第17章习题 非线性电路
- 格式:doc
- 大小:342.00 KB
- 文档页数:9
第17章 非线性电路勤学 务实 园融 卓越宋绍民1本章内容提要 概述 非线性电阻 非线性电容和非线性电感 非线性电路的方程 小信号分析法 分段线性化分析法 补充内容Circuit Analyse21、非线性电路概述1、非线性元件与非线性电路9 非线性元件:参数随着电压或电流而变化(即参数与电压或电流有关)的电路元件。
9非线性电路:至少含有一个非线性元件的电路。
2、研究非线性电路的意义9 实际电路元件和实际电路本质上都具有非线性,若忽略其非线性特征,则发生在电路中的某些物理现象将无法得以解释,因而非线性电路的研究具有 重要现实意义。
3、研究非线性电路的依据9 同线性电路一样,分析非线性电路基本依据仍然是KCL、KVL和元件的伏安特性。
Circuit Analyse32、非线性电阻1、非线性电阻的概念9 定义:伏安关系不满足欧姆定律而遵循某种特定的非线性函数关系的元 件,元件参数随电压或电流变化。
9 电路符号:i +R u –如 u=f (i)i0Circuit Analyseu42、非线性电阻2、非线性电阻的种类9 电流控制电阻: • 电阻两端电压是其电流的单值函数。
•伏安关系:u = f (i ) •对于同一电压,有多个电流值与之对应。
•例如,某些充气二极管就具有这样的特性。
9 电压控制电阻: • 电阻中电流是其两端电压的单值函数。
•伏安关系:i = f (u) •对于同一电流,有多个电压值与之对应。
•例如,某些隧道二极管就具有这样的特性。
Circuit Analyse N和S型都有一下倾段—电流随电压增大而减少i0“S”形特性曲线ui下 倾 段0“N”形特性曲线u52、非线性电阻9 单调型电阻: • 既是流控型又是压控型。
• 伏安关系:单调增长或单调下降。
•例如,PN结二极管就有这样的特性。
伏安特性: i = I s (e −1) u = kT ln( 1 i +1) q Isqu kTii + u – 0 u(1) (2)式中:k—波尔兹曼常数(1.38 ×10–23J/k); IS —常数,反向饱和电流; q — 电子电荷(1.6×10–19C); T — 热力学温度。
第十七章 非线性电路简介17.1 学习要点含有非线性元件的电路称为非线性电路。
本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。
要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。
17.2 内容提要 17.2.1 非线性电阻1.定义含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。
线性电阻元件的伏安关系满足欧姆定律Ri u =,在i u -平面上是一条通过原点的直线。
非线性电阻元件的伏安特性不满足欧姆定律,在i u -平面上不是直线。
非线性电阻元件的图形符号如图17.1(a )所示。
(1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为)(i f u = (17-1)它的典型伏安特性如图17.1(b )所示。
(2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为)(u g i = (17-2)它的典型伏安特性如图17.1(c )所示。
2.动态电阻非线性电阻元件在某一工作状况下(如图17.2中P 点)的动态电阻为该点的电(c)(a)(b)i图17.1uiu 0压对电流的导数,即didu R d =图17.2中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。
3.静态工作点如图17.3(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。
设非线性电阻的伏安特性如图17.3(b )所示,并可表示为式(17.2)。
根据KVL 和KCL ,对此电路列方程有 u i R U +=00或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图17.3(b )中直线AB 所示。
直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2),所以有:Q Q U I R U +=00 )(Q Q U g I =交点Q (U Q ,I Q )称为电路的静态工作点。
第十七章 非线性电路简介17.1 基本概念17.1.1 非线性元件与非线性电路 1. 非线性电阻(1) 定义:线性电阻的电压、电流关系是i u -平面上一条过原点的直线,否则称为非线性电阻,用函数)(i u u =或)(u i i =来表示。
(2) 分类:根据电压与电流的函数关系,非线性电阻可以区别成:电压控制型(电流是电压的单值函数,简称压控型)、电流控制型(电压是电流的单值函数,简称流控型)、单调型(电压是电流的单调函数)。
2. 非线性电感(1) 定义:线性电感的磁链、电流关系是i -ψ平面上一条过原点的直线,否则称为非线性电感,用函数)()(ψψψi i i ==或来表示。
(2) 分类:根据磁链与电流的函数关系,非线性电感可以区别成:电源控制型(磁链是电流的单值函数,简称流控型)、磁链控制型(电流是磁链的单值函数,简称链控型)、单调型(磁链是电流的单调函数)。
3. 非线性电容(1) 定义:线性电容的电荷、电压关系是u q -平面上一条过原点的直线,否则称为非线性电容,用函数)()(q u u u q q ==或来表示。
(2) 分类:根据电荷与电压的函数关系,非线性电容可以区别成:电压控制型(电荷是电压的单值函数,简称压控制)、电荷控制型(电压是电荷的单值函数,简称荷控制)、单调型(电荷是电压的单调函数)。
4. 非线性电路及其工作点用非线性方程描述的电路称为非线性电路,通常是指含有非线性元件的电路;不含动态元件的非线性电路称为非线性电阻电路,描述非线性电阻电路的方程是非线性代数方程;含有动态元件的非线性电路称为非线性动态电路,描述非线性动态电路的方程是非线性微分方程。
工作点:非线性电路的直流解称为工作点,它对应特性曲线上的一个确定位置。
5. 非线性元件的静态参数和动态参数(1) 静态参数:工作点与原点相连的直线的斜率,即:静态电阻:)()(Q i Q u RQ=,静态电感:)()(Q i Q L Q ψ=,静态电容:)()(Q u Q q C Q=。
第17章非线性电路17.1 复习笔记一、非线性电阻若电阻元件的伏安关系为非线性的,即称为非线性电阻元件。
图形符号及伏安函数关系如图17-1-1和图17-1-2所示。
图17-1-1 非线性电阻符号图17-1-2 伏安特性(流控电阻)1.非线性电阻元件分类(1)流控型电阻,u=g(i);(2)压控型电阻,i=f(u);(3)既是流控又是压控型的电阻(单调型),u=g(i),i=f(u);(4)既不是流控型又不是压控型的电阻。
2.静态电阻与动态电阻(如图17-1-3所示)静态电阻R=u/i=tanα动态电阻动态电导图17-1-33.非线性电阻的串联与并联若串联的非线性电阻均为流控型,如u1=g1(i),u2=g2(i),则等效非线性电阻的伏安特性为u=u1+u2=g1(i)+g2(i)(流控型)若并联的非线性电阻均为压控型的,如i1=f1(u),i2=f2(u),则等效非线性电阻的伏安特性为i=i1+i2=f1(u)+f2(u)(压控型)二、非线性电容若电容元件的库伏关系为非线性的,则称为非线性电容元件。
电路符号如图17-1-4所示。
图17-1-41.非线性电容元件分类(1)压控型电容元件,q=f(u);(2)荷控型电容元件,u=g(q);(3)单调型电容元件。
2.参数静态电容动态电容三、非线性电感若电感元件的韦安关系为非线性的,即称为非线性电感元件,电路符号如图17-1-5所示。
图17-1-51.非线性电感元件分类(1)流控型电感元件,ψ=f(i);(2)磁控型电感元件,i=g(ψ);(3)单调型电感元件。
2.参数静态电感动态电感四、非线性电路非线性电路的小信号分析:由于非线性元件的参数不等于常数,因此分析时不能用叠加定理和齐性定理。
分析线性电路的基本理论依据依然是基尔霍夫定律。
1.小信号分析法(1)绘出直流电路,求出直流偏置电压作用时电路的直流工作点(U Q,I Q)(或待求量);(2)根据非线性元件的伏安特性求出对于工作点处的电导;(3)绘出电路的小信号模型电路,计算出相应的待求量;(4)将直流分量与小信号分量叠加起来。
第十七章 非线性电路简介◆ 重点:1、含有单个非线性电阻的电路的分析◆ 难点:1、 非线性电路的小信号分析法2、 求解简单非线性电路的三种方法3、 理解牛顿-拉夫逊算法的意义及使用分析非线性电阻电路的基本依据与分析线性电阻电路一样,依旧是克希霍夫定律。
在本书中,我们只讨论非线性非时变电阻电路。
本章只讨论一些简单的非线性电阻电路,为学习电子电路及进一步学习非线性电路理论提供基础,至于一般的非线性电阻电路的分析方法,超出了本书的范围。
有兴趣的同学可以参考相关的书籍。
17.1 非线性电阻元件在实际生活中,线性是相对的,非线性是绝对的。
研究非线性现象,具有十分重要的意义。
在本章中,我们主要介绍非线性电阻元件。
17.1.1 非线性电阻的定义所谓非线性电阻,是这样一种元件,其伏安关系可以用通过原点的遵循某种特定非线性关系,且该关系并不随着电路中的状态变化而变化。
在电子线路中,二极管与三极管是典型的非线性元件,如隧道二极管,其伏安关系为17.1.2 非线性电阻的分类u u 图17-1 非线性电阻的分类17.1.3 静态电阻与动态电阻一、静态电阻αtg i uR ==二、动态电阻βtg didu R d ==工作点i 图17-2 非线性电阻的静态电阻与动态电阻注意在该图中,实际上其静态电阻值为正,而动态电阻值为负值。
所谓“负电阻”是可以发出能量的理想元件,在本书中,并未讨论。
17.2 含有单个非线性电阻的电路的分析17.2.1 分析方法含有单个非线性电阻的电路,可以将原电路看成是两个单口网络组成的网络:其一为电路的线性部分,另一个为电路的非线性部分(只含有一个非线性电阻)12图17-2(a) 非线性电路分析示意图N 1 N 2 图17-2(b) 非线性电路分析示意图对于网络N 1,而言,其输出伏安关系为:i R u u o oc -=,而对于仅含一个非线性电阻的网络 N 2而言,其元件的伏安关系为:)(u f i =。
第十七章非线性电路简介学习要点含有非线性元件的电路称为非线性电路。
本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。
要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。
内容提要非线性电阻1.定义含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。
线性电阻元件的伏安关系满足欧姆定律Riu=,在iu-平面上是一条通过原点的直线。
非线性电阻元件的伏安特性不满足欧姆定律,在iu-平面上不是直线。
非线性电阻元件的图形符号如图(a)所示。
(1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为)(ifu=(17-1)它的典型伏安特性如图(b)所示。
}(2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为)(ugi=(17-2)它的典型伏安特性如图(c)所示。
2.动态电阻(c) (a)(b)图u非线性电阻元件在某一工作状况下(如图中P 点)的动态电阻为该点的电压对电流的导数,即didu R d =图中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。
3.静态工作点如图(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。
设非线性电阻的伏安特性如图(b )所示,并可表示为式()。
根据KVL 和KCL ,对此电路列方程有 u i R U +=00\或 i R U u 00-= (17-3)是虚线方框一侧的伏安特性,如图(b )中直线AB 所示。
直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2),所以有:Q Q U I R U +=00 |)(Q Q U g I =交点Q (U Q ,I Q )称为电路的静态工作点。
由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解iR U u 00-=(b)g (u )((a)图图及非线性电阻的伏安特性式)求出。
小信号分析法1.适用范围求解非线性电路有多种方法,如小信号分析法、分段线性化法等。
如果电路中有作为偏置电压的直流电源U 0作用,同时还有时变输入电压)(t u S 作用,如图(a ),并且在任何时刻有)(0t u U S 》,则把)(t u S 称为小信号电压,分析此类电路即可用小信号分析法。
2.解题步骤(1)求静态工作点;(2)求动态电阻)(或动态电导d dG R ; (3)画出小信号等效电路并由此求出微小偏差量; (4)求出电路的全解(静态工作点的值加微小偏差量)。
】例 题例 如图 (a),已知:A 10=S I ,A cos t i S ω=,Ω=10R ,非线性电阻的伏安特性为 )0( 22>=u u i ,试用小信号分析法求电压u 。
解:(1)求静态工作点 在图(a )中,0=S i 时,Q Q S u I I R +=又因为22 (0)Q Q Q I u u =>,联立二式并代入已知值得01022=-+Q Q U U ,解得 V 2=Q U A 4=Q I+"(b)-(a)*u 1图(2)求d G 动态电导s 8222=⨯====Q U u d u dudiG 或 Ω=81d R:(3)画出小信号等效电路如图(b )(4)由小信号等效电路可得微小偏差量V cos 91) //R (R d 01t i u S ω=⨯= %电路的解为112cos 9Q u U u t ω=+=+()V 例 如图(a),已知:V 250=U ,V sin t u S =,Ω=20R , 非线性电阻的伏安特性为 i i u 2513-=(0>i ),试用小信号分析法求电流i 。
解:(1) 求静态工作点 在图(a )中,0=S u 时,00U U I R Q Q =+ 即 252=+Q Q U I又因为 Q Q Q I I U 2513-= , 联立二式解得A 5=Q I (V 15=Q U )](2) 求d R 动态电阻Ω=-=== 1325352i d i di du R +(b)-@(a)u 1图+-(a)图u 1 (b)(3) 画出小信号等效电路如图(b ) (4) 由小信号等效电路可得微小偏差量A sin 151) R (R /d 01t u i S =+= 电路的解为115sin 15Q i I i t =+=+()A 习题选解如果通过非线性电阻的电流为A cos )(t ω,要使该电阻两端的电压中含有 4ω角频率的电压分量,试求该电阻的伏安特性,写出其解析表达式。
解: 由题意知,非线性电阻中的电流为A cos )(t i ω=#而 222cos4 2cos (2)12[2cos 1]1t t t ωωω=-=--()() )(cos 8)(8cos -1 42t t ωω+=因此若非线性电阻的伏安关系为42881i i u +-=则该电阻两端的电压的角频率为 4ω。
该题表明非线性电阻元件在电路中具有倍频作用。
例题: 设有一非线性电阻,其伏安关系为32)(i i i f u +==(1)、分别求出m A 10A 1021==i i 、时对应的电压21u u 、的值; (2)、设)(2112i i f u +=,问12u 是否等于)(21u u + 解: (1)A 101=i 时V 102010 10231=+⨯=um A 102=i 时0.020001V )10( 1023-222=+⨯=-u从上述结果看出V 10201=u 远大于20V ,0.020001V 2=u 与很接近,这表明如果把这个电阻作为2Ω线性电阻,当电流较小时,引起的误差不大。
(2)假设)(2112i i f u += 则)3 )322))221212121213223113212112i i i i u u i i i i i i i i i i i i u +++=+++++=+++=((((不等于)(21u u +。
这表明非线性电阻元件不满足叠加定理。
写出图示电路的结点电压方程,假设电路中各非线性电阻的伏安特性为2/333222311,,u i u i u i ===。
解:由KCL 对结点a ,b 列出方程(2)4(1) 123221=+-=+i i i i将各支路电流用结点电压表示2/32/33322223311)(bb a au u i u u u i u u i ==-====。
将上述各支路电流代入到方程式(1)和(2)中,得3223/2()12()4a ab a b bu u u u u u+-=--+=可见,电路的方程为一组非线性的代数方程。
题图如题图(a)所示,已知:V 50=U ,cos V S u t ω=(t )(),Ω=20R , 非线性电阻的伏安特性为:32i i u += (0>i ),现已知当 0=)(t u S 时,回路中的电流为1A 。
如果) ( cos t t u S ω=)(V ,试用小信号分析法求回路中的电流i 。
解:(1) 由已知电路的静态工作点为 1=Q I A(2) 工作点的d R 动态电阻为Ω=+====53212i I i d i didu R Q(3) 画出小信号等效电路如题图(b ) (4) 由小信号等效电路可得微小偏差量10d1/(R R )cos( )A 7S i u t ω=+=(t ) 所以原电路中的总电流为11[1cos( )]7Q i I i t ω=+=+ A(a)题图 (b)如题图(a)所示,已知:V 90=U , Ω=20R , 非线性电阻的伏安特性为312 V 3u i i =-+,如果t t u S cos =)(V ,试求电流i 。
解:(1) 求电路的静态工作点令0=)(t u S ,由KVL 得 00U u i R =+再将非线性电阻的伏安特性312 3u i i =-+,代入到上式中,得9 31223=+-i i i解得A 3=Q I , V 3=Q U(2) 工作点的动态电阻为Ω=-==== 7232i I i d i didu R Q(3) 画出小信号等效电路如题图(b ) (4) 由小信号等效电路可得微小偏差量10d1/(R R )cos A 9S i u t =-+=-(t ) 所以原电路中的总电流为11cos 9Q i I i t =+=-(3) A—(a)题图 (b)。