞=11n n3.(4')下列级数收敛的是--------------------------------------------------------------------( D )(A )∑∞=13n n(B )∑∞=+131n n (C )∑∞=+11n n n (D )∑∞=+1311n n(ⅲ)运用比较审敛法及其极限形式判定简单正项级数的敛散性。
4.判别下列级数的敛散性:(每题6分)(1)∑∞=+121n n n (2)∑∞=12sinn nπ(3)∑∞=+1)11ln(n n(4)∑∞=+1)12(n nn n解:(1)解:111lim2=+∞→nn nn∑∞=11n n发散 ∴∑∞=+121n n n 发散。
(2)解:12121sinlim=∞→n nn∑∞=121n n收敛 ∴∑∞=12sinn nπ收敛 。
(3)解:11)11ln(lim=+∞→nnn∑∞=11n n发散 ∴∑∞=+1)11l n (n n发散。
(4)解:nnn n 21)12(≤+∑∞=121n n收敛 ∴∑∞=+1)12(n nn n 收敛 。
(ⅳ)运用比值审敛法判别正项级数敛散性的题型。
5.判别下列级数的敛散性:(每题6分)(1)∑∞=-1)2(12n nn (2)∑∞=123n n n(3)∑∞=-1565n nnn(4)∑∞=+122sin)1(n nn π(5)∑∞=1!2n n nnn ,你能求nnn nn !2lim∞→吗?(1)解:122lim1<=+∞→nn n u u∴∑∞=-1)2(12n nn 收敛 。
(2)解:13lim1>=+∞→nn n u u∴∑∞=123n n n发散 。
(3)解:165lim1<=+∞→nn n u u∴∑∞=-1565n nnn收敛 。
(4)解:121lim1<=+∞→nn n u u∴∑∞=+122sin)1(n nn π收敛 。
(5)解:12)11lim(2!2)1()!1(2lim111<=+=⋅++⋅=∞→+++∞→ennn n n u u n nnnn n nn n∴∑∞=1!2n nnnn 收敛 ⇒ nnn nn !2lim∞→=0(Ⅴ)运用莱布尼兹定理判别交错级数敛散性的题型。
6.判别下列级数的敛散性。
若收敛,请指明是绝对收敛还是条件收敛?(每题7分)(1)∑∞=--121)!2()!()1(n n n n (2)∑∞=-+-1111)1(n n n(3)∑∞=-+-11)1ln(1)1(n n n解:(1)141)!2()!()]!1(2[])!1[(lim22<==⋅++∞→n n n n n∴∑∞=--121)!2()!()1(n n n n 绝对收敛 。
(2)∑∞=-+-1111)1(n n n 条件收敛。
(3)∑∞=-+-11)1ln(1)1(n n n 条件收敛。
( )11)1ln(1lim=+∞→nn nⅢ、提高题型:(ⅰ)综合运用审敛法判定具体级数敛散性的问题。
7.(4')设α为常数,则∑∞=-12]1)sin([n nnn α的敛散性--------------------------------( C )(A )绝对收敛 (B )条件收敛 (C )发散 (D )敛散性与α取值有关8.(4')设0>λ,且∑∞=12n na 收敛,则∑∞=+-12||)1(n n nn a λ的敛散性-----------------( A )(A )绝对收敛 (B )条件收敛 (C )发散 (D )敛散性与λ取值有关9.判别下列级数的敛散性:(每题7分)(1))0(11ln >∑∞=a an n(2)∑∞=>+1)0(11n na a(3)∑∞=13sin 2n nn n (4)∑∞=+-132005)1(n nn n解:(1)∑∑∞=∞==11ln ln 11n n anna当e a >时,原级数收敛;当e a ≤<0时,原级数发散。
(2)当1>a 时, 111111lim1<=+++∞→aaann n 故∑∞=+111n na收敛;当10≤<a 时,⎪⎩⎪⎨⎧<<==+∞→10,11,2111lima a ann 故当10≤<a 时,原级数发散。
(3)nnn n n 2sin 233≤而 12122)1(lim313<=++∞→nn n n n故∑∞=132n nn 收敛,即原级数绝对收敛。
(4)∑∞=+-132005)1(n nn n条件收敛。
10.判别下列级数的敛散性:(每题7分)(1)∑∞=+-++1124124lnn nnn n (2))1()(1111>-∑∞=+a a a n n n解:(1)1242~)12421ln(124124ln11+-+-+=+-++++nnn nnn nn nn12112421242lim 1112<=+-+-++++∞→nn n n n n n故∑∞=+-++1124124lnn nnnn 收敛。
(2)当1>a 时)(111∞→-→-=+n a a a s n n∴ 当1>a 时,原级数收敛。
(ⅱ)涉及抽象级数敛散性的证明。
11.(7')设0,0>>n n b a ,且满足,...2,1,11=≤++n b b a a nn nn求证:若∑∞=1n n b 收敛,则∑∞=1n n a 收敛;若∑∞=1n n a 发散,则∑∞=1n n b 发散。
证明:,...2,1,11=≤++n b b a a nn nn ∴,...2,1,11=≤++n b a b a n n n n∴ nn n n b a b a ≤++111111b a b a n n ≤≤≤--由比较审敛法易证:若∑∞=1n n b 收敛,则∑∞=1n n a 收敛;若∑∞=1n n a 发散,则∑∞=1n n b 发散。
12.(8')设,...)2,1()1(21,211=+==+n a a a a nn n ,证明:(1)n n a ∞→lim 存在; (2)∑∞=+-11)1(n n n a a 收敛。
证明:(1)1221)1(211=⨯≥+=+nn n a a a 2),2(1=≥a n0)1(211≥-=-∴+nn n n a a a a故{}n a 递减且有下界,因此n n a ∞→lim 存在。
令n n a ∞→lim =A ,则1(1)1(21-==⇒+=A A AA A 舍去)(2)令n n n n n u a a a a =+-=-+1112211011141limlim22421<=+++-=∞→+∞→nn n n n nn n a a a a u u∑∞=+-11)1(n n n a a 收敛。
二、幂级数(A:§11.3,§11.4; B:§10.3,§10.4) Ⅰ、内容要求:(ⅰ)了解函数项级数的收敛域与和函数的概念。
(ⅱ)熟练掌握幂级数收敛半径、收敛区间、收敛域的求法。
(ⅲ)了解幂级数在其收敛区间内的一些基本性质,学会计算一些简单幂级数的和函数。
(ⅳ)记忆xx x x e x±+11)1ln(,cos ,sin ,及的麦克劳林展开式。
(ⅴ)学会利用这些展开式将一些简单的函数展成幂级数。
(ⅵ)学会用幂级数进行一些近似计算(自学)。
Ⅱ、基本题型:(ⅰ)幂级数收敛半径、收敛区间、收敛域的求法。
13.(4')设幂级数∑∞=-1)1(n n n x a 在0=x 处收敛,在2=x 处发散,则该幂级数的收敛域为)2,0[14.求下列幂级数收敛半径、收敛区间及收敛域:(每题7分)(1)∑∞=-12)1(n n nnx ]1,1[- (2)nn nx n ∑∞=+112)21,21[-(3)])4()21[(1nnn x x +∑∞= )41,41(- (4)nn x n n ∑∞=1ln )1,1[-15.求下列幂级数收敛半径、收敛区间及收敛域:(每题7分)(1)nn n xn 2114⋅⋅∑∞=- )21,21(-(2)∑∞=+-1132)12(n nn n x)2,2[33-(3)nn n x nn )1(2112+∑∞=- )43,45[--(4))0()1(11>-∑∞=p x nnn p⎩⎨⎧≤<>10),2,0[1],2,0[p p (ⅱ)利用xx x x e x±+11),1ln(,cos ,sin ,的麦克劳林展开式将一些简单的函数用初等方法展开成幂级数。
16.填空题: (1)(4') 2xe 的麦克劳林展开式为∑∞=02!n nn x.(2)(4') x 2cos 的麦克劳林展开式为∑∞=+-021)!2()2()1(n nn n x .17.将下列函数展开为x 的幂级数,并指出展开式成立的区间:(每题7分) (1)6512+-x x (2))2ln(x +(3)x 2sin (4))23ln(2+-x x解:(1)6512+-x x =31131211213121x x xx-⋅--⋅=---∑∞==221n nn x ∑∞=-331n nn x ∑∞=++-=11)3121(n nn n x(2))2ln(x +=+=++2ln )21ln(2ln x ]2,2(,2)1(11-∈⋅-∑∞=-x n xn nn n(3)x 2sin=∑∞=--=-02)!2()2()1(212122cos 1n nnn x xnn nn xn 211)!2(4)1(∑∞=+-=(4))23ln(2+-x x =)1ln(x -)2ln(x -+ =)21ln()1ln(2ln x x -+-+=+2ln ∑∞=--11)1(n nn nx∑∞=-⋅-+112)1(n nn n n x=+2ln nn nn x n∑∞=---+11)211(1)1(18.将下列函数在指定点0x 处展开成)(0x x -的幂级数,并指出展开式成立的区间: (1)(7')2312++x x ,40-=x (2)(7')1ln+x x ,10=x解:(1)2312++x x =241121+-x 341131+--x)2,6(,)4)(3121(011--∈+-=∑∞=++x x n nn n(2)1ln +x x =)211ln(2ln )]1(1ln[-+---+x x=2ln -]2,0(,)1(212)1(11∈-⋅--+∑∞=-x x n nn nnnⅢ、综合题型:(ⅰ)求幂级数的收敛域,并利用逐项求导,逐项积分或初等方法求幂级数的和函数,并由此确定某些常数项级数的和。