高中物理二轮专题复习:4 功能关系(新人教版)
- 格式:doc
- 大小:733.00 KB
- 文档页数:8
高考物理专题复习四功能关系能量转化和守恒定律是自然界最普遍适用的规律之一。
自然界的各种能量间可以相互转化,转化过程中能量的总和守恒。
右图是功能关系的示意图。
功和能有密切关系,它们的单位也相同,在国际单位制中,单位都是J,但功并不等于能。
功是过程量,它和一段位移(一段时间)相对应;能是状态量,它与某位置(某时刻)相对应。
功能关系不仅能解决恒力作用下物体的运动问题,也能解决变力作用下物体的运动问题,因此它比用牛顿运动定律解题更简洁、应用范围更广泛。
除非要求匀变速直线运动的加速度a和时间t,一般首选功能关系。
常用的有关功能关系的结论有:⑴动能定理。
力在一个过程中对物体所做的功(或者各个力对物体做功的代数和)等于物体在这个过程中动能的变化。
W合=E k2-E k1(动能变化必须是末动能减初动能;研究对象是单个物体;研究过程往往选全过程。
)⑵势能定理。
重力做的功等于重力势能的减少。
W G=E p1-E p2(重力势能的减少,必须是初势能减末势能;重力做功只与始末状态的高度差有关,与路径无关,与其它力是否做功无关;势能定理适用于电势能、分子势能等各种势能。
)若某种力做的功只跟始末位置有关,而与物体运动的路径无关,就能定义与这种力相应的势能。
⑶机械能定理。
重力(和弹簧弹力)以外的其他力对物体做的功等于物体机械能的增量。
W其=E机2-E机1(机械能变化必须是末状态机械能减初状态机械能;当W其=0,即只有重力做功时,系统的机械能守恒。
)⑷摩擦生热。
系统内的摩擦生热Q(内能的增加)用系统内物体间相互作用的一对滑动摩擦力做的总功来量度。
f d=Q(f为每个摩擦力的大小,d为系统内物体间相对移动的路程。
这个结论可以直接使用。
)注意一个摩擦力对某个物体做的功W f=fx(f为这个摩擦力的大小,x为物体对地的位移。
)⑸安培力做功是机械能与电能相互转化的量度。
发电机模型中:克服安培力做功等于回路中电能的增加W克A=E电(如果是纯电阻电路,则电能又全部转化为回路的焦耳热,W克A=E电=Q);电动机模型中:安培力做功等于机械能增加W A=E机(安培力做功不等于消耗的电能。
专题4 功能关系在力学中的应用考向预测能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将功、功率、动能、势能等基础知识融入其他问题考查,也常将动能定理、机械能守恒、功能关系作为解题工具在综合题中应用。
考查的重点有以下几方面:(1)(变力)做功和功率问题;(2)动能定理的应用;(3)机械能守恒的条件;(4)机械能守恒定律与平抛运动、圆周运动的综合;(5)功能关系与能量守恒。
在功和功率的分析与计算部分,高考命题角度集中在功的定义式的理解及应用,机车启动模型的分析。
题目难度以中档选择题为主。
对动能定理应用的考查,高考命题角度多为应用动能定理解决变力做功及多过程问题,题目综合性较强,试题难度较大,题型包括选择题与计算题。
对机械能守恒定律应用的考查,高考命题选择题集中在物体系统机械能守恒及物体间的做功特点、力与运动的关系,计算题结合平抛、圆周运动等典型运动为背景综合考查。
试题难度以中档题为主。
对功能关系及能量守恒的考查,选择题命题重点在考查常见功能转化关系,难度中档;计算题常以滑块、传送带、弹簧结合平抛运动、圆周运动综合考查功能关系、动能定理、机械能守恒的应用。
高频考点:功、功率的理解与计算;机车启动问题;动能定理的应用;机械能守恒定律的应用;能量守恒定律。
知识与技巧的梳理考点一、功功率的分析与计算例 (2020届高三·天津五区县联考)如图所示,某质点运动的v-t图象为正弦曲线。
从图象可以判断( )A.质点做曲线运动B.在t1时刻,合外力的功率最大C.在t2~t3时间内,合外力做负功D.在0~t1和t2~t3时间内,合外力的平均功率相等【审题立意】本题结合v-t图象考查变力做功的计算及对功率、平均功率和瞬时功率的理解的理解。
解答此题首先要结合图象正确分析物体的受力情况和运动情况。
【解题思路】质点运动的v-t图象描述的是质点的直线运动,选项A错误;在t1时刻,v-t图线的斜率为零,加速度为零,合外力为零,合外力功率为零,选项B错误;由题图图象可知,在t2~t3时间内,质点的速度增大,动能增大,由动能定理可知,合外力做正功,选项C 错误;在0~t 1 和t 2~t 3时间内,动能的变化量相同,故合外力做的功相等,则合外力的平均功率相等,选项D 正确。
专题四 功能关系知识梳理一、功和功率 1、功〔1〕恒力的功:W=Fscosθ 〔2〕变力的功W=Pt 2、功率:tWP=Fvcos θ 〔1〕当v 为即时速度时,对应的P 为即时功率; 〔2〕当v 为平均速度时,对应的P 为平均功率 二、 动能定理1、 定义:合外力所做的总功等于物体动能的变化量.2、 表达式:三、 机械能守恒定律 1、条件:〔1〕对单个物体,只有重力或弹力做功.〔2〕对某一系统,物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能的传递, 机械能也没有转变成其它形式的能(如没有内能产生),那么系统的机械能守恒. 2、 表达式 四、 能量守恒定律专题测试一、选择题(每题4分,共44分)1.用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度—时间图象如图1所示,且α>β,假设拉力F 做的功为W 1,平均功率为P 1;物体克服摩擦阻力F f 做的功为W 2,平均功率为P 2,那么以下选项正确的选项是 ( ) A .W 1>W 2;F =2F f B .W 1=W 2;F>2F f C .P 1>P 2;F>2F fD .P 1=P 2;F =2F f2.如图2所示,滑块A 、B 的质量均为m ,A 套在固定竖直杆上,A 、B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并靠着竖直杆,A 、B 均静止.由于微小的扰动,B 开始沿水平面向右运动.不计一切摩擦,滑块A 、B 视为质点.在A 下滑的过程中,以下说法中正确的选图1项是( )A .A 、B 组成的系统机械能守恒 B .在A 落地之前轻杆对B 一直做正功C .A 运动到最低点时的速度的大小为2gLD .当A 的机械能最小时,B 对水平面的压力大小为2mg3.如图3所示,足够长的传送带以恒定速率沿顺时针方向运转.现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,第二阶段匀速运动到传送带顶端.那么以下说法中正确的选项是( )A .第一阶段和第二阶段摩擦力对物体都做正功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第二阶段摩擦力对物体做的功等于第二阶段物体机械能的增加量D .两个阶段摩擦力对物体所做的功等于物体机械能的减少量4.如图4所示,均匀带正电的圆环水平放置,AB 为过圆心O 的竖直轴线.一带正电的微粒(可视为点电荷),从圆心O 正上方某处由静止释放向下运动,不计空气阻力.在运动的整个过程中,以下说法中正确的选项是 ( ) A .带电微粒的加速度可能一直增大 B .带电微粒的电势能可能一直减小 C .带电微粒的动能可能一直增大 D .带电微粒的运动轨迹可能关于O 点对称5.如图5所示为测定运发动体能的装置,轻绳拴在腰间沿水平线跨过定滑轮(不计滑轮的质量与摩擦),轻绳的另一端悬重为G 的物体.设人的重心相对地面不动,人用力向后蹬传送带,使水平传送带以速率v 逆时针转动.那么 ( ) A .人对重物做功,功率为GvB .人对传送带的摩擦力大小等于G ,方向水平向左C .在时间t 内人对传送带做功消耗的能量为GvtD .假设增大传送带的速度,人对传送带做功的功率不变6.如图6所示,有一光滑的半径可变的14圆形轨道处于竖直平面内,圆心O 点离地高度为H .现调节轨道半径,让一可视为质点的小球a 从与O 点等高的轨道最高点由静止沿轨道下落,使小球离开轨道后运动的水平位移S 最大,那么小球脱离轨道最低点时的速度大小应为( ) A. gHB. gH3C.2gH3D.4gH 37.一辆质量为m 的卡车在平直的公路上,以初速度v 0开始加速行驶,经过一段时间t ,卡图3图4 图5图6车前进的距离为s 时,恰好到达最大速度v m .在这段时间内,卡车发动机的输出功率恒为P ,卡车运动中受到的阻力大小恒为F ,那么这段时间内发动机对卡车做的功为( ) A .Pt B .FsC .Fv m tD. 12mv m 2+Fs -12mv02 8.如图7所示,处于真空中的匀强电场与水平方向成15°角,AB 直线与匀强电场E 垂直,在A 点以大小为v 0的初速度水平抛出一质量为m 、电荷量为+q 的小球,经时间t ,小球下落一段距离过C 点(图中未画出)时速度大小仍为v 0,在小球由A 点运动到C 点的过程中,以下说法正确的选项是( )A .电场力对小球做功为零B .小球的电势能减小C .小球的电势能增量大于mg 2t 2/2 D .C 可能位于AB 直线的左侧9.如图8所示,一形状为抛物线的光滑曲面轨道置于竖直平面内,轨道的下半部处在一个垂直纸面向外的磁场中,磁场的上边界是y =a 的直线(图中虚线所示),一个小金属环从抛物线上y =b (b >a )处以速度v 沿抛物线下滑.假设抛物线足够长,且不计空气阻力,那么金属环沿抛物线运动的整个过程中损失的机械能的总量ΔE 为 ( ) A .假设磁场为匀强磁场,ΔE =mg (b -a )+12mv 2B .假设磁场为匀强磁场,ΔE =mg (b -a )C .假设磁场为非匀强磁场,ΔE =12mv 2D .假设磁场为非匀强磁场,ΔE =mgb +12mv 210.如图9所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上.质量为m 的金属杆ab 以初速度v 0从轨道底端向上滑行,滑行到某高度h 后又返回到底端.假设运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.那么以下说法正确的选项是( ) A .金属杆ab 上滑过程与下滑过程通过电阻R 的电量一样多B .金属杆ab 上滑过程中克服重力、安培力与摩擦力所做功之和等于12mv 2C .金属杆ab 上滑过程与下滑过程因摩擦而产生的内能不一定相等D .金属杆ab 在整个过程中损失的机械能等于装置产生的热量 11.如图10所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球.O图7图8图9点为圆环的圆心,a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,bd沿水平方向.小球所受电场力与重力大小相等.现将小球从环的顶端a点由静止释放.以下判断正确的选项是( )A.小球能越过与O等高的d点并继续沿环向上运动B.当小球运动到c点时,洛伦兹力最大C.小球从a点到b点,重力势能减小,电势能增大D.小球从b点运动到c点,电势能增大,动能先增大后减小二、实验题(12、13题各6分,共12分)12.(6分)“探究功与物体速度变化的关系〞的实验如图11所示,当小车在一条橡皮筋作用下弹出时,橡皮筋对小车做的功记为W.当用2条、3条……完全相同的橡皮筋并在一起进行第2次、第3次……实验时,使每次实验中橡皮筋伸长的长度都保持一致.每次实验中小车获得的速度由打点计时器所打的纸带测出.图11(1)(2分)除了图中已有的实验器材外,还需要导线、开关、__________(填测量工具)和________电源(填“交流〞或“直流〞).(2)(2分)假设木板水平放置,小车在两条橡皮筋作用下运动,当小车的速度最大时,关于橡皮筋所处的状态与小车所在的位置,以下说法正确的选项是________.A.橡皮筋处于原长状态B.橡皮筋仍处于伸长状态C.小车在两个铁钉的连线处D.小车已过两个铁钉的连线(3)(2分)在正确操作情况下,打在纸带上的点并不都是均匀的,如图12所示.为了测量小车获得的速度,应选用纸带的________局部进行测量(根据下面所示的纸带答复,并用字母表示).图1213.(6分)用如图13所示的实验装置验证机械能守恒定律.重锤由静止开始落下,重锤上拖着的纸带通过打点计时器打出一系列的点,对纸带上的点进行测量,即可验证机械能守恒定律.(1)下面列举了该实验的几个操作步骤:A.按照图示装置安装好器材B.将打点计时器接到直流电源上C.先松开悬挂纸带的夹子,后接通电源打出一条纸带D.根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能图13 指出其中没有必要进行的或者操作不恰当的步骤,将其选项对应的字母填写在下面的空行内.________________________________________________________________________ (2)利用这个装置可以测量重锤下落的加速度的数值.如图14所示,根据打出的纸带,选取纸带上打出的连续五个点A 、B 、C 、D 、E ,测量出A 点距打下的第一个点O 距离为x 0,点A 、C 间的距离为x 1、点C 、E 间的距离为x 2,使用交流电的频率为f ,那么根据这些条件计算重锤下落的加速度的表达式为a =________,打C 点时重锤的速度v =________.图14三、解答题(14题11分,15题14分,16题18分,共44分)14.(上海卷第31题).(12 分)如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L =20m 。
一、动能定理动能定理的推导物体只在一个恒力作用下,做直线运动w =FS =m a ×a V V 22122- 即 21222121mv mv w -=推广: 物体在多个力的作用下、物体在做曲线运动、物体在变力的作用下结论: 合力所做的功等于动能的增量 ,合力做正功动能增加,合力做负功动能减小合力做功的求法:1、受力分析求合力,合力乘以在合力方向的位移(合力是恒力,位移相对地的位移)2、合力做的功等于各力做功的代数和二.应用动能定理解题的步骤(1)确定研究对象和研究过程。
(2)对研究对象受力分析,判断各力做功情况。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)(4)写出物体的初、末动能。
按照动能定理列式求解。
【例】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h/10停止,则(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h/8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。
三、高中物理接触到的几种常用的功能关系 1、 重力做功等于重力势能的减小量2、 弹力做功等于弹性势能的减小量3、 电场力做功等于电势能的减小量4、 合外力做功等于动能的变化量(动能定理)5、 除重力以外其它力做功等于机械能的变化量6、 摩擦力乘以相对位移代表有多少机械能转化为内能用于发热7、 电磁感应中克服安培力做功量度多少其他形式能转化为电能用于发热8、能量守恒思路1.(2013·长春模拟)19世纪初,科学家在研究功能关系的过程中,具备了能量转化和守恒的思想,对生活中有关机械能转化的问题有了清晰的认识,下列有关机械能的说法正确的是( )A .仅有重力对物体做功,物体的机械能一定守恒B .仅有弹力对物体做功,物体的机械能一定守恒C .摩擦力对物体做的功一定等于物体机械能的变化量D .合外力对物体做的功一定等于物体机械能的变化量2.(2013·东北四市联考)在高度为h 、倾角为30°的粗糙固定的斜面上,有一质量为m 、与一轻弹簧拴接的物块恰好静止于斜面底端。
专题四电路与电磁感应1.恒定电流(1)闭合电路中的电压、电流关系:E=U外+U内,I=,U=E-Ir。
(2)闭合电路中的功率关系:P总=EI,P内=I2r,P出=IU=I2R=P总-P内。
(3)直流电路中的能量关系:电功W=qU=UIt,电热Q=I2Rt。
(4)纯电阻电路中W=Q,非纯电阻电路中W>Q。
2.电磁感应(1)判断感应电流的方向:右手定则和楞次定律(增反减同、来拒去留、增缩减扩)。
(2)求解感应电动势常见情况与方法(3)自感现象与涡流自感电动势与导体中的电流变化率成正比,线圈的自感系数L跟线圈的形状、长短、匝数等因素有关系。
线圈的横截面积越大,线圈越长,匝数越多,它的自感系数就越大。
带有铁芯的线圈其自感系数比没有铁芯时大得多。
3.交变电流(1)交变电流的“四值”①最大值:为U m、I m,即交变电流的峰值。
②瞬时值:反映交变电流每瞬间的值,如e=E m sinωt。
③有效值:正弦式交变电流的有效值与最大值之间的关系为E=、U=、I=;非正弦式交变电流的有效值可以根据电流的热效应来求解。
计算交变电流的电功、电功率和测定交流电路的电压、电流都是指有效值。
④平均值:反映交变电流的某物理量在t时间内的平均大小,如平均电动势E=n。
(2)理想变压器的基本关系式①功率关系:P入=P出;②电压关系:=;③电流关系:=。
(3)远距离输电常用关系式(如图所示)①功率关系:P1=P2,P3=P4,P2=P线+P3。
②电压损失:U损=I2R线=U2-U3。
③输电电流:I线===。
④输电导线上损耗的电功率:P损=I线U损=R线=R线。
高考演练1.(2019江苏单科,1,3分)某理想变压器原、副线圈的匝数之比为1∶10,当输入电压增加20 V时,输出电压()A.降低2 VB.增加2 VC.降低200 VD.增加200 V答案D依据理想变压器原、副线圈的电压比与匝数比关系公式可知,=,则ΔU 2=ΔU1,得ΔU2=200 V,故选项D正确。
专题四 功能关系知识梳理一、功和功率 1、功(1)恒力的功:W=Fscos θ (2)变力的功W=Pt 2、功率:tWP=Fvcos θ (1)当v 为即时速度时,对应的P 为即时功率; (2)当v 为平均速度时,对应的P 为平均功率 二、 动能定理1、 定义:合外力所做的总功等于物体动能的变化量.2、 表达式:三、 机械能守恒定律 1、条件:(1)对单个物体,只有重力或弹力做功.(2)对某一系统,物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能的传递, 机械能也没有转变成其它形式的能(如没有内能产生),则系统的机械能守恒.2、 表达式四、 能量守恒定律专题测试一、选择题(每小题4分,共44分)1.用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度—时间图象如图1所示,且α>β,若拉力F 做的功为W 1,平均功率为P 1;物体克服摩擦阻力F f 做的功为W 2,平均功率为P 2,则下列选项正确的是 ( ) A .W 1>W 2;F =2F f B .W 1=W 2;F>2F f C .P 1>P 2;F>2F fD .P 1=P 2;F =2F f2.如图2所示,滑块A 、B 的质量均为m ,A 套在固定竖直杆上,A 、B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并靠着竖直杆,A 、B 均静止.由于微小的扰动,B 开始沿水平面向右运动.不计一切摩擦,滑块A 、B 视为质点.在A 下滑的过程中,下列说法中正确的是( )A .A 、B 组成的系统机械能守恒 B .在A 落地之前轻杆对B 一直做正功C .A 运动到最低点时的速度的大小为2gLD .当A 的机械能最小时,B 对水平面的压力大小为2mg3.如图3所示,足够长的传送带以恒定速率沿顺时针方向运转.现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,第二阶段匀速运动到传送带顶端.则下列说法中正确的是( )A .第一阶段和第二阶段摩擦力对物体都做正功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量图1图2图3C .第二阶段摩擦力对物体做的功等于第二阶段物体机械能的增加量D .两个阶段摩擦力对物体所做的功等于物体机械能的减少量4.如图4所示,均匀带正电的圆环水平放置,AB 为过圆心O 的竖直轴线.一带正电的微粒(可视为点电荷),从圆心O 正上方某处由静止释放向下运动,不计空气阻力.在运动的整个过程中,下列说法中正确的是 ( ) A .带电微粒的加速度可能一直增大 B .带电微粒的电势能可能一直减小 C .带电微粒的动能可能一直增大 D .带电微粒的运动轨迹可能关于O 点对称5.如图5所示为测定运动员体能的装置,轻绳拴在腰间沿水平线跨过定滑轮(不计滑轮的质量与摩擦),轻绳的另一端悬重为G 的物体.设人的重心相对地面不动,人用力向后蹬传送带,使水平传送带以速率v 逆时针转动.则 ( ) A .人对重物做功,功率为GvB .人对传送带的摩擦力大小等于G ,方向水平向左C .在时间t 内人对传送带做功消耗的能量为GvtD .若增大传送带的速度,人对传送带做功的功率不变6.如图6所示,有一光滑的半径可变的14圆形轨道处于竖直平面内,圆心O 点离地高度为H .现调节轨道半径,让一可视为质点的小球a 从与O 点等高的轨道最高点由静止沿轨道下落,使小球离开轨道后运动的水平位移S 最大,则小球脱离轨道最低点时的速度大小应为( ) A. gHB. gH3C.2gH3D.4gH 37.一辆质量为m 的卡车在平直的公路上,以初速度v 0开始加速行驶,经过一段时间t ,卡 车前进的距离为s 时,恰好达到最大速度v m .在这段时间内,卡车发动机的输出功率恒为P ,卡车运动中受到的阻力大小恒为F ,则这段时间内发动机对卡车做的功为( ) A .Pt B .FsC .Fv m tD. 12mv m 2+Fs -12mv 02 8.如图7所示,处于真空中的匀强电场与水平方向成15°角,AB 直线与匀强电场E 垂直,在A 点以大小为v 0的初速度水平抛出一质量为m 、电荷量为+q 的小球,经时间t ,小球下落一段距离过C 点(图中未画出)时速度大小仍为v 0,在小球由A 点运动到C 点的过程中,下列说法正确的是()图4图5图6A .电场力对小球做功为零B .小球的电势能减小C .小球的电势能增量大于mg 2t 2/2 D .C 可能位于AB 直线的左侧9.如图8所示,一形状为抛物线的光滑曲面轨道置于竖直平面内,轨道的下半部处在一个垂直纸面向外的磁场中,磁场的上边界是y =a 的直线(图中虚线所示),一个小金属环从抛物线上y =b (b >a )处以速度v 沿抛物线下滑.假设抛物线足够长,且不计空气阻力,则金属环沿抛物线运动的整个过程中损失的机械能的总量ΔE 为 ( )A .若磁场为匀强磁场,ΔE =mg (b -a )+12mv 2B .若磁场为匀强磁场,ΔE =mg (b -a )C .若磁场为非匀强磁场,ΔE =12mv 2D .若磁场为非匀强磁场,ΔE =mgb +12mv 210.如图9所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上.质量为m 的金属杆ab 以初速度v 0从轨道底端向上滑行,滑行到某高度h 后又返回到底端.若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.则下列说法正确的是( ) A .金属杆ab 上滑过程与下滑过程通过电阻R 的电量一样多B .金属杆ab 上滑过程中克服重力、安培力与摩擦力所做功之和等于12mv 2C .金属杆ab 上滑过程与下滑过程因摩擦而产生的内能不一定相等D .金属杆ab 在整个过程中损失的机械能等于装置产生的热量 11.如图10所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 、d 为圆环上的四个点,a 点为最高点,c 点为最低点,bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放.下列判断正确的是( )A .小球能越过与O 等高的d 点并继续沿环向上运动B .当小球运动到c 点时,洛伦兹力最大C .小球从a 点到b 点,重力势能减小,电势能增大D .小球从b 点运动到c 点,电势能增大,动能先增大后减小 二、实验题(12、13题各6分,共12分)12.(6分)“探究功与物体速度变化的关系”的实验如图11所示,当小车在一条橡皮筋作用图7图8图9图10下弹出时,橡皮筋对小车做的功记为W.当用2条、3条……完全相同的橡皮筋并在一起进行第2次、第3次……实验时,使每次实验中橡皮筋伸长的长度都保持一致.每次实验中小车获得的速度由打点计时器所打的纸带测出.图11(1)(2分)除了图中已有的实验器材外,还需要导线、开关、__________(填测量工具)和________电源(填“交流”或“直流”).(2)(2分)若木板水平放置,小车在两条橡皮筋作用下运动,当小车的速度最大时,关于橡皮筋所处的状态与小车所在的位置,下列说法正确的是________.A.橡皮筋处于原长状态B.橡皮筋仍处于伸长状态C.小车在两个铁钉的连线处D.小车已过两个铁钉的连线(3)(2分)在正确操作情况下,打在纸带上的点并不都是均匀的,如图12所示.为了测量小车获得的速度,应选用纸带的________部分进行测量(根据下面所示的纸带回答,并用字母表示).图1213.(6分)用如图13所示的实验装置验证机械能守恒定律.重锤由静止开始落下,重锤上拖着的纸带通过打点计时器打出一系列的点,对纸带上的点进行测量,即可验证机械能守恒定律.(1)下面列举了该实验的几个操作步骤:A.按照图示装置安装好器材B.将打点计时器接到直流电源上C.先松开悬挂纸带的夹子,后接通电源打出一条纸带D.根据测量的结果计算重锤下落过程中减少的重力势能是否等于增加的动能图13 指出其中没有必要进行的或者操作不恰当的步骤,将其选项对应的字母填写在下面的空行内.________________________________________________________________________(2)利用这个装置可以测量重锤下落的加速度的数值.如图14所示,根据打出的纸带,选取纸带上打出的连续五个点A、B、C、D、E,测量出A点距打下的第一个点O距离为x0,点A 、C 间的距离为x 1、点C 、E 间的距离为x 2,使用交流电的频率为f ,则根据这些条件计算重锤下落的加速度的表达式为a =________,打C 点时重锤的速度v =________.图14三、解答题(14题11分,15题14分,16题18分,共44分)14.(上海卷第31题).(12 分)如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L =20m 。
用大小为30N ,沿水平方向的外力拉此物体,经02t s =拉至B 处。
(已知cos370.8︒=,sin370.6︒=。
取210/g m s =)(1)求物体与地面间的动摩擦因数μ;(2)用大小为30N ,与水平方向成37°的力斜向上拉此物体, 使物体从A 处由静止开始运动并能到达B 处,求该力作用的最短时间t 。
15..(14分)如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R ,MN为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一初速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R 。
重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t ;(2)小球A 冲进轨道时速度v 的大小。
16.(18分)如图17所示,PABCD 是固定在竖直平面内的光滑绝缘轨道,其中PA 是竖直轨道,ABCD 是半径为R 的圆弧轨道,两轨道在A 点平滑连接.B 、D 分别为圆轨道的最低点和最高点,B 、D 连线是竖直直径,A 、C 连线是水平直径,P 、D 在同一水平线上.质量为m 、电荷量为+q 的小球从轨道上P 点静止释放,运动过程中电荷量保持不变,重力加速度为g .(1)小球运动到B 点时,轨道对小球的作用力有多大?(2)当小球运动到C 点时,突然在整个空间中加上一个方向竖直向上的匀强电场,电场强度E =mg2q,结果小球运动点D 后水平射出,经过一段时间碰到了轨道的Q 点,求Q 点与P 点间的距离s .答案1.BC 2.AC 3.AC 4.C 5.BC 6.A 7.ACD 8.C 9.AD 10.ABD 11.D12.(1)(毫米)刻度尺、交流(各1分) (2)B(2分) (3)GI 或GK (学生只要取匀速部分均为正确)(2分)13.(1)BC(2分) (2) (x 2-x 1)f 24 (x 1+x 2)f4(每空2分)14.(1)物体做匀加速运动2012L at =(1分) ∴2220222010(/)2L a m s t ⨯=== (1分) 由牛顿第二定律F f ma -= (1分)3021010()f N =-⨯= (1分)∴100.5210f mg μ===⨯ (1分) (2)设F 作用的最短时间为t ,小车先以大小为a 的加速度匀加速t 秒,撤去外力后,以大小为'a ,的加速度匀减速't 秒到达B 处,速度恰为0,由牛顿定律cos37(sin 37)F mg F a ma μ︒--︒= (1分)2(cos37sin 37)30(0.80.50.6)0.51011.5(/)2F a g m s m μμ︒+︒⨯+⨯=-=-⨯=(1分)2'5(/)fa g m s m μ=== (1分)由于匀加速阶段的末速度即为匀减速阶段的初速度,因此有 ''at a t = (1分)∴11.5' 2.3'5a t t t t a === (1分)图172211''22L at a t =+ (1分)∴ 1.03()t s === (1分)(2)另解:设力F 作用的最短时间为t ,相应的位移为s ,物体到达B 处速度恰为0,由动能定理[cos37(sin37)]()0F mg F s mg L s μμ︒--︒--= (2分)∴0.5210206.06()(cos37sin 37)30(0.80.50.6)mgL s m F μμ⨯⨯⨯===︒+︒⨯+⨯ (1分)由牛顿定律cos37(sin37)F mg F ma μ︒--︒= (1分)∴2(cos37sin 37)30(0.80.50.6)0.51011.5(/)2F a g m s m μμ︒+︒⨯+⨯=-=-⨯=(1分) ∵212s at = (1分)1.03()t s ===15. 解析:(1)粘合后的两球飞出轨道后做平抛运动,竖直方向分运动为自由落体运动,有2122R gt =①解得t =②(2)设球A 的质量为m ,碰撞前速度大小为v 1,把球A 冲进轨道最低点时的重力势能定为0,由机械能守恒定律知 22111222mv mv mgR =+ ③ 设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知 122mv mv = ④ 飞出轨道后做平抛运动,水平方向分运动为匀速直线运动,有 22R v t = ⑤综合②③④⑤式得 2v = 16.(1)5mg (2) 14R。