热交换器结垢的原因及处理方法
- 格式:docx
- 大小:96.29 KB
- 文档页数:4
供暖系统中板式换热器的清洗石金彤;燕彩霞【摘要】文章分析了供暖系统常见的运行故障、原因及危害,提出了板式换热器化学清洗的方法.【期刊名称】《内蒙古科技与经济》【年(卷),期】2010(000)007【总页数】3页(P95-97)【关键词】供热系统;板式换热器;水垢;污垢;化学清洗【作者】石金彤;燕彩霞【作者单位】包头市热力公司,内蒙古,包头,014010;包头市热力公司,内蒙古,包头,014010【正文语种】中文【中图分类】TK172目前在供暖系统中,以板式换热器为主体的换热设备已被广泛应用。
但在其使用过程中,由于系统中循环水质不良造成的板式换热器板片结垢,致使其换热效率下降的问题时有发生。
因此,选择合理的化学清洗方法就成为了提高设备换热效率和延长使用寿命的必要手段。
1 供暖系统常见运行故障的现象及产生的原因供暖系统在日常运行过程中,其循环水系统常会出现结垢、腐蚀和生物粘泥等现象,致使板式换热器换热效率下降、循环水流速、下降压降增大。
严重时将会影响系统的正常运行,并导致运行成本增大、供暖设备缩短甚至导致设备提前报废。
造成这些故障的主要原因有:①在供暖系统中特别是二次网系统中,板式换热器用水一般都采用未经处理的含有大量 Ca2+、Mg2+等成垢离子的自来水。
在实际生产过程中,常常采用添加防腐阻垢剂的办法降低自来水的硬度。
但同时又常因设备、运行管理不到位,致使防腐阻垢剂的添加不能达到要求,从而造成大量的 Ca2+、Mg2+从水中饱和析出沉积在换热器及管网内的金属面上而形成水垢;②补水中的泥沙及各种菌藻微生物进入循环水系统后,由于温度适宜而使得微生物生长繁殖,在系统中产生大量微生物粘泥,附着在换热器上并与水垢混合在一起形成生物性污垢;③水中的溶解氧和盐类对供暖系统的金属材质会产生氧腐蚀和化学腐蚀。
由于供暖系统是由多种金属材质组成的,在含有大量电解质盐类物质的水中,不同的金属间就形成了电偶和腐蚀电池,从而对供暖系统金属产生电化学腐蚀。
SNAM装置汽提塔冷却器结垢原因分析及除垢方法研究X李亚军1,周迎新1,陈 健2,吕瑞典2,尤文卿1(1.中石油塔里木油田石化分公司,新疆库尔勒 841000;2.西南石油大学,四川成都 610500) 摘 要:塔里木油田石化分公司引进的SNAM 尿素生产工艺中,使用的工艺冷凝液汽提塔冷却器为一板式换热器。
在使用过程中发现结垢比较严重,且结垢周期比较短,需要经常拆卸清洗。
这不仅影响正常生产,还可能会造成换热器使用性能的下降。
在检修中拆开换热器板片,发现结垢严重部分为冷侧,刮取板片上的污垢,通过X 射线衍射仪和X 射线荧光光谱仪分析,发现样品中所含主要化合物为石英(SiO 2)、方解石(CaCO 3)、磷酸钙(Ca 3(PO 4)2)以及MgCO 3。
分析了结垢成因,并提出了清洗换热器的措施。
关键词:板式换热器;结垢;荧光分析;清洗 中图分类号:T Q051.5 文献标识码:A 文章编号:1006—7981(2012)14—0018—03 塔里木油田石化分公司引进意大利SNAM 公司氨汽提尿素生产工艺,在这套工艺里有一个工艺冷凝液汽提塔冷却器,设备位号为E -702,主要作用为将从合成气中分离出来的经过汽提的工艺冷凝液进行冷却,后送往锅炉给水预处理工段。
该换热器为一施密特板式换热器,板片数为94块,板片厚度为0.5mm,板片材料为304不锈钢,密封垫材质为EPDM 。
本文完成的内容主要是在实验分析的基础上,从板式换热器自身结构及使用的条件出发,分析该换热器结垢的原因,然后对其使用、清洗方式提出建议。
1 E-702使用现状该换热器冷侧流体为循环冷却水,经过换热冷侧流体温度从28℃升高到38℃,而热侧流体为冷凝液,换热后流体温度从86℃降低到38℃。
所研究的E -702板式换热器在运行过程中结垢比较严重,垢层厚度大约为2~3mm,且板片角孔有堵塞现象,这大大增加了流体流动阻力,降低了了传热效率,影响正常生产。
轻雨环保专注物理除垢,20余年销售、研发、生产经验。
循环水结垢原因以及解决方法
以下是关于循环水结垢原因以及解决方法的百度经验:
一、循环水结垢原因
1.水质:水中的杂质、硬度和碱度等因素会影响水垢的生成。
2.循环水系统的水流速度:如果水流速度过小,污染物质容易在管道壁上沉积从而形成结垢。
3.循环水系统的温度:水温越高,产生水垢的可能性越大。
4.其他因素:如系统内水垢过多、水质不稳定、管道通风不良等因素都会导致水垢的形成。
二、循环水结垢解决方法
1.使用化学方法清除水垢:该方法通过添加特定的化学药剂来清除循环水系统中的水垢。
2.机械清洗:该方法利用机械设备对管道和设备内部进行彻底清洗,去除污垢和沉积物。
3.超声波清洗:超声波会使水中的杂质共振,撞击管道壁和设备表面,从而清除水垢。
4.电子除垢:采用电磁波技术,将管道内部和设备表面的水垢震动松动,使其脱落并流出。
以上是几种解决循环水结垢的方法,其中,电子除垢是比较先进和便捷的一种处理方式。
轻雨环保电子除垢仪作为其中的一种,采用扫频电磁除垢技术,能够快速有效地清除管道内部的水垢和沉积物,同时有效地阻止管道中水垢的形成,提高了循环水系统的运行效率和设备的使用寿命。
无论采取何种解决方法,都需要在循环水系统的管理和维护方面加强措施,定期检查和清洗系统,及时排除故障和污垢,以确保循环水系统的正常运行。
轻雨环保专注物理除垢,20余年销售、研发、生产经验。
凝汽器结垢和腐蚀原因及应对措施摘要:超临界机组实施节水减排措施,导致不锈钢管凝汽器腐蚀结垢。
随着节水减排压力的提高,冷却水循环系统的安全稳定性受到严重质疑,凝汽器结垢、腐蚀问题日益突出。
采用循环水对不锈钢换热器的水质、电化学腐蚀行为和材料性能进行了研究和分析。
关键词:节水减排;凝汽器;结垢;腐蚀引言我国重要的战略资源之一是水资源。
社会经济可持续发展和环境保护下实施节水减排战略具有重要意义。
火电厂水资源利用的突出问题是耗水量大、利用率低一直是。
对于循环冷却火电机组,可提高循环冷却水、梯级污水或部分处理后回用的浓缩比,实现环保政策是火电厂循环水污水零排放。
1循环水监督处理采用水质处理法解决循环运行中的问题。
运行管理的基本原则是尽可能提高浓度,保证处理效果,防止结垢、腐蚀、菌藻,节约用水和排放,减少环境污染,节约金属材料投资,经济效益的提高,装置保证安全稳定运行。
碳酸钙在水中容易结垢。
碳酸钙结垢的经验指标包括饱和度、稳定性和结垢指数,仅供参考。
凝汽器热阻的测量是十分必要的,即通过水质分析来判断污垢的热阻。
水质分析与判断:在水质条件下测试最终碳酸盐硬度。
碳酸盐最终硬度也是循环水防垢处理的控制参数,具有较高的精度和重现性。
污垢热阻的判断:可与同类型机组或同一凝汽器同一季节的端差运行数据进行比较。
新凝汽器的清洗一般在3℃到5℃之间。
现行防垢技术的目的是通过多种方法防止碳酸盐结垢,使循环水的碳酸盐硬度不超过其极限。
实际上,热力学和动力学是结合在一起的。
热力学方法:废水交换、弱酸离子交换、石灰处理软化、加入硫酸将碳酸盐转化为高溶解度产物硫酸盐等,以减少水中的结垢量。
动力学法:加入化学药剂(阻垢剂、分散剂)或其他方法,防止碳酸盐结晶、生长和沉淀。
循环水经阻垢剂处理后水质呈弱碱性,故又称碱处理。
为了提高水的耐腐蚀性和阻垢性,水稳定剂可以提高水的极限碳酸盐硬度,从而起到有效的阻垢作用。
目前,最常用的水稳定剂有聚磷酸盐、有机膦酸和聚羧酸。
工业循环水系统中结垢和腐蚀现象分析及控制方案摘要:工业水处理是使用化学和物理方法去除水中杂质的过程。
电石生产的特点是很复杂的过程,生产环节与水密不可分。
电石炉是将电能转化为热能的设备,这就决定了它时刻处在高温环境状态下运行。
为了保证电石炉长周期安全运行,对设备各系统进行冷却必不可少。
循环冷却水的再利用尤其可以提高用水过程的效率,循环水的再利用将产生盐分积聚的问题,这些问题会污染并损坏热交换器,降低传热效率并增加设备成本和安全隐患。
关键词:工业循环水系统;结垢;腐蚀前言工业循环水系统中传热面上的结垢现象一直被人们关注,有效降低管线中的结垢速率,实现持续的稳产高产,已成为电石生产领域研究的热点之一。
为保持油藏压力,提高采收率。
为了节约水资源,多数企业目前采用循环冷却水代替普通工业用水,冷却水在对设备降温的同时,其自身温度也在不断上升,有时在夏季设备冷却水出口温度高达60℃以上,这样的工作温度极易形成水垢粘接在设备内壁,从而造成设备换热效果差,而且水垢还会局部脱落、堆积阻塞管路和阀门,导致水流阻力增加,设备壁厚被腐蚀减薄,另一方面会造成垢下腐蚀,甚至穿孔,必须每隔一段时间对结垢严重的管段进行酸洗或停产维修,增加了管线维护费用,严重影响了电石的正常生产和经济效益。
1产生结垢的原因1.1硬垢天然水中溶解有各种盐类物质,有重碳酸盐、硫酸盐、氯化物、硅酸盐等。
其中溶解的重碳酸盐为最多,也最不稳定,容易分解成碳酸盐。
在使用重碳酸盐含量较多的水作为冷却水时,当通过换热器传热面时会受热分解。
当循环水经过冷却塔冷却时,溶解在水中的CO2会逸出,水的PH会升高。
重碳酸盐在碱性条件下会发生以下反应。
Ca(HCO3)2+2OH-=CaCO3↓+2H2O+CO2-3当水中溶解有氯化钙时,还会产生置换反应。
CaCl2+CO2-3=CaCO3↓+2Cl-当水中溶解有磷酸盐时,磷酸根和钙离子还会生成磷酸钙。
3Ca2++2PO3-4=Ca3(PO4)2↓当循环水在冷却蒸发过程中,水分不断蒸发而浓缩,浓缩倍数提高,原来溶解于水中的盐类浓度会不断增加,当其浓度超过同等条件下的饱和溶解度时就会出现结晶析出,形成水垢。
水垢的形成和防止水垢和水渣在热力设备内受热面水侧金属表面上生成的固态附着物叫水垢。
水垢是一种牢固附着在金属壁面上的沉积物,它对热力设备的安全经济运行有很大危害,结水垢的现象是热力设备水质不良所引起的一种故障。
除了水垢以外,在锅炉和热力设备的水中,还可能析出一些固体物质,这些固体物质有的以悬浮物状态存在于水中,也有以沉渣和浮渣状态沉积在热力设备水流流动滞缓的各个部位,例如锅炉汽包底部,水冷壁下联箱底部以及各个热交换器,各种水箱底部等。
这些呈悬浮状态和沉积状态的物质叫做水渣。
热力设备内的水垢,其外观,物性和化学组成等特性因水垢生成部位不同、水质不同以及受热面负荷不同等原因而有很大差异。
例如,有的水垢坚硬,有的水垢较软,有的水垢较密,有的多孔隙,有的紧紧的与金属连在一起,有的与金属表面的联系较疏松。
水垢的颜色也各不相同。
为了研究水垢产生的原因,找出防垢的方法,除了应该仔细地观察各个部位水垢的外观特征之外,最重要的是确定水垢的化学组成。
组成水垢的化学组成一般比较复杂,它不是一种简单的化合物。
而是由许多的化合物混合组成的。
为确定水垢的化学组成应做以下两方面的工作。
(1)成分分析通常用化学分析的方法确定水垢的化学成分。
水垢的化学分析结果,一般以高价氧化物的重量百分率表示。
表10-3和表10-4是两例锅炉水冷壁管内水垢的化学分析结果。
表10-3 某高压锅炉内水垢的化学分析结果表10-4 国外某高参数大容量锅炉内水垢的化学分析结果用高价氧化物表示水垢的化学成分,既便于计算、分析结果又比较接近于水垢中各物质存在的真实情况。
水垢中各种物质主要是以金属氧化物个各种盐类物质存在的。
大多数金属氧化物如:Na2O、CaO、MgO、CuO等都是碱性氧化物,大多数非金属氧化物如:SO3,CO2, SiO2,和P2O5等都是酸性氧化物。
酸性氧化物和碱性氧化物互相化合可以生成盐,例如:CaO+ CO2=CaCO3↓。
当然这种表示方法也会带来偏差,例如:水垢中的铁可能以Fe3O4或FeO存在,水垢中的铜可能以Cu2O或Cu存在,而化学结果都以它们的最高价氧化物Fe2O3和CuO表示,这就会使分析结果偏大。
循环水结垢原因与防止循环水结垢是指循环水系统中,由于水中存在的溶解性固体物质(如钙、镁等)与水中的碳酸盐反应产生的沉淀物,而形成的一层或多层覆盖在管道壁上的硬垢,会严重影响循环水系统的运行效率与设备的正常运行。
下面将从结垢的原因、结垢对系统的影响以及防止结垢的措施进行阐述。
一、结垢的原因:1.水源因素:循环水系统的水源中常常含有溶解的硬度物质,特别是钙、镁等离子,这些硬度物质容易形成结垢。
2.温度因素:在高温条件下,溶解在水中的碳酸盐溶解度减小,容易形成沉淀物质,所以高温环境下结垢更严重。
3.酸碱度因素:水的酸碱度也会影响结垢的程度,当水的酸度过高时,会加速结垢的形成。
4.水的流速:水的流速与结垢也有一定的关系,当水在管道内的流速过低时,水中的沉淀物质更容易脱离水流而附着在管道壁上。
二、结垢对系统的影响:1.阻塞管道:结垢会附着在管道壁上,形成堆积的硬垢,导致管道内径减小,从而阻塞了管道,降低了水的流速。
2.减低传热效率:结垢会作为一层隔热层,降低了传热效率,导致设备间接散热效果下降,对于循环水冷却系统来说,影响了冷却效果。
3.增加能耗:由于结垢导致了管道的阻塞和传热效率的降低,系统需要消耗更多的能量来保持设计要求的循环水流速和温度,增加了能耗成本。
4.缩短设备寿命:结垢会使得设备内的水流量不均匀,造成一些设备的局部高温或高压区域,加速了设备的磨损和老化。
三、防止结垢的措施:1.水质处理:可以通过酸洗、软化等方法降低水源中的硬度物质含量,减少结垢的生成。
2.温度控制:降低水温可以减少碳酸盐的溶解度,从根源上避免了结垢的产生。
3.水质控制:通过调节循环水的酸碱度,保持在适当的范围内,避免过酸或过碱引起结垢。
4.增加水流速度:增加水流速度可以减少结垢的几率,可以通过增加泵的功率或增加管道的直径实现。
5.进行周期性清洗:定期对循环水系统进行清洗,可以有效去除已生成的结垢。
6.安装防垢装置:在循环水系统中添加防垢剂或防膜剂,可以抑制和阻止结垢的形成。
板式换热器求助编辑百科名片板式换热器板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。
各种板片之间形成薄矩形通道,通过半片进行热量交换。
板式换热器是液—液、液—汽进行热交换的理想设备。
它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。
在相同压力损失情况下,其传热系数比管式换热器高3-5倍,占地面积为管式换热器的三分之一,热回收率可高达90%以上。
目录11.板式换热器简介1.1板式换热器的基本结构11.2板式换热器的特点11.3板式换热器的应用场合11.4板式换热器选型时应注意的问题板式换热器板式换热器型号的表示方法结构原理板式换热器的设计特点1板式换热器的应用范围化学工业1钢铁工业1冶金行业1机械制造业1食品工业1纺织工业1造纸工业1集中供暖1油脂工业1电力工业1船舶1海水养殖育苗行业1其他12.板式换热器常见故障2.1 外漏12.2串液12.3 压降大12.4供热温度不能满足要求13 .原因分析及处理方法3.1 外漏13.2串液13.3压降过大13.4 供热温度不能满足要求4 .技术参数板式换热器维修案例板式换热器类型执行标准板式换热器清洗方法展开编辑本段1.板式换热器简介本成套设备由板式换热器、平衡槽、离心式卫生泵、热水装置(包括蒸汽管路、热水喷入器)、支架以及仪表箱等组成。
用于牛奶或其它热敏感性液体之杀菌冷却。
欲处理的物料先进入平衡槽,经离心式卫生泵送入换热器、经过预热、杀菌、保温、冷却各段,凡未达到杀菌温度的物料,由仪表控制气动回流阀换向、再回到平衡槽重新处理。
物料杀菌温度由仪表控制箱进行自动控制和连续记录,以便对杀菌过程进行监视和检查。
此设备适用于对牛奶预杀菌、巴式杀菌。
板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。
1.1板式换热器的基本结构1.换热板片2.固定压紧板3.活动压紧板4.夹紧螺栓5.上导杆6.下导杆7.后立柱1.2板式换热器的特点(板式换热器与管壳式换热器的比较) a.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。
换热器失效的原因及常见故障分析摘要换热器的种类很多,操作方法大同小异,它们的共同点是利用两种物料间大量的接触面积进行热交换,以完成冷却、冷凝、加热和蒸发等化工过程。
而换热器的操作条件、换热介质的性质、腐蚀速度和运行周期决定了换热器操作维护的内容。
现以广泛使用的板式换热器为例,讨论其失效原因及常见故障。
关键词换热器;失效原因;故障分析1换热设备劣化和失效的主要形式及原因造成换热设备劣化和失效的主要形式及原因有以下几个方面:1.1腐蚀换热设备管束受到的腐蚀取决于管束内外侧介质的化学组分、浓度、压力、流速以及管束本身的材质性能。
1)介质引起的均匀腐蚀。
①硫及硫化物引起的均匀腐蚀。
硫及硫化物导致金属表面直接形成一层金属疏化物。
这种硫化物较厚而疏松对金属表面不能起保护作用。
因此,这种腐蚀是以一定的速率使管壁减薄。
②盐酸产生的均匀腐蚀。
介质中所含的氯化物遇到水时,形成盐水,加热到150-200℃以上时生成盐酸,有十分强烈的腐蚀作用,是一种“低温腐蚀”,主要发生在有冷凝产生的部位。
腐蚀的形态是均匀腐蚀,也可能随冷凝液的流向产生沟状腐蚀。
③其他强腐蚀性介质,如尿素甲胺液、硫酸、醋酸等也会引起管束的均匀腐蚀。
2)应力腐蚀开裂。
化工装置的换热设备常出现的应力腐蚀主要有两种:一种是奥氏体不锈钢管,由氯离子引起的应力腐蚀;另一种是铜管在氨环境下的应力腐蚀。
3)冷却水引起的各种腐蚀。
水冷却器占了换热设备中相当大的比例,在水冷却器的水侧,会产生各种形态的腐蚀。
①磨蚀与冲蚀。
冷却水流速高,并带有泥砂之类的固体顾粒,则在流速高,水冲击严重的局部部位易发生这种腐蚀。
②气烛。
当设计不合理,或实际的运行工况与设计工况不一致,引起水测局部管束的表面发生水的汽化时,容易在水测的管外壁发生气蚀。
③结垢引起的坑蚀。
冷却水流速过低,水质不好、水中含油污、泥垢、pH值过高,以及水中的菌藻等,都能使管束表面产生沉积物的堆积,并使沉积物覆盖下的管子金属的表面氧化膜因缺氧而破坏。
连续重整装置进料换热器腐蚀内漏原因分析和对策陈强宇,杨 俊(中国石油兰州石化公司炼油厂,甘肃省兰州市730060)摘要:连续重整装置进料换热器更换为国产板壳式换热器,运行几年后其热端温差由投用初期18.5℃上升至45.0℃,重整生成油环烷烃质量分数也从1%升高至4%左右,说明换热效率下降,同时发生了内漏。
分析认为结焦、结垢、堵塞、腐蚀等是造成换热效率下降的主要原因,同时由于换热器板片结垢堵塞致使其长期受热不均,产生的应力变化造成板片被撕裂,发生内漏。
详细介绍了装置停工堵漏修复的经验方法,并总结了利用优化进料、提高换热器入口温度、控制循环氢杂质、采用低流量保护等确保进料板式换热器长周期运行的方法。
关键词:连续重整装置 进料换热器 腐蚀内漏 板式换热器 热端温差 低流量保护1 连续重整装置进料换热器简介连续重整装置作为炼油化工企业中的核心装置,主要以生产高辛烷值汽油和三苯产品为主,并副产加氢装置所用氢气。
重整进料换热器是重整进料和反应产物的热交换器,其性能好坏直接影响到进料加热炉的负荷和反应系统的压力降,影响装置的能耗,是装置的关键设备之一。
目前国内连续重整装置运用广泛的进料换热器主要以缠绕管式换热器和板壳式换热器为主。
板壳式换热器由于具有换热效率高、压力降低、占地面积小等优点在市场上有较好的竞争力,但同时也具有投资费用高、操作条件要求苛刻、易泄漏等缺点。
尤其是适应循环氢中断或进料中断、温度和压力大幅度波动等异常状况的能力较差,极易发生泄漏,影响装置安全平稳长周期运行。
2 进料换热器的运行现状及存在问题中国石油兰州石化公司连续重整装置进料换热器E 201于2011年8月装置扩能改造时更换为国产立式板壳程热交换器,先后经过2014年、2016年两次大检修,均未发现明显异常。
2.1 换热效率降低板式换热器的换热效率可以通过热端温差及压力降进行表征。
E 201更换为板式换热器后运行参数如表1所示。
其热端温差从18.5℃上升至45.0℃。
柴油加氢装置高压热交换器腐蚀泄漏原因及解决措施摘要:我国社会经济不断发展,也不断增加了能源消耗情况,因为能源劣质化问题,不断提高了原油中硫、酸的成本含量,导致柴油加氢装置发生腐蚀问题。
柴油加氢装置在使用过程中经常会出现换热器出口的管线泄漏,直接影响到了设备使用的安全性和稳定性。
所以下文对柴油加氢装置高压热交换器腐蚀泄漏原因及解决措施简单叙述,供同行参考。
关键词:柴油;加氢装置;高压热交换器;腐蚀问题;措施目前,我国能源退化问题相当严重,不断提高原油中的硫和酸组分,造成腐蚀问题。
柴油加氢装置在运行过程中具有高温高压的特点,容易发生材料腐蚀。
柴油加氢装置反应阶段会产生H2S,危及柴油加氢装置的安全。
为了维护柴油加氢装置的运行安全,有必要采取针对性的措施解决腐蚀问题。
1柴油加氢改质装置换热器及腐蚀总体概述换热器是柴油加氢改质装置的重要组成部分,其工艺流程的合理与否直接影响柴油加氢改质的效果。
目前常用的高压换热器系统主要由E301、E302和E303A/B组成,从反应器模块流出的反应物依次流经E301和E302模块,与存储在模块中的氢气混合原料发生置换,然后在冷却模块中进行冷却反应后流入下一个模块。
冷却模块的水循环系统主要依靠E303A/B的注水口供水和供料。
升级装置在E301和E303模块之间设置了基于风力的在线调节阀,实现了对E301出口原料和E303出口温度的有效调节和管理。
2柴油加氢改质装置换热器腐蚀泄露原因分析改质装置中高压换热器的具体作用是通过换热处理降低反应物的流出温度,以保证芳烃和烯烃的加氢脱硫、脱氮、脱氧、脱金属和饱和加氢反应的顺利进行。
为了获得更好的升级效果,原料油需要经过高温、高压和加氢处理。
因此,高压换热器的环境非常恶劣,同时也面临着许多不利因素的腐蚀影响。
具体腐蚀因素如下:2.1化学腐蚀原料油经过加氢脱硫反应后会产生H2S,易溶于水形成微腐蚀性硫酸氢盐,硫酸氢盐在高压换热器中容易与铁元素发生置换反应生成FeS物质。
循环水换热器腐蚀原因分析及改进措施作者:王建龙李猛来源:《环球市场》2018年第23期摘要:换热器是化工生产设备中广泛使用的重要设备。
它通常占整个设备投资的三分之一以上。
循环水热交换器的传热效果是否良好,或是否存在介质泄漏的风险,往往与整个化工厂的安全、稳定、长周期、高效运行有关。
关键词:循环水;换热器腐蚀;改进措施换热器是化工设备中常见的设备,而循环水换热器在换热设备中占有较大的比例。
因此,水冷却器的高效、平稳运行对精炼装置的安全稳定运行起着至关重要的作用。
循环水系统中水的连续循环,由于循环水的水质、循环水的流速等因素的影响,造成了循环水冷却器的粘结、污垢和腐蚀。
一、循环水换热器腐蚀原因分析(一)水垢沉积。
水垢就是循环水中无机盐结晶后附着在管壁的物质。
循环水中有大量的无机盐,如:碳酸钙、硫酸钙等,它们会随着循环水温度的升高而溶解度降低从循环水中析出或者由于循环水的蒸发而达到过饱和程度而析出,这些盐类析出后会附着在循环水线内壁凹凸不平的小坑上(管线内壁有一定的粗糙度),并以此為基础逐渐增长。
(二)泥渣和粉尘砂粒等悬浮物。
水中悬浮固体的增加会加大腐蚀速率,同时悬浮物的沉积还会引起沉积物下金属的电化学腐蚀。
循环水中浊度是判断悬浮物多少的标志。
浊度又是水质的综合指标,除了表示悬浮物的多少外,还能间接地反映出水中微生物情况,降低浊度是防止污垢沉积的有效手段,浊度越低对减缓设备的腐蚀与结垢越有利。
(三)应力腐蚀。
应力腐蚀是指在受拉应力的作用下,换热器金属在腐蚀介质中发生的一类腐蚀形态。
循环水换热器常发生的应力腐蚀类型有Cl-应力腐蚀、S2-应力腐蚀和H+应力腐蚀。
即使对于不锈钢等优秀的抗腐蚀材质换热器,当C1-浓度>30mg/L、温度>75℃时,也会发生显著的Cl-应力腐蚀现象,S2-应力腐蚀则常发生在高强度钢材质的换热器中。
二、改进措施(一)优化工艺指标和加强监控。
根据水质特点和换热器腐蚀现状,进一步优化水质运行指标,修订完善工艺卡片,重点优化循环水中钙硬度、碱度、浓缩倍数指标,降低水冷器结垢。
板式造水机蒸发器结垢原因分析及处理方法【摘要】本文从实际应用角度,叙述了板式蒸发器的特点和基本工作原理,分析了蒸发器结垢后对造水性能的影响因素,并探索了解决结垢问题的方法。
实践证明,定期对蒸发器进行清洗,确保蒸发器工作性能正常是提高造水量最有效的方法。
【关键词】板式造水机蒸发器结垢危害清除方法1 引言远洋船舶在航行中,每天要消耗大量淡水,以满足船用动力设备运行及船员生活的需要。
由于船用锅炉及燃油分油机等设备工作环境的特殊性,其工作用水对含盐量有严格的要求,而板式造水机产水质量高,能完p2.1 板式热交换器的特点板式热交换器是一种新型高效的换热设备,它具有传热效率高、结构紧凑、易清洗、易安装的优点,并且可根据不同的工艺要求,非常方便地组合成任意流量形式,因而它被广泛应用。
2.2 板式热交换器的工作原理板式热交换器的工作是通过传热机理进行的,根据热力学定律,热量总是由高温物体自发地传向低温物体。
当两种流体存在温度差时,就必然有热量进行传递,两种存在温度差的流体在受迫对流传热过程中,由于板式换热器的换热片表面采用瓦楞波结构优化设计,使其热交换率达到92%以上,即使流体流速在雷诺准数值以下,流体在板片之间的运动亦呈三维运动,促使流体形成剧烈紊动,减少边界层热阻,强化传热效率。
3 板式造水机蒸发式造水的工作原理通过海水泵驱动海水空气混合喷射器在系统中形成一个真空区域以达到降低海水蒸发温度的目的。
海水通过一个节流孔板被导入蒸发器,进入蒸发器板式热交换器的每个第二板通道(蒸发通道)内。
主机缸套的热水被引入蒸发器板式热交换器的另一个通道,板式热交换器的工作是通过传热机理进行的,根据热力学定律,热量总是由高温物体自发地传向低温物体。
当两种流体存在温度差时,就必然有热量进行传递,从而将主机缸套热水自身的热量传递给蒸发通道中的海水。
当真空度达到90%以上后,海水在真空环境下达到沸点温度,部分海水会被蒸发,产生水蒸气进入分离器,在分离器内海水被从蒸汽中分离出来,蒸汽进入到冷凝器板式热交换器的通道之一内。
蒸发器常见的故障与处理方法一、背景介绍蒸发器是一种常见的热交换设备,广泛应用于化工、制药、食品等工业部门。
蒸发器的正常运行对于生产过程的顺利进行至关重要。
然而,蒸发器在长期使用过程中可能会出现各种故障,影响其性能和效率。
本文将从常见故障的角度,详细讨论蒸发器故障的原因和处理方法。
二、常见故障及处理方法2.1 气液分离不完全气液分离不完全是蒸发器运行中常见的故障之一,其主要表现为蒸汽中含有大量的液滴。
这种情况会导致蒸发器内部气流不畅,影响传热效果,同时也可能导致设备的其他问题。
2.1.1 原因•蒸发器的气液分离器设计不合理;•气体进口速度过高或过低;•蒸汽流量过大。
2.1.2 处理方法•通过优化气液分离器的结构,增加分离效果;•调整气体进口速度,使之适度,避免过高或过低;•控制蒸汽流量,确保在蒸发器容量范围内。
2.2 结垢结垢是蒸发器的另一种常见故障,主要指蒸发器内部管壁上产生的水垢,这些水垢会附着在管壁上,降低传热效率,甚至堵塞管道。
2.2.1 原因•蒸发器进口水质较差,含有大量的溶解物;•操作不当,未定期清洗维护。
2.2.2 处理方法•定期清洗蒸发器,除去附着在管壁上的水垢;•改善进口水质,减少溶解物的含量。
2.3 温度控制失效温度控制失效是蒸发器故障中比较严重的一种,可能导致蒸发器工作温度过高或过低,造成产品质量不合格甚至设备损坏。
2.3.1 原因•温度控制系统故障;•温度传感器故障。
2.3.2 处理方法•及时修复温度控制系统故障;•定期检查温度传感器,确保其正常工作。
2.4 传热效果下降蒸发器的传热效果下降可能导致蒸汽回收效果不佳,能源浪费。
此外,也可能导致产品质量下降。
2.4.1 原因•换热管内部结垢;•换热管内结垢导致的传热介质流动不畅。
2.4.2 处理方法•定期清洗换热管,除去结垢;•优化传热介质的流动状态,增加传热效果。
2.5 泄漏蒸发器存在泄漏问题,会导致产品损失,甚至可能对环境造成污染。
脱盐水装置运行问题分析及对策摘要:脱盐水处理是化学中一种常用的方法,在许多领域得到了广泛的应用,但在操作过程中仍然存在许多问题。
通过对脱盐水装置的分析,找出存在问题的原因,并结合实际生产经验对装置进行改进,使脱盐水装置运行更加平稳,更好地处理纯水或深度脱盐,提高经济效益。
关键词:脱盐水;操作问题;对策一、脱盐水处理简介脱盐水处理的过程是在一定程度上去除水中的强电解质和二氧化碳等弱电解质。
用于纯水处理和深度脱盐水。
目前,工业上常用的脱盐水工艺包括电渗析、反渗透和离子交换。
这些流程相对成熟,但仍存在一些不足。
企业应根据生产实际情况选择相应的处理工艺,避免达不到预期效果。
二、脱盐水工艺脱盐水装置主要由预处理系统和脱盐系统两部分组成。
在预处理器中填充纤维束,以去除浮油和乳化油。
表面凝结水过滤器的下层主要用于去除杂质,上层用于去除水中的油和铁杂质。
活性炭过滤器用于去除水中的胶体、铁和有机物。
精密过滤装置用于去除水中的油杂质和铁。
各级混床均配有树脂,用作冷凝水,以去除水中的阳离子和阴离子,降低水的电导率。
如果过滤器出现故障,应使用脱盐水进行反冲洗。
混床失效后,应使用脱盐水和酸碱进行重新组合。
反冲洗及废水在处理池达标后排放。
三、脱盐水装置的运行问题1.换热器结垢脱盐水装置原换热器采用螺旋式换热器,但在出现内漏问题后,通过技术改进,更换为板式散热器。
与旧的换热器相比,板式换热器有许多优点。
该换热器比表面积大,换热效果比螺旋式换热器高,但在运行过程中也暴露出一些问题。
由于换热通道狭窄,容易堵塞,淡水压力高,影响装置的平稳运行,容易导致实验失败。
清洗热交换器后,发现热交换器壁上有结垢水。
分析表明,板式换热器的堵塞物是碳酸盐,通道堵塞是由于碳酸盐的沉积。
2.过滤设备的运行量与进水量无关超滤反冲洗排水主要存在于超滤反冲洗水箱内。
一部分用作机器过滤的反冲洗水,另一部分排入另一个系统。
在设备运行期间,应同时使用机械过滤和超滤设备。
热交换器结垢的原因及处理方法
换热器在化工生产中占有重要地位,而换热器机组结垢腐蚀,导致传热不够而被迫停车清洗或者换热器的更换,严重时会影响安全生产的进行,更会增加企业运行的成本.
1结垢原因
1.1颗粒污垢
悬浮于流体的固体微粒在换热表面上的积聚,一般是由颗粒细小的泥沙尘土不溶性盐类胶状物油污等组成
当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,形成垢下腐蚀,为某些细菌生存和繁殖提供温床当防腐措施不当时,最终导致换热表面腐蚀穿孔而泄漏
1.2生物污垢
除海水冷却装置外,一般生物污垢均指微生物污垢循环水系统中最常见的微生物主要是铁细菌真菌和藻类
铁细菌能把溶于水中的Fe2+ 转化为不溶于水的Fe2O3 的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓差腐蚀电池,腐蚀金属
且循环水系统中的藻类常在水中形成金属表面差异腐蚀电池而导致沉积物下腐蚀块状的还会堵塞换热器中的管路,减少水的流量,从而降低换热效率
1.3结晶污垢
在冷却水循环系统中,随着水分的蒸发,水中溶解的盐类(如重碳酸盐)的浓度增高,部分盐类因过饱和而析出,而某些盐类则因通过换热器传热表面时受热分解产生沉淀这些水垢由无机盐组成结晶致密,被称为结晶水垢
1.4腐蚀污垢
具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热表面腐蚀而产生的污垢腐蚀程度取决于流体中的成分温度及被处理流体的pH 值等因素
通常,冷却管中的污垢冷却管一般为紫铜管和黄铜管,金属腐蚀主要是较高温度下(40~50)的氧腐蚀,污垢以铜或铜合金腐蚀产物和钙镁沉淀物为主,从而造成大量腐蚀污垢
1.5凝固污垢
流体在过冷的换热面上凝固而形成的污垢例如当水低于冰点而在换热表面上凝固成冰温度分布的均匀与否对这种污垢影响很大
2金属腐蚀
换热器大多数是金属质地,而在自然界中大多数金属常以矿石的形式,即金属化合物的形式存在,而腐蚀则是一种金属回复到自然状态的过程
换热器的腐蚀主要是指板片的腐蚀与水质不纯大气对水的污染管内壁面状况以及水流速大小等因素均有着密切关系
2.1化学腐蚀
金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程
2.2电化学腐蚀
金属表面与电解质溶液因发生电化学作用而产生的电化学腐蚀是最普遍最常见的腐蚀电化学腐蚀通常又以应力腐蚀破裂点蚀(小孔腐蚀)缝隙腐蚀等局部腐蚀的形式出现
2.3应力腐蚀
产生应力腐蚀必须具备特定的腐蚀环境和足够大的拉伸应力CL-是造成应力腐蚀的另一个主要因素Cl- 半径小,穿透力极强,很容易穿透保护膜内极小的孔隙,破坏局部钝化膜而进入裂缝尖端生成HCl,产生自加速催化加速腐蚀过程,同时H+ 在尖端析出,渗入裂缝前缘,可使金属脆化
温度是引起应力腐蚀破裂的重要因素,温度愈高时引起腐蚀的Cl- 浓度越低,也就愈易发生应力腐蚀破裂
2.4生物腐蚀
主要是与冷却水系统的循环水等介质接触的金属表面上易引起生物腐蚀生物腐蚀的原因是由于生物体会以有机缓蚀剂为食物,生物代谢产生酸,破坏金属耐腐蚀保护层,生物新陈代谢耗氧,造成金属表面O2 浓度不均而引起氧浓差腐蚀
3换热器防腐蚀的六项措施
3.1合理的工艺设计
设计时,将蒸汽放在管程侧,避免高速气体流经壳程壳程有较大流量介质时,可以设计多个壳程入口,缓冲压力,另外应设置防冲板,减少高速流体对设备造成的冲刷腐蚀为避免残留液和沉积物的滞留,焊接时尽量采用双面对接焊和连续焊,避免搭接焊和点焊在焊接工艺中应根据实际经验,引起应力腐蚀破裂的应力主要是残余应力,而残余应力主要是由冷加工以及焊接引起的内应力所构成
对冷加工件和焊接件进行热处理,有助于消除残余应力,从而也有助于防止应力腐蚀的产生常采用应力退火热处理消除残余应力或其他消除残余应力的方法,如水压试验振动时效及锤击等
另外,管束起吊必须采用尼龙带,保证金属表面平整无划痕能够顺利入壳
3.2耐腐蚀材料
采用耐蚀材料(如双目不锈钢哈氏合金钛钛合金铜等),这些材料耐腐蚀性强,可以提高换热器的使用寿命,但这些高耐腐蚀性的材料价格昂贵,制造成本高,一次性投入的成本大,企业一般难以接受,推广困难
3.3电化学保护法
电化学保护方法不但可以防止应力腐蚀断裂, 而且在保护参数选用得当的条件下即使产生了裂纹仍可使其停止扩展可采用牺牲阴/阳极保护或表面喷涂耐蚀金属的方法
阴极保护:
利用外加直流电源,使金属表面上的阳极变为阴极而受到保护这种方法消耗电量大,费用高,采用极少
阳极保护法:
把被保护的设备接以外加电源的阳极,使金属表面生成钝化膜,从而达到保护碳钢换热器的造价低,但耐腐蚀性差
通过采用牺牲阳极保护技术可以提高换热器的使用寿命,但这一技术的保护作用仅限
于管子入口处的有限长度内, 管内深处难以实现阴极保护,所以牺牲阳极保护法在换热器上的应用受到了很大限制
3.4添加缓蚀剂法
在腐蚀性介质中,加入少量的某些物质,而这些物质能使金属的腐蚀**降低,甚至停止,这类物质称为缓蚀剂图6是使用缓蚀剂前后的对比,缓蚀剂的加入应以不影响生产工艺和产品质量为原则
可以通过除去介质中的溶解氧和氧化剂以控制应力腐蚀降低介质中Cl- 的质量浓度,严格控制介质中硫的质量浓度也是控制应力腐蚀的有效措施
3.5防腐蚀涂层法
在金属表面,通过一定的涂覆方法,覆盖一层耐腐蚀的涂料保护层,以避免金属表面与腐蚀介质的直接接触
这种技术方法最为经济有效,最初用于防止气体介质腐蚀,所用涂料大部分为有机高分子混合物溶液现在人们逐渐向防油及防溶剂涂料高温涂料重防腐涂料及特殊环境用涂料方向发展
3.6换热器运行
换热器开车时,现将冷流体充满容器,关闭入口,再将热流体题缓慢注入,尽量使导入流体而形成的管子与壳体之间的热膨胀差为最小
停车后,用干燥压缩空气将换热器中所有的流体排除,这样可以将应力降到最小,避免应力腐蚀在开车过程中,上下水阀保持全开状态,避免流速减慢,介质中杂质沉淀在管式表面造成结垢后腐蚀
1)维持设计条件由于在设计换热器时,采用了过余的换热面积,在运行时,为满足工艺需要,需调节流速和温度,从而与设计条件不同,然而应通过旁路系统尽量维持设计条件(流速和温度)以延长运行时间,推迟污垢的发生。
2)运行参数控制
在换热器运行时,进口物料条件可能变化,因此要定期测试流体中结垢物质的含量、颗粒大小和液体的pH 值。
1)维修措施良好
换热设备维修过程中产生的焊点、划痕等可能加速结垢过程形成,流速分布不均可能加速腐蚀,流体泄漏到冷却水中,可为微生物提供营养,对空气冷却器周围空气中灰尘缺少排除措施,能加速颗粒沉积和换热器的化学反应结垢的形成。
用不洁净的水进行水压试验,可引起腐蚀污垢的加速形成。
4)使用添加剂针对不同类型结垢机理,可用不同的添加剂来减少或消除结垢形成。
如生物灭剂和抑制剂、结晶改良剂、分散剂、絮凝剂、缓蚀剂、化学反应抑制剂和适用于燃烧系统中防止结垢的添加剂等。
5)减少流体中结垢物质浓度通常,结垢随着流体中结垢物质浓度的增加而增强,对于颗粒污垢可通过过滤、凝聚与沉淀来去除;对于结疤类物质,可通过离子交换或化学处理来去除;紫外线、超声、磁场、电场和辐射处理紫外线对杀死细菌非常有效,超强超声可有效抑制生物污垢,现在的研究还有磁场、电场和辐射处理装置,结论有待进一步研究。
3 化学或机械清洗技术
化学清洗技术是一种广泛应用的方法,有时在设备运行时,也能进行清洗,但其主要缺点是化学清洗液不稳定,对换热器和连结管处有腐蚀。
机械清洗技术通常用在除去壳侧的污垢,先将管束取出,沉浸在不同的液体中,使污垢泡软、松动,然后用机械方法除去垢层。
4 机械在线除垢技术
1)使用磨粒在流体中加入固体颗粒来摩擦换热器表面,以清除污垢,但对换热器表面易产生腐蚀。
2)海绵胶球连续除垢
主要应用于电站凝汽器中冷却水侧的污垢清除,海绵胶球在换热器管内通过泵打循环,胶球比管子直径略大,通过管子的每只胶球轻微地压迫管壁,在运动中擦除沉积物。
3)自动刷洗换热器管道刷洗设施由2 个外罩和1 个尼龙刷组成,外罩安装在每根管的两端,改变水流方向可使刷子沿管道前后推进刷洗。
水流换向可使刷子沿管道前推刷洗。
水流换向由压缩空气驱动并定时控制联结在管道上的四通阀来完成。