拉氏变换与Z变换.
- 格式:doc
- 大小:109.00 KB
- 文档页数:2
拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- )()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。
附录A拉普拉斯变换及反变换1 •拉氏变换的基本性质常用函数的拉氏变换和变换表附表A-2常用函数的拉氏变换和z变换表3.用査表法进行拉氏反变换用査表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设F(s)是s 的有理真分式,即F(s)_ 3G) _勺”卍+也严+…+加+仇A(s) a n s11 + 心-is" + ・•・ + qs + a。
式中.系数心仆…'心“和…九亠叽都是实常数S是正整数。
按代数定理可将F(s)展开为部分分式。
分以下两种情况讨论。
(1)4(5)= 0无重根:这时,F(s)可展开为n个简单的部分分式之和的形式,即F(s)= -^+_Ea_ + ...+_^+…+_S^_ = £_S_ (F-i)s — s —s — S)s — S fj j=| s — s i式中,51,52,---,5…是特征方程A(s)= 0的根:Cj为待肚常数,称为F(s)在耳处的留数,可按下列两式计算: c i =lim(5 一5Z)F(5)(F-2)f式中,A f(s)为4(s)对s的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数为■/(r) = L-1[F(5)] = r,乞丄严(F-4)■】S一S: /-1(2) A(5)= 0有重根:设4($) = 0有r重根$厂F(s)可写为皿巾卷FC r C r_|Cl C r+| c+・・• + ——!— + —+・——-—+ ——-―・・ + —:($ —山)‘ (s-S|)L (s-g) S 一片+1 S —式中,S]为F(s)的r重根,常I,…,召为F(s)的n-r个单根;其中,c r+I,…,c“仍按式(F-2)或式(F-3) 计算,c r, c“…,5则按下式计算:c r = lim(s-y])「F($) fij =limf [(s-y) F(s)] f asds }(s-s{ y F(s)(F-5)B(s)(F-3) Si _ T Hi j(r-i)帆科(_"弘)原函数/(/)为/(r) = r*[F(5)]__ £-1 I『+ I —1 __ | ____ p ( [ + —J _| ________ p Cj______ p(几L(y-g)「(y-$i)z (s-yj y-»+] s-»s_s“=[ —t r~' + (— t r~2 + -• ■ + cJ + c.严+ £cf (F-6) L(r-1)! (r-2)! J $。
傅里叶变换拉普拉斯变换z变换关系
傅里叶变换、拉普拉斯变换和z变换是三种不同的信号分析方法。
它们之间的关系如下:
1. 傅里叶变换和拉普拉斯变换
傅里叶变换用于分析连续时间信号,而拉普拉斯变换用于分析连续时间线性时不变系统(LTI系统)。
当对LTI系统的输入信号进行傅里叶变换时,得到的结果是系统的频率响应,即系统在不同频率下的增益和相位差。
当使用拉普拉斯变换对LTI系统的输入信号进行变换时,得到的结果是系统的传递函数,即输入信号和输出信号之间的关系。
2. 傅里叶变换和z变换
傅里叶变换和z变换都用于分析离散时间信号。
傅里叶变换将信号从时域转换到频域,而z变换将信号从时域转换到z域。
z变换可以将连续时间信号离散化,这使得它在数字信号处理中非常有用。
当对离散时间信号进行傅里叶变换时,得到的结果是信号的离散频谱,即信号在不同频率下的幅度和相位信息。
当使用z 变换对离散时间信号进行变换时,得到的结果是离散时间系统的传递函数,即输入信号和输出信号之间的关系。
3. 拉普拉斯变换和z变换
拉普拉斯变换和z变换类似,都用于分析离散时间线性时不变系统。
当使用拉普拉斯变换对离散时间LTI系统的输入信号进行变换时,得到的结果是系统的离散时间传递函数。
当使用z变换对连续时间LTI系统的输入信号进行变换时,得到的结果是系统的z域传递函数。
这些函数可以用于分析系统的稳定性、带宽和抗差性等性质。
附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质__________________________________________________2.表A-2 常用函数的拉氏变换和z变换表____________________________________________________________________________________________________3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+__________________________________________________=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。
傅立叶变换、拉普拉斯变换和z变换是信号与系统分析中常用的数学工具,它们在不同的应用场合有着各自独特的作用。
下面,我们将分别介绍这三种变换的定义、特点和应用场合。
一、傅立叶变换傅立叶变换是最常用的信号处理工具之一,它将时域信号转换为频域信号,可以用来分析信号的频谱特性。
傅立叶变换的定义如下:设x(t)是一个绝对可积的信号,则其傅立叶变换定义为:X(ω)=∫−∞∞x(t)e−jωtdt其中,X(ω)为频率为ω的复指数信号的系数。
傅立叶变换的特点包括:1. 线性性:傅立叶变换是线性的,即对信号进行线性组合后,其傅立叶变换也可以线性组合。
2. 积分性质:傅立叶变换是通过积分计算得出的,可以将信号在时域上的加权积分变换为频域上的乘积。
傅立叶变换的应用场合包括:1. 信号频谱分析:通过傅立叶变换可以将信号转换为频域上的频谱图,并从中分析信号的频率成分和能量分布。
2. 滤波器设计:在滤波器设计中,傅立叶变换可以用来分析系统的频率响应,从而设计出滤波器的频率特性。
3. 通信系统:在调制解调、频谱分析等通信系统中,傅立叶变换也有着重要的应用。
二、拉普拉斯变换拉普拉斯变换是一种广泛应用于控制系统分析和设计中的数学工具,它可以将时域信号转换为复频域信号,用于分析系统的稳定性和动态特性。
拉普拉斯变换的定义如下:设x(t)是一个绝对可积的信号,则其拉普拉斯变换定义为:X(s)=∫0∞x(t)e−stdt其中,X(s)为复频域上的复指数信号的系数。
拉普拉斯变换的特点包括:1. 收敛性:拉普拉斯变换要求信号在0到∞范围内绝对可积,以确保变换的收敛性。
2. 稳定性:拉普拉斯变换可以判断系统的稳定性,通过判断拉普拉斯变换的极点位置来分析系统的阶跃响应。
拉普拉斯变换的应用场合包括:1. 控制系统分析:在控制系统分析中,拉普拉斯变换可以用来分析系统的稳定性、阶跃响应和频率特性。
2. 信号处理:在滤波器设计和信号处理中,拉普拉斯变换也可以用来分析系统的频率响应和动态特性。
⎰∞∞--=t e t f s F st b d )()(⎰∞--=0def d e )()(t t f s F st)(d e )(j 21)(j j deft s s F t f st επσσ⎥⎦⎤⎢⎣⎡=⎰∞+∞-第三章信号的拉普拉斯变换和z 变换一、拉普拉斯变换的定义1.双边拉普拉斯变换只有选择适当的σ值才能使积分收敛,信号f(t)的双边拉普拉斯变换存在。
※象函数相同,但收敛域不同。
双边拉氏变换必须标出收敛域。
2.单边拉氏变换3.常见函数的拉普拉斯变换及其⎰∞+∞-=j j d e )(j21)(σσπs s F t f st b Fb(s)称为f(t)的双边拉氏变换(或象函数),f(t)称为Fb(s)的双边拉氏逆变换(或原函数)。
从0-开始收敛域二、拉普拉斯变换性质线性性质尺度变换证明:[]⎰∞--=de)()(tatfatf L st,则令atτ=时移特性与尺度变换相结合复频移(s域平移)特性时域的微分特性(微分定理)若f(t)←→F(s),Re[s]>σ0,则f’(t)←→sF(s)–f(0-)证明:()()()())(deedessFfttsft ftt f ststst+-=⎥⎦⎤⎢⎣⎡--='--∞-∞---∞-⎰⎰推广:()()[])0()0()()0(d)(d22----'--='--=⎥⎦⎤⎢⎣⎡fsfsFsffsF sttfL∑-=----=⎥⎦⎤⎢⎣⎡1)(1)0()(d)(d nrrrnnnfssFsttfL若f1(t)←→F1(s)Re[s]>σ1,f2(t)←→F2(s)Re[s]>σ2则a1f1(t)+a2f2(t)←→a1F1(s)+a2F2(s)Re[s]>max(σ1,σ2)若f(t)←→F(s),Re[s]>σ0,且有实数a>0,则f(at)←→)(1asFa若f(t)<----->F(s),Re[s]>σ0,且有实常数t0>0,则f(t-t0)ε(t-t0)<----->e-st0F(s),Re[s]>σ0若f(t)←→F(s),Re[s]>σ0,且有复常数s a=σa+jΩa,则f(t)e s a t←→F(s-s a),Re[s]>σ0+σas-→2:?)(sin ←→t t t ε=三、拉普拉斯逆变换三种方法:(1)查表(2)利用性质(3)部分分式展开-----结合∴......,,321为不同的实数根,n p p p p nn p s K p s K p s K s F -++-+-= 2211)(ip s i i s F p s K =-=)()()(e ]1[1t p s L t p i i ε=--若象函数F(s)是s 的有理分式,可写为1110111.......)(a s a s a s b s b s b s b s F n n n m m m m ++++++++=----若m ≥n (假分式),可用多项式除法将象函数F(s)分解为有理多项式P(s)与有理真分式之和。
傅里叶、拉普拉斯变换与Z 变换,今天我也来做下这三个变换笔记。
无论是通信工程,电子信息工程、生物医学工程、物理、微电子、自动化、电气工程及自动化、计算机等等,这三个变换都必须要学习到,可以这么说,凡是理工科生的如果没学会这三个变换,你的专业等于是白读了,应该是滥竽充数,不过好像说的夸张了些(:。
三个变换,本质上就是套用三个数学公式做了相应的积分变换,在实际工作中这些复杂的变换与计算通常是查表或者用类似matlab 或者mathcad 之类的软件去做计算,本笔记主要介绍这三个变换的三个公式的推导,以及三个变换的关联性。
关于三个变换原理或者应用方面的知识,不在阐释了,网络上已经有很多这方面的文章。
本笔记参考书籍《信号与系统》-----郑君里版本。
从数学上理解这些变换都属于积分变换,并有相应的关联性。
其实只要知道傅里叶变换的公式,后面两个(拉普拉斯与Z 变换)都可以通过傅里叶变换变化而来。
首先来推导:第一个变换公式傅里叶变换,其次从傅立叶变换中引出拉普拉斯变换,最后Z 变换是从抽样信号的拉氏变换中引出。
****************************************************************************************************************傅里叶变换:(频域分析)连续系统: 介绍傅里叶变换前,先解释两个概念 “频谱分析”和“傅立叶级数”,然后从傅里叶级数中引出傅里叶变换的概念。
频谱分析:就是将时域的信号(信号可以是周期与非周期信号)变成频域形式并加以分析的方法称为频谱分析。
其目的是把复杂的时域波形,经过某种变换分解为若干单一的谐波分量来研究,以获得信号的频率结构以及各谐波和相位信息。
这某种变换可以是傅里叶级数,也可以是傅里叶变换进行变换.这两者目的都一样,都是把时域信号变成频域以便于信号分析。
其实傅里叶级数只是属于傅里叶变换的一种特殊的表达形式。
傅里叶变换、拉氏变换、z变换的含义1、关于傅里叶变换变换?答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。
——参考郑君里的《信号与系统》。
傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。
所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。
对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。
已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。
这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。
所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。
傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。
我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。
我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。
基于matlab来实现傅立叶变换,拉氏变换,z变换的心得体会
使用MATLAB实现傅里叶变换、拉普拉斯变换和Z变换是非常有价值的,能够帮助理解信号与系统的频域特性以及系统的稳定性与响应。
以下是我个人对这些变换的一些心得体会:
1. 傅立叶变换:傅立叶变换将时域的信号转换到频域,能够分析信号的频谱特性。
通过MATLAB中的fft函数可以快速计算离散傅立叶变换(DFT),而fftn函数则可用于计算多维信号的傅立叶变换。
理解傅立叶变换的性质和频域的表示形式对于信号处理和通信系统设计非常重要。
2. 拉氏变换:拉氏变换广泛应用于连续时间信号和系统的频域分析。
在MATLAB中,可以使用laplace函数对连续信号进行拉氏变换,得到频域表达。
拉氏变换有助于分析连续系统的频率响应、稳定性和传递函数。
3. Z变换:Z变换是离散时间信号和系统的频域分析工具。
通过MATLAB中的ztrans和iztrans 函数,可以实现对离散序列的Z变换和逆Z变换。
Z变换能够分析离散系统的频率响应、稳定性和传递函数。
要正确使用这些变换,需要深入理解其数学原理和性质,同时结合MATLAB的函数使用方法。
编写自定义函数来执行特定的变换或进行信号处理常常是非常有帮助的。
值得注意的是,对于一些复杂或者函数无法得到解析解的变换,MATLAB提供了数值计算工具,比如符号计算工具箱或者数值逆变换。
通过实际的练习和项目应用,能够更好地掌握这些变换的应用与特点。
最全拉氏变换计算公式1233. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ式中,n s s s ,,,21Λ是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+Λ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;4其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- M)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。