九年级数学(说课稿)垂径定理
- 格式:doc
- 大小:73.00 KB
- 文档页数:9
《垂径定理》案例分析张小飞一、教材分析1、内容地位:从知识体系上看,《垂径定理》是义务教育新课程标准人教版九年级(上册)第三章内容,是在学生学习了《旋转与中心对称》之后,对特殊的中心对称图形圆的深度学习的过程,是学生学习了圆的基本概念之后,对圆的基本性质的新探究。
是中考的必考考点之一。
2、学习目标:(1)利用圆的对称性探究垂径定理。
(2)能运用垂径定理解决问题。
(3)全心投入,细心认真。
3、重点难点:学习重点:垂径定理的探究及运用。
学习难点:利用垂径定理解决问题。
二、学情分析1.学生心理特征:进入初三,学生思维活跃,求知欲强,对探索问题充满好奇,在课堂上有互相竞争的渴望,相比以前,他们有一定的知识储备,但学习积极性有所减退,自我意识增强。
2.学生认知基础:在学习本节之前,学生已经学习了《圆的基本概念》,明确了直径、弦等基本概念,会运用轴对称的性质解决问题,学习了勾股定理,具备了进一步学习《垂径定理》的基本能力.3.学生活动经验基础:学生在之前的学习中,已明确了展示课的学习程序,并能利用学案,准备展示,变式训练,归纳方法,灵活运用,具备了学习活动的经验基础.三、教法学法分析教法分析:针对学生的认知水平和心理特征,在本节课,我将指导学生在小组合作的学习氛围中开展小组展示,有组织、有目的、有针对性的引导学生积极参与教学活动,并鼓励学生采用自主探索、合作交流的学习方式,在观察、思考、运用的过程中,养成全面、有序的思考问题的习惯学法分析:作为一节展示课,学生将在教师的带领下经历明确目标、温故知新、准备展示、展示所学、巩固提升等过程,培养学生独学静思、有效交流、积极合作、大胆展示的良好学习习惯。
四、教学过程及大致时间分配(1)明确目标、(1分钟)目标出示在黑板上,教师引导学生理解(2)温故知新(3分钟)采用个别提问的方式,复习基本知识点,为扎实做充分准备(3)分配任务,准备展示(5分钟)教师分配展示的任务,并指导学生做展示的前期准备。
垂径定理说课稿一、说教材《垂径定理》是初中数学几何学中的一个重要内容,它位于平面几何的核心部分,起着承前启后的作用。
本文在课文中主要讲述了圆的弦、直径、半径以及垂直于弦的直径(即垂径)之间的基本关系。
垂径定理不仅是对学生空间观念培养的深化,而且为后续学习相似三角形、圆的相关性质和定理奠定了基础。
本文的作用主要体现在以下几方面:1. 加深学生对圆的基本性质的理解,尤其是直径和半径在圆中的特殊地位。
2. 通过垂径定理的学习,使学生掌握几何图形中线的性质,提高解决问题的能力。
3. 培养学生的逻辑思维能力和空间想象能力。
主要内容概述:1. 垂径定理的表述:圆的直径垂直于弦,并且把弦平分。
2. 垂径定理的证明:通过平面几何图形的构造和全等三角形的性质来证明。
3. 垂径定理的应用:解决弦、半径、直径之间的关系问题,以及与圆相关的复杂问题。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:- 掌握垂径定理的基本内容,理解其几何意义。
- 能够运用垂径定理解决实际问题,如弦长、圆半径的计算等。
- 学会通过作图和证明来加深对定理的理解。
2. 过程与方法:- 通过直观演示和实际操作,让学生经历探索和发现定理的过程。
- 培养学生通过观察、分析、归纳、推理等数学思维解决问题的能力。
3. 情感态度价值观:- 激发学生对几何学的学习兴趣,增强对数学美的感知。
- 培养学生的合作意识和团队精神,在学习中互相帮助,共同进步。
三、说教学重难点教学重点:- 垂径定理的表述、证明和应用。
- 通过几何图形的分析,理解直径与弦垂直、平分弦的内在联系。
教学难点:- 如何引导学生从直观的图形中抽象出垂径定理。
- 如何指导学生通过严密的逻辑推理完成定理的证明。
- 如何帮助学生将垂径定理灵活运用于解决实际几何问题。
这些重难点的处理需要教师在教学过程中进行细致的引导和设计,确保学生能够扎实掌握垂径定理的内涵和应用。
四、说教法在教学《垂径定理》这一课时,我计划采用以下几种教学方法,旨在提高教学效果,突出教学亮点:1. 启发法:- 我将通过提问和引导,激发学生的好奇心和探究欲。
2024垂径定理说课稿范文今天我说课的内容是《2024垂径定理》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《2024垂径定理》是高中数学教材中的一部分,属于几何与图形的知识点。
它是在学生已经学习了平面几何的基本概念和定理的基础上进行教学的,是高中数学中的重要知识点,对于几何问题的解题和证明有着重要的应用价值。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的几何知识,我制定了以下三点教学目标:①认知目标:理解2024垂径定理的含义和应用,掌握相关的几何性质和定理。
②能力目标:能够运用2024垂径定理解题,并进行相关证明。
③情感目标:培养学生对几何学的兴趣和热爱,增强学习主动性和探究精神。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解2024垂径定理的含义和应用,掌握相关的几何性质和定理。
难点是:运用2024垂径定理进行证明和解题。
二、说教法学法在几何学习中,学生需要通过观察、发现和证明来深入理解几何问题。
因此,这节课我采用的教法:引导探究法,激发学生的探究欲望;学法是:合作学习法,让学生通过小组合作来解决问题和交流思路。
三、说教学准备在教学过程中,我准备了几何工具箱、小组活动的材料以及多媒体设备。
通过展示几何工具和图形,以及使用多媒体辅助教学,可以更好地激发学生的学习兴趣,加深他们对几何概念和定理的理解。
四、说教学过程根据本节课的教学目标和教学内容,我设计了以下教学环节。
环节一、谈话引入,导入新课。
在课堂开始之前,我会通过几何问题引起学生的思考和讨论:如果一个三角形的三条高线相交于一个点,这个点有什么特殊的性质?让学生通过图形观察和思考,发现垂直的概念和三角形的性质。
然后,我会引入本节课的主题2024垂径定理,并与学生一起探讨这个定理与垂直的关系。
环节二、引导探究,理解定理。
在学生理解垂直的基础上,我会给学生一个问题:如果一个四边形的两条对角线互相垂直,它有什么特殊的性质?通过讨论和示意图的展示,引导学生发现2024垂径定理的含义和应用。
北师大版数学九年级下册3.3《垂径定理》说课稿一. 教材分析北师大版数学九年级下册3.3《垂径定理》是本节课的主要内容。
这一节内容是在学生已经学习了直线、圆的基本概念和性质的基础上进行教学的。
教材通过引入垂径定理的概念,让学生了解并掌握圆中的一些重要性质,为学生后续学习圆的其它性质和解决与圆相关的问题打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对直线、圆的基本概念和性质有一定的了解。
但是,对于垂径定理的理解和运用还需要通过本节课的学习来提高。
此外,学生的空间想象能力和逻辑思维能力还需要进一步培养。
三. 说教学目标1.知识与技能:让学生理解和掌握垂径定理,并能够运用垂径定理解决一些与圆相关的问题。
2.过程与方法:通过观察、分析、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:理解和掌握垂径定理。
2.教学难点:如何引导学生运用垂径定理解决实际问题。
五. 说教学方法与手段在本节课的教学中,我将采用问题驱动法、合作交流法和直观演示法等教学方法。
问题驱动法能够激发学生的思考,培养学生的逻辑思维能力;合作交流法能够培养学生的团队合作意识;直观演示法能够帮助学生更好地理解垂径定理。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考圆中的一些性质,激发学生的学习兴趣。
2.新课导入:介绍垂径定理的定义和性质,让学生通过观察和分析来理解垂径定理。
3.案例分析:通过一些具体的例子,让学生学会如何运用垂径定理解决实际问题。
4.巩固练习:设计一些练习题,让学生进一步巩固对垂径定理的理解和运用。
5.课堂小结:引导学生总结本节课的学习内容,加深对垂径定理的理解。
6.课后作业:布置一些相关的作业,让学生在课后继续巩固和提高。
七. 说板书设计板书设计主要包括垂径定理的定义、性质和运用。
通过板书,让学生一目了然地了解垂径定理的主要内容。
垂径定理说课稿9篇一.教学任务及对象分析:1.教材分析:本节是鲁教版九年级下册第五章第三节的内容,研究的是圆的一个重要定理———垂径定理,它探究的是垂直于弦的直径与弦以及弦所对的两条弧之间的关系,是以后在证明圆中线段相等,角相等,弧相等,以及直径与弦垂直有关问题的重要依据,也是在圆中进行有关计算的重要依据,所以本节课的内容在本章的学习中有着举足轻重的作用。
2.学生情况分析:学生已经学过轴对称的有关知识,有能力通过轴对称来探索垂径定理;学生也学过全等三角形以及等腰三角形的有关知识,所以容易将垂径定理的推理过程表达清楚。
并且在平时的学习过程中,学生已经掌握探究图形性质的手段和方法,具备几何定理的分析,探索和证明的能力。
二.教学目标分析:1.知识与技能:探索并证明垂径定理;会运用垂径定理进行有关证明和计算2.过程与方法:学生通过动手操作,认真观察,培养学生分析问题和解决问题的能力;通过垂径定理的探索和证明发展学生的推理能力。
3.情感态度与价值观:在教学过程中,培养学生的合作精神,严谨的学习态度,并对学生进行爱国教育,增强民族自豪感。
三.教学重难点分析:教学重点:垂径定理以及推论的探索与证明,利用垂径定理以及推论解决有关问题。
教学难点:证明垂径定理与推论的推理过程。
四.教学策略:直观演示,引导发现,合作学习五.教学设计:第一环节:情境导入,激疑引趣:出示赵州桥图片:它的桥拱是圆弧形,它的跨度为37.4m,拱高为7.2m,求桥拱所在圆的半径?学生活动:思考1分钟,小组成员交流一下经验。
教师活动:学习完本节课的内容,这个问题就很容易解决。
设计意图:1.对学生进行传统文化教育,产生民族自豪感。
第二环节:尝试诱导,发现定理:1.定理的引出:教师活动:AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M(1)此图是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你的理由。
拿出你做好的纸片,折一折,你会有什么发现?学生活动:小组活动,折叠手中的纸片,观察图中的等量关系。
垂径定理说课稿八达岭中学郭立华一、教材分析:1、教材所处的地位:本节教材是在学生学习了圆的有关性质和过三点的圆等内容之后对垂直于弦的直径和这弦的关系的进一步学习`,研究的是垂直于弦的直径和这弦的关系。
垂径定理的推证是以轴对称图形的性质和圆是轴对称图形的性质为依据的。
本节内容是本章基础,是圆的有关计算和圆的有关证明一个重要工具。
本节课的学习也为下节课奠定基础。
2、教学内容:本节课是初中数学《垂直于弦的直径》的垂径定理的证明和基本应用。
第二课时将学习研究垂径定理的推论和基本应用。
第三课时将学习研究垂径定理及其推论的综合应用。
3、教学目的要求:(1)使学生记住垂径定理的题设和结论。
(2)使学生掌握垂径定理的证明。
(3)使学生掌握能垂径定理进行计算或简单的证明。
(4)使学生懂得研究问题的常用方法:从特殊到一般,由猜测到论证。
4、教学重点和难点:(1)重点:掌握应用垂径定理进行计算或简单的证明。
难点:(1)区分垂径定理的题设和结论。
(2)应用垂径定理进行计算或简单的证明。
(3)研究问题的常用方法:从特殊到一般,由猜想到论证。
二.教法、学法分析----注重学生建构习惯的培养,提高学生的数学素质1、教法研究本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、学法研究“赠人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
冀教版数学九年级上册《28.4 垂径定理》说课稿2一. 教材分析冀教版数学九年级上册《28.4 垂径定理》是本册教材中的一个重要内容。
它主要介绍了垂径定理及其应用。
本节课的内容是在学生已经掌握了直线、圆的基本概念和性质的基础上进行学习的,为学生进一步学习圆的方程和其他圆的定理奠定了基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们已经掌握了基本的几何图形的性质和判定方法。
但是,对于一些抽象的概念和定理,他们仍然需要通过具体的实例和操作来理解和掌握。
因此,在教学过程中,我将会注重通过引导学生观察、思考、操作来发现和总结垂径定理。
三. 说教学目标1.知识与技能目标:让学生理解和掌握垂径定理的内容,并能够运用垂径定理解决一些简单的问题。
2.过程与方法目标:通过观察、思考、操作等过程,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们的自主学习能力和合作精神。
四. 说教学重难点1.教学重点:理解和掌握垂径定理的内容及其应用。
2.教学难点:如何引导学生发现和总结垂径定理,并能够灵活运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法和手段:1.引导法:通过提问、引导,激发学生的思考,帮助他们发现和总结垂径定理。
2.实例法:通过具体的实例,让学生观察和操作,加深对垂径定理的理解和应用。
3.互动法:学生进行小组讨论和交流,促进学生之间的合作和思考。
六. 说教学过程1.导入:通过复习直线、圆的基本概念和性质,为学生引入垂径定理的学习。
2.引导发现:提出问题,引导学生观察和思考,发现垂径定理。
3.讲解与演示:对垂径定理进行详细的讲解和演示,让学生理解和掌握。
4.练习与应用:布置一些相关的练习题,让学生运用垂径定理进行解答。
5.总结与反思:让学生总结本节课的学习内容,并进行反思。
七. 说板书设计板书设计如下:定义:如果一条直线垂直于一个圆的直径,那么这条直线也垂直于圆的半径。
浙教版数学九年级上册《3.3 垂径定理》说课稿2一. 教材分析《垂径定理》是浙教版数学九年级上册第三章第三节的内容。
这一节主要介绍了圆中的一个重要定理——垂径定理。
垂径定理是指:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
这个定理在解决与圆相关的问题时非常有用,是圆的基本性质之一。
在教材中,垂径定理是通过探究活动来引导学生发现的。
首先,学生通过观察和动手操作,发现垂直于弦的直径能够平分弦。
然后,学生通过推理和证明,得出垂径定理的一般性结论。
这样的设计既有利于学生直观地理解垂径定理,又能培养学生的观察能力、动手能力和推理能力。
二. 学情分析九年级的学生已经学习了初中数学的大部分内容,对数学的基本概念、基本性质和基本定理有一定的了解。
他们在学习垂径定理之前,已经学习了圆的基本概念、圆的性质和圆的运算。
这些知识为基础,学生应该能够顺利地学习垂径定理。
然而,九年级的学生在学习过程中可能会遇到一些问题。
首先,垂径定理的概念比较抽象,学生可能难以理解和接受。
其次,证明过程需要一定的逻辑推理能力,学生可能在这方面遇到困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生理解和掌握垂径定理。
三. 说教学目标1.知识与技能目标:学生能够理解垂径定理的内容,并能够运用垂径定理解决与圆相关的问题。
2.过程与方法目标:学生通过观察、动手操作、推理和证明等过程,培养观察能力、动手能力和推理能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服学习中的困难,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解并掌握垂径定理的内容。
2.教学难点:学生能够运用垂径定理解决与圆相关的问题,并能够进行推理和证明。
五. 说教学方法与手段在教学过程中,我将采用以下方法和手段:1.探究法:引导学生通过观察、动手操作、推理和证明等方法,自主发现和理解垂径定理。
2.讲解法:在学生自主探究的基础上,进行讲解和解释,帮助学生理解和掌握垂径定理。
垂径定理说课稿垂径定理说课稿2篇作为一位杰出的教职工,有必要进行细致的说课稿准备工作,通过说课稿可以很好地改正讲课缺点。
那么问题来了,说课稿应该怎么写?以下是小编收集整理的垂径定理说课稿,仅供参考,希望能够帮助到大家。
垂径定理说课稿1一、教材分析:(一)教材的地位与作用本节课圆的性质的重要体现,是圆的轴对称性的具体化,也是今后证明线段等、角等、弧等、垂直关系的重要依据,同时也为圆的计算和作图提供了方法和依据,所以它在教材中处于举足轻重的位置。
另外,本节课通过“实验——观察——猜想——合作交流——证明”的途径,进一步培养学生的动手能力,观察能力,分析、联想能力、与人合作交流的能力,同时利用圆的轴对称性,可以对学生进行数学美的教育。
因此,掌握垂径定理对学生更好地认识现实世界,建立空间观念、培养推理论证能力具有十分重要的作用。
(二)教学目标根据《数学课程标准》对这部分知识的要求及本课的特点,结合学生的实情,本节课的教学目标确定为:(1)知识与技能目标使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。
培养学生观察能力、分析能力及联想能力。
(2)过程与方法目标在实验过程中,培养学生观察、联想、猜测、推理、探索发现新知识的能力和创新思维、创新想象的能力。
通过分组训练、深化新知,共同感受收获的喜悦。
(3)情感与态度目标在解决问题过程中,培养学生敢于面对挑战和善于克服困难的意志,鼓励学生大胆尝试,勇于探索,从中获得成功的经验,充分享受数学之美,从而体验学习数学的乐趣。
知识与技能目标固然重要,对于本节课:过程与方法和情感与态度更重要,因为这部分是几何教学的重点,是由实验几何向论证几何的过渡,过程与方法可以帮助学生学会认识事物、分析问题的方法;有良好的情感态度能培养好的学习兴趣,养成好的学习习惯。
(三)教学重点和难点教学重点:垂径定理及其应用。
(由于垂径定理的题设与结论比较复杂,很容易混淆遗漏,所以,对垂径定理的题设与结论区分是难点之一,同时,对定理的证明方法“叠合法”学生不常用到,是本节的又一难点。
初中数学什么是垂径定理
垂径定理是初中数学中的一个重要定理,它涉及到圆的直径和垂直关系。
下面我将详细介绍垂径定理的定义、性质和相关的概念。
1. 垂径定理的定义:
-垂径定理:如果一条线段垂直于一条直径,并且与直径的两个端点相交,那么这条线段与圆的边界上的两个交点连线所得的弦一定也是垂直于这条直径。
2. 垂径定理的性质:
-垂直关系:垂径定理表明,如果一条线段垂直于圆的直径,并且与直径的两个端点相交,那么这条线段与圆的边界上的两个交点连线所得的弦一定也是垂直于这条直径。
-直径与垂直弦的关系:垂径定理还表明,直径与垂直于它的弦是垂直的。
3. 垂径定理的应用:
-判断垂直关系:根据垂径定理,可以通过判断一条线段是否垂直于圆的直径来判断这条线段与圆的边界上的两个交点连线所得的弦是否垂直于这条直径。
-求解问题:根据垂径定理,可以在已知一条线段垂直于圆的直径,并且与直径的两个端点相交的情况下,得到与这条线段所得的弦垂直的弦。
垂径定理是圆的直径和垂直关系之间的重要定理,它可以帮助我们判断垂直关系和求解相关问题。
在应用垂径定理时,需要注意理解垂径定理的定义和性质,并运用几何知识进行推理和分析。
希望以上内容能够满足你对垂径定理的了解。
冀教版数学九年级上册《28.4 垂径定理》说课稿1一. 教材分析冀教版数学九年级上册《28.4 垂径定理》这一节,主要介绍了垂径定理及其应用。
垂径定理是指:圆中,垂直于弦的直径平分弦,并且平分弦所对的两条弧。
这一定理是圆的基本定理之一,对于解决与圆相关的问题具有重要意义。
在教材中,通过引入实例,让学生通过观察、思考、推理等过程,发现并证明垂径定理,进而运用垂径定理解决实际问题。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和推理已经有了初步的认识。
但是,对于圆的相关知识,尤其是垂径定理的理解和应用,还需要进一步的引导和培养。
因此,在教学过程中,需要充分考虑学生的认知水平,设计合适的学习任务,引导学生通过观察、实践、推理等途径,发现并理解垂径定理。
三. 说教学目标1.知识与技能:让学生掌握垂径定理的内容,能够运用垂径定理解决实际问题。
2.过程与方法:培养学生通过观察、实践、推理等方法发现和证明数学定理的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:垂径定理的证明和应用。
2.教学难点:理解并证明垂径定理中的关键步骤,如圆中弧、弦、圆心角的关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等,引导学生主动探索、发现和证明垂径定理。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,直观展示圆的性质和垂径定理的应用。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引导学生思考圆的性质,激发学生的学习兴趣。
2.新课导入:介绍垂径定理的定义和意义,引导学生观察和分析实例,发现垂径定理。
3.证明垂径定理:引导学生通过观察、推理、证明等过程,理解并证明垂径定理。
4.应用垂径定理:通过一些实际问题,让学生运用垂径定理解决问题,巩固所学知识。
5.练习与拓展:设计一些练习题,让学生进一步巩固垂径定理,并尝试解决更复杂的问题。
垂径定理说课稿等奖尊敬的各位评委老师:大家好!今天我说课的内容是垂径定理。
一、教材分析垂径定理是圆这一章节中的重要定理之一,它揭示了圆中弦、直径、弧之间的特殊关系,为解决圆的相关计算和证明问题提供了有力的工具。
在教材的编排上,垂径定理是在学生已经学习了圆的基本概念和性质之后引入的,既是对前面知识的深化和应用,也为后续学习圆的其他定理和相关计算打下了基础。
二、学情分析学生已经具备了一定的逻辑思维能力和几何图形的认知基础,但对于较为抽象的定理推导和应用可能还存在一定的困难。
因此,在教学过程中,需要通过直观的演示和引导,帮助学生理解和掌握垂径定理。
三、教学目标1、知识与技能目标理解垂径定理的内容。
能够熟练运用垂径定理进行相关的计算和证明。
2、过程与方法目标通过观察、猜想、证明等活动,培养学生的逻辑推理能力和创新思维能力。
经历垂径定理的探究过程,体会转化、分类讨论等数学思想方法。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索的精神。
通过小组合作学习,培养学生的合作意识和团队精神。
四、教学重难点1、教学重点垂径定理的内容及其证明。
垂径定理的应用。
2、教学难点垂径定理的证明过程。
垂径定理应用中辅助线的添加。
五、教法与学法1、教法讲授法:讲解垂径定理的概念和证明过程,使学生形成清晰的知识体系。
演示法:通过多媒体演示和实物操作,帮助学生直观地理解垂径定理。
讨论法:组织学生进行小组讨论,引导学生自主探究,培养学生的合作能力和创新思维。
2、学法自主学习法:学生通过预习和自主思考,初步了解垂径定理的内容。
合作学习法:学生在小组合作中,共同探讨垂径定理的证明和应用,相互交流,共同提高。
练习法:学生通过做练习题,巩固所学知识,提高运用垂径定理解决问题的能力。
六、教学过程1、导入新课展示一张圆形的图片,提出问题:如何测量圆的直径?如何求出圆中弦的长度?引发学生的思考,从而引出本节课的课题——垂径定理。
2、探究新知(1)通过多媒体演示,将圆沿着一条直径对折,让学生观察重合的部分,引导学生发现直径垂直平分弦。
垂径定理的说课稿一、说教材《垂径定理》是初中数学几何部分的重要内容,它处于平面几何教学中的核心地位。
本文主要介绍了垂径定理的基本概念、性质和应用,通过学习,学生可以掌握圆中直径垂直于弦的定理,理解并运用这一性质解决实际问题。
垂径定理不仅是解决几何问题的有力工具,而且有助于培养学生的空间想象能力和逻辑推理能力。
(1)作用与地位垂径定理是圆的基础知识中的重点,是连接圆的基本元素(如半径、弦、圆心角)之间关系的重要桥梁。
在初中数学教材中,垂径定理起到了承上启下的作用,既是对之前学习的圆的性质的深化,也为后续学习相似三角形、圆周角定理等内容打下基础。
(2)主要内容本文主要包含以下内容:1. 垂径定理的定义:圆中,如果一条直径垂直于一条弦,那么它平分这条弦,并且平分弦所对的两条弧。
2. 垂径定理的证明:通过几何画法和推理证明垂径定理的正确性。
3. 垂径定理的应用:解决与圆相关的实际问题,如求圆的半径、弦长、圆心角等。
二、说教学目标学习本课需要达到以下教学目标:1. 知识与技能目标:学生能够理解并掌握垂径定理的定义,能够运用垂径定理解决相关问题。
2. 过程与方法目标:通过观察、猜想、验证、运用等环节,培养学生的几何直观、逻辑推理能力和解决问题的能力。
3. 情感态度与价值观目标:激发学生对几何学习的兴趣,提高学生的数学素养,培养严谨、细致的学习态度。
三、说教学重难点(1)重点1. 垂径定理的定义及其证明。
2. 垂径定理在实际问题中的应用。
(2)难点1. 垂径定理的证明过程,特别是几何画法的运用。
2. 解决与垂径定理相关的问题时,如何将定理灵活运用。
在教学过程中,要充分关注学生的认知水平,针对重难点进行详细讲解和引导,确保学生能够真正理解和掌握垂径定理。
四、说教法在教学《垂径定理》这一课时,我计划采用以下几种教学方法,旨在提高教学效果,突出教学亮点。
1. 启发法:- 通过提出问题,引导学生主动思考和探索,例如:“在一个圆中,如果有一条弦被直径垂直平分,那么这条弦会有什么性质?”- 利用几何软件或实物模型,动态演示垂径定理的形成过程,激发学生的空间想象力和直观感受。
2020-2021学年
垂径定理
一.教学背景分析
1、学习任务分析
“垂径定理”是义务教育课程标准实验教科书《数学》(北师版)九年级下册第三章《圆》第3节的内容,第一课时学习了圆的相关概念,本课是学习圆的轴对称——垂径定理及其推论,在学习过程中让学生经历欣赏、动手实践、思考、归纳等数学探究活动,最终领悟圆的轴对称美。
“垂径定理”是圆的轴对称性的重要体现,同时也蕴含了线段、弧、等腰三角形等图形的轴对称性,是初中阶段轴对称中集大成者。
“垂径定理”也是我们计算和证明圆的相关问题的重要基石,并且通过探究“垂径定理及其推论”十分有益于培养学生实践创新能力和数学审美能力。
2、学生情况分析
学生已经学习了线段、等腰三角形等图形的轴对称性。
对轴对称性方面的数学直感已初步形成,同时也初步具备探究某些特殊图形的轴对称性的能力。
但学生仍然难以将数学直感提升到公理化定理化层面,仍然难以完美使用“折叠法”完成定理的证明。
3、重点难点的定位
教学垂点:垂径定理及其推论。
教学难点:(1)用“折叠法”证明垂径定理,
(2)领悟垂径定理中的对称美。
二.教学目标设计:
1.知识与技能目标:
使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。
培养学生观察能力、分析能力及联想能力。
2.过程与方法目标:
教师播放动画、创设情境,激发学生的求知欲望;学生在老师的引导下进行自主探索、合作交流,收获新知;通过分组训练、深化新知,共同感受收获的喜悦。
3.情感、态度与价值观:
对圆的轴对称美的始于欣赏,进而分析提升,直至最终领悟数学美。
从而陶冶学生情操,发展学生心灵美,提高数学审美力。
三.课堂结构设计:
《数学课程标准》强调,要创造性地使用教材,要求教师以发展的眼光来对待它。
因此,我在尊重教材的前提下,结合学情,对教材例题、习题作适当的处理,将本节课的课堂结构设计为以下四个环节:
1、欣赏美——营造问题情境
2、探究美——揭秘核心问题
3、徜徉美——问题变式发散
4、品味美——重建知识体系
课堂教学应以学生为主体,教师为主导。
在本节课的教学过程中我充分尊重学生已有的知识和方法,以培养能力为目的,让学生在“赏美”中进入,在“探美“中发展,在”品美“中提高。
以发展学生的思维为中心,以问题为载体,使学生在自主探究和合作交流的过程中真正理解和掌握垂径定理,并将知识转化为能力。
四.教学资源运用
心理学研究表明,在学生接受知识方面,视听结合能记住86。
3%,效果最佳。
因此,根据初中学生的心理特征和认知规律,我对教学媒体的利用进行了如下设计:
1、利用多媒体辅助教学
在欣赏美的环节中,我利用多媒体让学生观察圆的实物图片,充分让学生获得感性认识;在探究美时,我利用多媒体在动漫中演示图形的折叠过程;在徜徉美中,帮助学生利用感官理解图形及其变式的联系,在激发学生思维的同时,获得美的享受。
品味美时,我让学生上网查阅相关资料,利用网络平台加强学生对所学知识的理解, 拓宽学生视野,培养学生的创新能力。
2、常规媒体仍起主导作用
垂径定理及其问题的解答过程都在黑板上板书,充分展现数学知识的精彩发生、发展过程,充分地暴露学生认识中存在的问题和独特优胜之处。
因为数学是思维的体操,数学课是丰富多彩的动态生成而非僵硬不变的简单预设。
3、充分利用学生身旁现有的教学资源:
如组织学生玩找对称点游戏;看谁折得好;寻找身旁的轴对称图形等。
这些贴近学生认知领域而又充满情趣的活动,很好地活跃了学习气氛,使学生真正地融入到数学学习中来。
板书设计:
为使本课更具逻辑性和直观性,力争达到“简约而不简单“的境界,我将板书设计作了如下侧向处理:。