脉冲激光沉积PZT
- 格式:docx
- 大小:755.30 KB
- 文档页数:9
脉冲激光沉积原理
脉冲激光沉积是一种激光表面处理技术,该技术利用高能量密度的脉冲激光束,使其在材料表面产生瞬间高温和高压,从而使材料表面发生物理和化学变化,形成一层薄膜或涂层。
脉冲激光沉积的原理主要包括以下几个方面:
1. 脉冲激光的作用机理。
脉冲激光的能量密度高,脉冲宽度短,激光束以极高的速度瞬间照射到材料表面,使材料表面产生瞬间高温和高压,从而使材料表面的原子和分子发生各种物理和化学变化。
2. 材料表面的反应机制。
脉冲激光照射到材料表面后,材料表面原子和分子发生吸收、反射、透过等多种反应。
当激光束的能量密度超过材料表面的界限时,材料表面就会发生物理和化学变化,形成一层薄膜或涂层。
3. 激光参数的选择。
脉冲激光沉积的效果受到激光功率、脉冲宽度、重复频率、脉冲数等参数的影响。
不同的激光参数会导致不同的材料表面处理效果和薄膜性能。
脉冲激光沉积技术具有高效、高精度、不产生热变形等优点,被广泛应用于材料表面处理、微纳加工、光学器件制造等领域。
- 1 -。
脉冲激光沉积原理
首先是靶材剥离。
激光束在靶材表面聚焦后,因为激光的能量密度较高,会产生很高的温度和压力。
这导致靶材表面的物质剥离成等离子体、
气体和聚合物颗粒等形式。
这个过程称为靶材的剥离。
接下来是激光等离子体形成。
剥离的物质形成的等离子体在激光束作
用下会出现激起和电离的过程。
这个过程中,物质的原子和离子被“打掉”,形成类似“云”的等离子体状态。
由于等离子体呈现高能量和高浓
度的特点,因此它具有较高的沉积速率。
最后是薄膜沉积。
等离子体在激光束的作用下从靶材表面射出并沉积
到衬底上。
由于等离子体的高能量和高浓度,在沉积过程中会产生较高的
动能和热能,从而促进薄膜的形成和成长。
脉冲激光沉积技术的优点在于可以制备多种不同性质的薄膜,包括纯
金属、合金、多元化合物、陶瓷、聚合物等。
此外,PLD可以在相对较低
的温度下进行,使得敏感材料的制备成为可能。
同时,PLD因为使用脉冲
激光,可以精确控制材料的组成,薄膜的均匀性以及结晶度等特性。
然而,尽管PLD具有广泛的应用潜力,但仍存在一些挑战。
首先,脉
冲激光沉积技术需要高功率脉冲激光器,这增加了设备的成本和复杂性。
其次,PLD过程中的高温和高压环境会导致杂质的掺杂和结构缺陷的形成。
此外,靶材的去离子处理和均匀性对于PLD过程的成功也至关重要。
总而言之,脉冲激光沉积是一种重要的薄膜制备技术,具有制备多种
材料薄膜的能力。
通过理解脉冲激光沉积的原理和优缺点,可以更好地控
制薄膜的性质和应用。
脉冲激光沉积的原理及应用1. 前言脉冲激光沉积是一种先进的加工技术,它利用高能脉冲激光束对材料进行瞬间加热和冷却,从而实现材料的沉积和成型。
本文将介绍脉冲激光沉积的原理以及它在不同领域中的应用。
2. 脉冲激光沉积的原理脉冲激光沉积的原理可以简单概括为以下几个步骤:•步骤一:利用适当的铺层方法,将一层金属粉末均匀铺在工作台上。
•步骤二:使用高能脉冲激光束对金属粉末进行瞬间加热,使其表面熔化并融合在一起。
•步骤三:脉冲激光束停止后,融化的金属粉末迅速冷却固化,形成一层固体金属沉积物。
•步骤四:重复以上步骤,逐渐堆积多层金属沉积物,最终形成所需的三维结构。
脉冲激光沉积的原理是利用高能脉冲激光束的瞬间加热和冷却特性,实现金属粉末的快速熔化和固化,以及其在三维空间中的沉积和成型。
3. 脉冲激光沉积的应用脉冲激光沉积技术在众多领域中都有广泛的应用。
以下是一些典型的应用领域。
3.1 高精度制造脉冲激光沉积技术可以实现高精度的制造,特别适用于制造复杂形状的零部件或器件。
例如,在航空航天领域,可以使用脉冲激光沉积技术制造具有复杂内部结构的燃烧室等零部件,以提升发动机的性能和可靠性。
3.2 修复与再制造脉冲激光沉积技术可以用于修复和再制造各种零部件。
通过在损伤或磨损部位进行局部加热和沉积,可以修复或增强零部件的功能。
这在汽车制造、机械制造等行业中具有重要应用价值。
3.3 仿生医学脉冲激光沉积技术可以用于制造仿生医学器件,如人工骨骼、关节和牙齿等。
通过将生物材料与金属粉末混合,脉冲激光沉积技术可以制造出具有高度仿真生物结构和功能的器件,为医学研究和临床治疗提供了新的可能性。
3.4 材料研究脉冲激光沉积技术在材料研究领域中也有广泛的应用。
通过控制脉冲激光的参数和材料粉末的性质,可以制备出具有特殊结构和性能的材料。
这对于研究新型材料的特性和应用具有重要意义。
4. 总结脉冲激光沉积技术是一种先进的加工技术,利用高能脉冲激光束对材料进行瞬间加热和冷却,实现材料的沉积和成型。
第41卷第3期2019年5月湖北大学学报(自然科学版)JournalofHubeiUniversity(NaturalScience)Vol.41㊀No.3㊀Mayꎬ2019㊀收稿日期:20190115基金项目:国家自然科学基金(51472078)和铁电压电材料与器件湖北省重点实验室开放课题基金(201706)资助作者简介:陈浩(1993)ꎬ男ꎬ硕士生ꎻ祁亚军ꎬ通信作者ꎬ副教授ꎬE ̄mail:yjqi@hubu.edu.cn文章编号:10002375(2019)03027705柔性PZT外延薄膜制备及其电学性能研究陈浩ꎬ郑志强ꎬ祁亚军ꎬ梁坤ꎬ章天金(湖北大学材料科学与工程学院ꎬ湖北武汉430062)摘要:采用脉冲激光沉积技术在柔性云母衬底上制备高质量的Pb(Zr0.52Ti0.48)O3(PZT)外延薄膜.引入NiFe2O4作为外延生长种子层ꎬ实现PZT薄膜的(111)取向外延生长.电学性能测试显示其具有优异的铁电压电性能ꎬ在未弯曲时ꎬ剩余极化(2Pr)值和压电系数(d33)分别为55μC/cm2和87pm/V.柔性PZT存储单元在弯曲㊁变温等条件下的铁电保持㊁疲劳性能测试显示其具有可靠稳定的信息存储功能.该结果表明柔性PZT薄膜在可穿戴电子器件领域具有重要的应用前景.关键词:柔性ꎻPZT薄膜ꎻ电学性能ꎻ稳定性中图分类号:TB303㊀㊀文献标志码:A㊀㊀DOI:10.3969/j.issn.1000 ̄2375.2019.03.011PreparationandelectricalpropertiesofflexiblePZTepitaxialthinfilmsCHENHaoꎬZHENGZhiqiangꎬQIYajunꎬLIANGKunꎬZHANGTianjin(SchoolofMaterialsScienceandEngineeringꎬHubeiUniversityꎬWuhan430062ꎬChina)Abstract:High ̄qualityepitaxialPb(Zr0.52Ti0.48)O3(PZT)thinfilmsareobtainedonmicasubstratebypulselaserdeposition.ThePZTthinfilmsare(111)orientedepitaxialgrowthbyintroducingNiFe2O4asaseedinglayer.TheelectricalpropertiesmeasurementsshowthattheflexiblePZTthinfilmspossessexcellentferroelectricandpiezoelectricproperties.Theremnantpolarization(2Pr)andthepiezoelectriccoefficient(d33)aremeasuredtobe55μC/cm2and87pm/Vꎬrespectivelyꎬwhentheflexiblethinfilmisunbending.TheflexiblePZTthinfilmsexhibithighstabilityundermechanicalbendingꎬhightemperatureaswellashighferroelectricfatigueresistanceandgoodretention.ThisstudydemonstratesthattheflexiblePZTthinfilmscannotonlybeusedfornonvolatilememoryapplicationbutalsoinwearableandimplantableelectronics.Keywords:flexibleꎻPZTfilmꎻelectricalpropertiesꎻreliability0㊀引言铁电薄膜材料因其优异的铁电压电性能ꎬ在非易失性存储器[1 ̄2]㊁逻辑器件[3]㊁致动器[4]和忆阻器[3]中广泛应用.近年来ꎬ随着人工智能和可穿戴电子器件的迅猛发展ꎬ生长在刚性衬底上的传统铁电薄膜日益不能满足智能电子产品的需求.柔性铁电存储器件因其便携性㊁可弯曲性㊁重量轻等特点ꎬ在显示器[5]㊁传感器[6]㊁生物医学[7 ̄8]等领域受到广泛关注.目前制备柔性铁电器件的方法主要有ꎬ在柔性可弯曲的金属薄片上生长铁电薄膜[9 ̄10]㊁通过刻蚀牺牲层将铁电薄膜转移到PET等高分子柔性衬底上[11]等.但这些方法都存在一些不足ꎬ例如高温下条件ꎬ在金属薄片上生长的铁电薄膜ꎬ金属离子将扩散进入铁电薄膜中ꎬ从而增加薄膜缺陷ꎬ劣化铁电薄膜的性能.而刻蚀转移技术工艺复杂ꎬ且可选做牺牲层的氧化物材料稀少ꎬ这些问题都限制了柔性铁电材料的应用.天然云母(Mica)中层间结合力弱ꎬ可以通过机械剥离的方法获得数十微米厚度的薄片ꎬ云母片的278㊀湖北大学学报(自然科学版)第41卷厚度越薄ꎬ其弯曲特性越好.有报道显示ꎬ当云母片的厚度为100nm时ꎬ其弯曲半径可小至0.03cm[12]ꎬ显示出云母在柔性㊁可穿戴电子器件领域的广阔应用前景.此外ꎬ云母衬底还具有原子级光滑表面㊁高热稳定性(TM1000ħ)㊁化学惰性㊁高透明度㊁机械柔韧性等优点ꎬ并且能够很好地与氧化物功能薄膜制备工艺(如PLDꎬMBE等)兼容ꎬ更重要的是ꎬ(001)取向云母与常用的(111)取向钙钛矿铁电材料的晶体结构相匹配ꎬ这些优势为其应用于柔性㊁可穿戴电子器件领域打下基础.本文中采用脉冲激光沉积技术(PLD)ꎬ在Mica衬底上生长Pb(Zr0.52Ti0.48)O3(PZT)铁电薄膜ꎬ所制备的薄膜具有良好的单晶外延性ꎬ且其铁电压电性能优异.通过改变柔性PZT薄膜的弯曲曲率ꎬ研究应力对柔性PZT薄膜的影响ꎬ探索柔性PZT存储器件在弯曲状态下的可靠性.1㊀实验部分在沉积薄膜之前ꎬ用双面胶将云母粘贴在载玻片上ꎬ用刀片切开云母ꎬ再用镊子夹住上表面层ꎬ均匀用力撕开ꎬ多次粘贴切开达到所需的厚度ꎬ本文中所用的云母厚度为10m m.由于底电极SrRuO3(SRO)和云母之间晶格失配太大ꎬSRO无法直接在云母上生长ꎬ因此在Mica和SRO中间引入NiFe2O4(NFO)层ꎬ以减小Mica和SRO间的晶格失配ꎬ诱导SRO㊁PZT薄膜外延生长.采用配备波长为248nmKrF准分子激光器的PLD系统在Mica衬底上依次沉积NFO㊁SRO和PZT薄膜ꎬ固定靶基距为50mm.NFO薄膜沉积时各项参数如下:激光频率为2Hz㊁激光能量为270mJꎬ沉积温度为700ħꎬ动态氧压为15PaꎻSRO薄膜沉积时各项参数为:激光频率为2Hz㊁激光能量为350mJꎬ沉积温度为700ħꎬ动态氧压为14PaꎻPZT薄膜沉积时各项参数如下:激光频率为2Hz㊁激光能量为230mJꎬ沉积温度为580ħꎬ动态氧压为30Pa.用美国牛津公司原子力显微镜(AsylumresearchMFP ̄3D)ꎬ镀有Pt/Ir的导电探针(NanoworldꎬEFM)对样品表面形貌和压电性能进行表征.使用铁电测试仪(RadianttechnologiesꎬPrecisionII)测试样品电滞回线㊁疲劳㊁保持等性能.以光敏树脂为原料ꎬ通过3D打印技术加工一系列不同弯曲曲率的模型ꎬ将柔性PZT薄膜粘贴在其上ꎬ以实现柔性PZT薄膜的弯曲.图1㊀柔性PZT薄膜的X线衍射图谱(a)θ2θ扫描ꎻ(b)ϕ扫描㊀2㊀结果与讨论图1(a)是X线衍射(XRD)θ2θ扫描图谱.可见ꎬ衍射图谱中除了Mica的(00l)型的衍射峰外ꎬ只出现了PZT和SRO的(lll)型衍射峰ꎬ表明在Mica上生长的SRO和PZT沿(111)取向生长.通过薄膜生长工艺优化和表征ꎬ确定NFO层厚度约5nmꎬSRO层厚度约40nmꎬPZT层厚度约300nm.其中NFO层为种子层ꎬ减小Mica与SRO之间的晶格失配ꎬ诱导薄膜外延生长ꎬSRO层为底电极层ꎬPZT层是铁电层.图1(b)是PZT{002}㊁SRO{002}㊁NFO{004}以及Mica{202}反射面的X线ɸ扫描图谱.Mica{202}晶面衍射峰每隔120ʎ出现一个ꎬ显示其三重对称性.而NFO㊁SRO和PZT的{002}面出现6个衍射峰ꎬ表明NFO㊁SRO和PZT薄膜具有六重对称性.X线ϕ扫描证实SRO和PZT在Mica衬底上沿(111)外延生长.由以上XRD结果ꎬSRO和PZT的外延关系可以确定为(111)SRO//(111)PZT//(001)第3期陈浩ꎬ等:柔性PZT外延薄膜制备及其电学性能研究279㊀Mica和[110]SRO//[110]PZT//[010]Mica.图2(a)(b)是柔性PZT薄膜的表面形貌和压电性能.如图2(a)AFM图显示ꎬPZT薄膜晶粒呈颗粒状ꎬ颗粒大小均匀ꎬ约为38nm.图2(b)是压电力测量模式下PZT薄膜的PFM极化翻转相位图ꎬ在尺寸为2mm´2mm的方形区域加载5V电压对PZT薄膜进行极化ꎬ随后在该方形区域内部尺寸为0.8mmˑ0.8mm的方形区域内再加载-5V电压ꎬ使该区域极化翻转.在相位图中这两个区域呈现亮黄色和黑色衬度ꎬ相位差180ʎꎬ表明这两个区域内部极化方向反平行排列ꎬ证实PZT薄膜具有良好的极化可翻转特性ꎬ显示其良好的压性能.图2㊀柔性PZT薄膜AFM形貌表征(a)和PFM极化翻转相位图(b)㊀宏观铁电性能测试显示ꎬ所制备的PZT薄膜具有细长的电滞回线ꎬ在未弯曲条件下测得的剩余极化(2Pr)为55μC/cm2ꎬ矫顽场(Ec)为50.6kV/cmꎬ对应的局部区域的压电系数随电压的变化呈典型的蝶形曲线ꎬ最大压电系数达到87pm/Vꎬ如图3所示.图3㊀柔性PZT薄膜弯曲特性表征不同弯曲状态下的电滞回线(a)ꎻ饱和极化和剩余极化随弯曲曲率的变化图(b)ꎻ不同弯曲半径下的压电响应(c)和相位图(d)㊀280㊀湖北大学学报(自然科学版)第41卷为了进一步研究柔性PZT薄膜在弯曲状态下的铁电性能的稳定性ꎬ利用Mica衬底良好的柔韧性ꎬ将PZT/Mica异质结向内或向外弯曲不同程度ꎬ研究其电学性能的变化.衬底内凹弯曲(inwardbending)对应薄膜受到压缩应变ꎬ而外凸弯曲(outwardbending)使薄膜受到拉伸应变ꎬ对应的弯曲曲率分别用 + 和 - 表示.当给样品施加应力使样品发生弯曲ꎬ薄膜表面受到的应变S与衬底弯曲半径r满足以下关系[13]:S=tL+tS()1+2η+χη2()2r1+η()1+χη()(1)其中ꎬη=tL/tSꎬtL为薄膜层厚度ꎬtS为衬底的厚度ꎬχ=YL/YSꎬYL㊁YS分别代表薄膜和衬底的杨氏模量.由于tL≪tS≪rꎬ因而S可简化为(tL+tS)/2rꎬ且在不同的弯曲半径下ꎬ薄膜表面所受的应变约等于弯曲半径的倒数.图3(a)为不同弯曲半径下PZT薄膜的电滞回线.可见ꎬ电滞回线的形状和极化值均没有发生显著变化ꎬ显示柔性PZT薄膜良好的抗弯折特性.电滞回线中的最大极化值(Pmax)和剩余极化值(Pr)随弯曲曲率的变化关系如图3(b)所示.随着弯曲曲率从-1/2变化到1/2ꎬPmax值从62μC/cm2变化到59.5μC/cm2ꎬ显示柔性PZT薄膜的稳定的可弯曲特性.同时ꎬ结合公式(1)计算得到ꎬ薄膜所受最大拉伸应变约为0.0026%ꎬ且拉伸应变将导致薄膜铁电极化降低ꎬ拉伸应变越大ꎬ极化下降越多ꎻ而压应变将增加薄膜极化ꎬ压应变越大ꎬ薄膜铁电极化越大.图3(c)和图3(d)分别是柔性PZT薄膜在不同弯曲半径下的压电响应和相位图.在不同的弯曲状态下ꎬ压电系数随电压的变化仍然保持典型蝶形曲线ꎬ最大值保持在87pm/Vꎬ位相差保持180ʎ.图4㊀柔性PZT薄膜可靠性研究(a)不同温度下的电滞回线ꎻ(b)r=+2cm状态下的保持性能ꎻ(c)r=+2cm状态下的疲劳性能ꎻ(d)机械弯曲不同次数后的电滞回线图4(a)是在不同温度下测得的电滞回线ꎬ可以看到ꎬ在20170oC的温度区间ꎬ饱和极化和剩余极化分别保持为54.0μC/cm2和26.3μC/cm2ꎬ未发生明显变化ꎬ可见ꎬ柔性PZT薄膜的铁电性能在20170ħ的温度区间具有优异的温度稳定性.如图4(b)所示ꎬ将柔性PZT薄膜弯曲至+2cmꎬ用-10V电压写入后每隔特定的时间读出存储的第3期陈浩ꎬ等:柔性PZT外延薄膜制备及其电学性能研究281㊀信息ꎬ经过104s后ꎬ极化强度没有明显的降低ꎬ显示柔性PZT薄膜具有优异的极化保持特性.柔性PZT在弯曲半径r=+2cm下ꎬ疲劳测试的反转电压为ʃ4Vꎬ频率为1MHzꎬ结果如图4(c)所示ꎬ经过1010次极化翻转后ꎬPZT薄膜的剩余极化值(2Pr)由37.72μC/cm2降低到35.79μC/cm2ꎬ降幅约为5.1%.图4(d)是柔性PZT薄膜的机械弯曲可靠性测试结果.在500kV/cm的测试电场下ꎬ将柔性PZT薄膜机械弯曲至半径为+2cmꎬ然后恢复平直状态ꎬ重复弯曲不同次数后的PZT薄膜的电滞回线如图4(d)所示.经过104次弯曲后ꎬPZT薄膜的最大极化强度和剩余极化强度仍分别保持为60.6μC/cm2和24.1μC/cm2ꎬ该结果显示柔性PZT薄膜良好的抗弯折性能.3㊀结论用脉冲激光沉积法ꎬ在柔性Mica衬底上制备出高质量(111)外延PZT铁电薄膜ꎬ电学性能测试显示其具有良好的铁电压电性能.变温㊁疲劳和保持等可靠性测试显示ꎬ柔性PZT薄膜仍能保持良好的电学性能ꎬ经过104的机械弯曲之后仍保持良好的存储特性ꎬ显示柔性PZT存储器件优异的可弯曲特性ꎬ这些结果为柔性PZT薄膜的可穿戴器件应用提供实验依据.4㊀参考文献[1]HanSTꎬZhouYꎬRoyVALꎬetal.Towardsthedevelopmentofflexiblenon ̄volatilememories[J].AdvancedMaterialsꎬ2013ꎬ25(38):5425 ̄5449.[2]GhoneimMTꎬHussainMM.Reviewonphysicallyflexiblenonvolatilememoryforinternetofeverythingelectronics[J].Electronicsꎬ2015ꎬ4(3):424 ̄479.[3]HoffmanJꎬPanXꎬReinerJWꎬetal.Ferroelectricfieldeffecttransistorsformemoryapplications[J].AdvancedMaterialsꎬ2010ꎬ22(26/27):2957 ̄2961.[4]KimSꎬJeongHYꎬKimSKꎬetal.Flexiblememristivememoryarrayonplasticsubstrates[J].NanoLettersꎬ2011ꎬ11(12):5438 ̄5442.[5]SekitaniTꎬYokotaTꎬZschieschangUꎬetal.Organicnonvolatilememorytransistorsforflexiblesensorarrays[J].Scienceꎬ2009ꎬ326(5959):1516 ̄1519.[6]HwangGTꎬParkHꎬLeeJHꎬetal.Self ̄poweredcardiacpacemakerenabledbyflexiblesinglecrystallinePMN ̄PTpiezoelectricenergyharvester[J].AdvancedMaterialsꎬ2014ꎬ26(28):4880 ̄4887.[7]MatsuhisaNꎬSakamotoHꎬYokotaTꎬetal.Amechanicallydurableandflexibleorganicrectifyingdiodewithapolyethylenimineethoxylatedcathode[J].AdvancedElectronicMaterialsꎬ2016ꎬ2(10):1600259.[8]LeeWꎬKimDꎬMatsuhisaNꎬetal.Transparentꎬconformableꎬactivemultielectrodearrayusingorganicelectrochemicaltransistors[J].ProceedingsoftheNationalAcademyofSciencesꎬ2017:201703886.[9]ZuoZꎬChenBꎬZhanQꎬetal.PreparationandferroelectricpropertiesoffreestandingPb(ZrꎬTi)O3thinmembranes[J].JournalofPhysicsD:AppliedPhysicsꎬ2012ꎬ45(18):185302.[10]KingonAIꎬSrinivasanS.Leadzirconatetitanatethinfilmsdirectlyoncopperelectrodesforferroelectricꎬdielectricandpiezoelectricapplications[J].NatureMaterialsꎬ2005ꎬ4(3):233 ̄237.[11]BakaulSRꎬSerraoCRꎬLeeOꎬetal.Highspeedepitaxialperovskitememoryonflexiblesubstrates[J].AdvancedMaterialsꎬ2017ꎬ29(11):1605699.[12]HeYDꎬDongHLꎬMengQꎬetal.Micaꎬapotentialtwo ̄dimensional ̄crystalgateinsulatorfororganicfield ̄effecttransistors[J]ꎬAdvancedMaterials2011ꎬ23(23):5502 ̄5507.[13]ZhouYꎬHanSTꎬZhouLꎬetal.Flexibleorganic/inorganicheterojunctiontransistorswithlowoperatingvoltage[J].JournalofMaterialsChemistryCꎬ2013ꎬ1(42):7073 ̄7080.(责任编辑㊀郭定和)。
脉冲激光沉积原理
脉冲激光沉积(Pulsed Laser Deposition,简称PLD)是一种将激光束瞬间作用于靶材表面,使其物质溅射,在底板上沉积成薄膜的技术。
该技术具有高纯度、高简化度、高复杂度、高膜质量和高可控性等优点,可广泛应用于各种材料的薄膜制备和研究。
PLD技术的实现基础是激光与物质相互作用的几个基本过程,包括:吸收、传输、耦合、能量转化和溅射等。
在PLD过程中,首先就是激光的吸收过程。
通常,激光波长在400nm到1μm之间,与靶材相互作用时,会被物质吸收而转化为电子和电磁场等。
然后,激光能量会传输到靶材内部,通过电子和离子的耦合,使物质发生局部升温和扩散。
当耦合的电子和离子达到足够高的能量时,会带动靶材表面物质分子溅射出来。
这种由靶材表面物质分子溅射出来的原子、离子和中性物质称为飞行物种。
最后,飞行物种沉积在底板上形成所需的薄膜。
在PLD技术中,激光的功率密度、波长、脉宽和重复频率等参数会影响物质吸收、传输、耦合和溅射等过程。
因此,PLD技术需要精确控制这些参数,使物质均匀、高效、低缺陷地沉积在底板上。
此外,靶材的化学组成和表面形貌等也会影响PLD的效果。
因此,正确选择靶材及其制备方法非常关键,能够有效地提高PLD技术的可靠性和重复性。
总的来说,PLD技术是一种高效、精确、可控、高质量的薄膜制备技术,广泛应用于半导体、磁性材料、超导材料、光学材料、生物材料、纳米材料等领域中。
《表面科学与技术》课程作业关于脉冲激光沉积(PLD)薄膜技术的探讨摘要:薄膜材料广泛应用在半导体材料、超导材料、生物材料、微电子元件等方面。
为了得到高质量的薄膜材料,科学家一直在寻找和探讨各种新的技术,脉冲激光沉积(Pulsed Laser Diposition PLD)薄膜技术是近年来快速发展起来的使用范围最广,最有前途的制膜技术之一。
本文介绍了脉冲激光沉积(PLD)薄膜技术的原理及特点,并与其他薄膜技术进行对比,探讨衬底温度、靶材与基底的距离、退火温度、靶材的致密度、激光能量、激光频率等参数对薄膜质量的影响。
分析了脉冲激光沉积技术在功能薄膜材料中的应用和研究现状,并展望了该技术的应用前景。
关键字:脉冲激光沉积(PLD)等离子体薄膜技术前言上世纪60年代第一台红宝石激光器的问世,开启了激光与物质相互作用的全新领域。
科学家们发现当用激光照射固体材料时,有电子、离子和中性原子从固体表面逃逸出来,这些跑出来的粒子在材料附近形成一个发光的等离子区,其温度估计在几千到一万度之间,随后有人想到,若能使这些粒子在衬底上凝结,就可得到薄膜,这就是最初激光镀膜的概念。
最初有人尝试用激光制备光学薄膜,这种方法经分析类似于电子束打靶蒸发镀膜,没有体现出其优势来,因此这项技术一直不被人们重视。
直到1987年,美国Bell实验室首次成功地利用短波长脉冲准分子激光制备了高质量的钇钡铜氧超导薄膜,这一创举使得脉冲激光沉积(Pulsed Laser Deposition,简称PLD)技术受到国际上广大科研工作者的高度重视,从此PLD成为一种重要的制膜技术]1[1。
由于脉冲激光沉积技术具有许多优点,它被广泛用于铁电、半导体、金刚石(类金刚石)等多种功能薄膜以及生物陶瓷薄膜的制备上,可谓前途光明。
1. PLD 技术装置图及工作原理1.1 PLD系统脉冲沉积系统样式比较多,但是结构差不多,一般由准分子脉冲激光器、光路系统(光阑扫描器、会聚透镜、激光窗等);沉积系统(真空室、抽真空泵、充气系统、靶材、基片加热器);辅助设备(测控装置、监控装置、电机冷却系统)等组成]2[2,如图1-1所示。
PZT铁电薄膜材料的制备技术PZT(铅锆钛)是一种具有铁电和压电性能的材料,因此在传感器、电容器、声波器件等领域有广泛的应用。
PZT铁电薄膜材料的制备技术在近年来得到了大量研究,主要包括溶液法、物理气相沉积(PVD)法和化学气相沉积(CVD)法等多种方法。
下面将对这几种方法进行详细介绍。
1.溶液法溶液法是一种简单、成本低、易于实现的PZT铁电薄膜制备方法。
通常采用溶胶-凝胶(Sol-Gel)法,即将Pb(Pb2+)、Zr(Zr4+)、Ti (Ti4+)离子源分别与适量的溶剂混合,形成溶胶溶液,然后通过加热、溶胶凝胶处理和烧结等步骤,得到PZT薄膜。
溶液法制备的PZT铁电薄膜具有较高的结晶度和均匀性,但由于需要多次热处理,制备周期比较长。
2.物理气相沉积(PVD)法PVD法是一种通过蒸发、溅射或离子束轰击等方法在基板表面直接沉积PZT铁电薄膜的技术。
常用的技术包括磁控溅射法、电子束蒸发法和激光沉积法等。
PVD法制备的PZT铁电薄膜具有高纯度、致密度高、晶粒度细等优点,但设备成本高,生产效率低。
3.化学气相沉积(CVD)法CVD法是一种利用气相反应在基板表面生长PZT铁电薄膜的技术。
通常采用金属有机化合物作为前体物质,通过热解反应、气相反应等步骤,使溶液中的Pb、Zr、Ti等元素在基板表面沉积成PZT铁电薄膜。
CVD法制备的PZT铁电薄膜可以精确控制成膜速度、成膜厚度和成膜质量,但是对设备要求高,操作复杂。
除了上述几种主要的制备技术外,还有一些其他方法,如脉冲激光沉积法、微波辅助反应法等。
这些方法都有各自的优缺点,可以根据具体需求选择合适的制备技术。
总的来说,PZT铁电薄膜材料的制备技术在不断发展和完善,未来随着材料工艺的进一步提高,可以实现更高质量、更高性能的PZT铁电薄膜材料。
这将为传感器、电容器、声波器件等领域的应用提供更大的可能性和发展空间。
希望本文能对PZT铁电薄膜材料的制备技术有所帮助。
PZT 材料的制备方法及特点1Mocvd 法 (1)2溶胶凝胶法 (1)3脉冲激光法 (2)4溅射法 (3)5激光分子束外延 (L-MBE) 法 (3)薄膜制备是现代材料科学的一种重要技术。
目前常用的 PZT 薄膜制备方法主要有4种:金属有机物化学气相沉积(MOCVD)法、溶胶凝胶法(Sol-Gel)、脉冲激光法(PLD)、溅射法和激光分子束外延 (L-MBE)法。
1Mocvd 法金属有机化合物化学气相沉积 (MOCVD) 是20世纪 80年代发展起来的新技术,是利用金属有机化合物在化学相沉积系统中的热解反应来沉积各种薄膜材料的。
由于是利用金属的有机物作为参与反应的气体,所以可大大降低反应所需的温度。
MOCVD 工艺主要原理为:将反应气体和气化的金属有机物前体溶液通过反应室,经过热分解沉积在加热的衬底上形成薄膜。
此法主要优点是薄膜生长速率快,可制备大面积薄膜,能精确控制膜的化学组分和厚度。
但这种方法受制于金属有机源(MO)的合成技术,难以找到合适的金属有机源,仅能用于少数几种薄膜的制备。
采用此方法已制备出PT, PZT, PLZT, BT及LN等铁电薄膜。
2溶胶凝胶法SOL-GEL 法是制备材料的湿化学方法中一种崭新的方法。
1864年 JJ.Ebelmen 首先开展了这方面的研究工作。
20世纪 30年代 W Geffcken 利用金属醇盐水解和胶凝化制备了氧化物薄膜,从而证实了这种方法的可行性 .但直到 1971年德国学者H.Dislich 利用 SOL-GEL 法成功制备出多组分玻璃之后, SOL-GEL 法才引起科学界的广泛的关注,并得到迅速发展。
从 80 年代初期, SOL-GEL 法开始被广泛应用于铁电材料、超导材料、冶金粉末、陶瓷材料、薄膜的涂复及其它材料的制备等。
此外,SOL-GEL 法也是本课题用于制备 PZT 铁电薄膜的方法。
简单的讲,溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
激光脉冲沉积(PLD)设备安全技术措施激光脉冲沉积(PLD)是一种常见的材料制备技术,它利用激光脉冲在瞄准材料表面进行击打,从而在表面形成薄膜。
PLD技术在研究和生产上具有广泛的应用,然而,在使用PLD设备时,操作人员需要注意安全问题,采取适当的技术措施来保护自己和其它人员的安全。
本文介绍了一些PLD设备安全技术措施。
操作前准备工作在操作PLD设备之前,操作人员应该进行一系列的准备工作,以确保操作的安全。
这些准备工作包括:1.确保操作人员已经接受过必要的培训和指导,了解PLD设备的工作原理和操作流程,并具备操作PLD设备的能力。
2.确保PLD设备处于适当的位置,防止其移动或倾倒。
3.请务必熟悉设备使用手册,并根据手册中的安全操作规范进行操作。
4.确保所有的安全设施已经安装到位,并处于可用状态,如:紫外光屏蔽面罩,激光压敏手套,防护眼镜等。
红外和紫外光屏蔽面罩PLD设备使用的激光脉冲在很短的时间内产生了高能量密度,因此非常危险。
在操作PLD设备时,需要带着面罩以保护眼睛和面部。
面罩应该能通过射线检测,并确定带着它可以防护紫外光、可见光和红外光线。
在紫外光线下,普通的眼睛保护镜是无效的,应该使用防辐射安全面屏,以降低花费时间的总辐射。
激光压敏手套和防护眼镜除了眼部保护,手的安全也同样需要注意。
在使用PLD设备时,应该带上激光压敏手套,以保护手部不受到激光伤害。
同时,应该选择适合于激光波长的防护眼镜来保护眼睛。
环保工作在使用PLD设备时,需要注意环保问题。
PLD过程产生较多的污染物,包括废气和废水。
操作人员应该了解相关的污染物法规要求,并进行相应的处理和处置。
操作过程中需要遵守的规定在使用PLD设备时,应该遵守以下规定:1.禁止用手、工具或其他东西去挡住激光。
2.禁止在激光工作区内留下杂物,以免导致人员受到伤害。
3.禁止在任何时候集中良好的视线看激光束,或盯着光源。
4.在激光工作期间,应该保持安静,不要干扰或打扰其他人。
脉冲激光沉积PZT/LSMO薄膜结构及输运特性的研究摘要锆钛酸铅(Pb(Zr x Ti1-x)O3,简称PZT)材料因其具有优良的铁电、压电、热释电、电光和非线性光学等特性而备受关注。
同时,PZT作为一类典型的铁电材料,其显著的反常光生伏打效应,为新型太阳能电池材料的研究创造条件。
本文利用脉冲准分子激光在STO单晶基片上淀积了LSMO和P ZT的.并通过高频溅射将Pt蒸镀在PZT薄膜上作为上电极;用X射线衍射表征了PZT铁电薄膜和该多层膜的晶相结构,测量了PZT的铁电性能和介电特性。
讨论了PZT/薄膜的制备工艺。
以及工艺条件对晶相结构和薄膜性能的影响。
在密封的液氮杜瓦瓶里用四探针法对薄膜的输运特性进行了测试,.关键词:PZT薄膜激光脉冲淀积电滞回线,漏电流Study on structure and Transport Characteristic of PZT/LSMO Thin Film By Pulsed-Laser DepositionAbstract绪论.PZT具有一系列优异的性能,如压电、铁电、热释电、介电、光电等,利用这些性质可以成性能优良的器件。
与其他铁电材料相比,PZT具有很多优点,例如:较高的居里点(200℃以上)且可以通过改变锆钛含量比实现对居里温度的控制;它的热释电系数较大,同时介电常数和介电损耗较小,而且可以通过对PZT掺杂入Mn、Bi等其他元素或单纯改变PZT的锆钛含量比的方式来改善其性能;在准同型相界附近具有优异的压电性能。
因此PZT是一种优异的压电、铁电和热释电材料,已在众多领域被广泛的应用1.PTZ铁电薄膜随着铁电薄膜和微电子技术相结合而发展起来的集成铁电学的出现,铁电薄膜的制备、结构、性能及其应用已成为国际上新材料研究十分活跃领域,其中钙钛矿结构的锆钛酸铅(PZT)铁电薄膜由于具有优越铁电、介电、压电、热释电以及能够与半导体技术兼容等特点,使之在微机电系统(MEMS)等领域具有广泛的应用前景。
由于基于PZT的器件具有工作带宽广、反应速度快和灵敏性高等优点,因此PZT薄膜可以用于MEMS领域的各个方面,例如压电激励器、焦热红外探测器、随机存储器和超声器件。
为了满足不断提高的微纳米机械器件的要求和与硅基器件的兼容,在硅衬底上生长高质量的PZT薄膜就变得越来越重要.1.1 铁电薄膜材料的研究现状,7]。
目前,铁电薄膜的研究主要集中在以下几个方面:新的合成技术与沉积技术,薄膜的检测与表征技术,结构与性能的关系以及工艺与微结构关系,界面特性(包括金属-铁电薄膜界面和铁电薄膜与半导体兼容),新薄膜材料的研究等方向。
应用研究则主要集中在:光电子学(电光应用、光学相位调制、光折变、集成光学等),压电应用(SAW器件、微控制器、微马达、微机械阀等),热释电学(单元探测器和线性阵列探测器)和铁电随机存储器[8]。
1.2 铁电材料的自发极化和电滞回线自发极化是指在没有外电场时,铁电体内正、负电荷中心不重合,形成有一定规则排列的电偶极矩而产生的极化。
电滞回线是指自发极化强度P滞后于外加电场强度E的变化轨迹,如图1.1所示。
图中O点是指外加电场为0时的状态,电偶极矩呈杂乱分布,总电矩为0,所以通常情况下铁电体不显电性。
当场强较弱时,极化强度随场强近似呈线性变化,如OA段。
当场强逐渐变大,P随场强呈非线性变化并迅速达到饱和,如ABC,做BC的反向延长线与纵轴的交点E称为饱和极化强度P s,B点处电偶极矩受外加电场的影响基本趋于同一方向。
当场强逐渐减小时,曲线不按照原轨迹返回,呈BD段,当外界场强减小到0时,存在剩余极化强度P r,反方向增加场强,极化强度下降,当场强达到E c时,极化强度变为0,E c称为矫顽场强,此时总的电偶极矩为0。
场强继续增大,极化强度反向增加,直至达到饱和,如FG所示。
如电场再次减小而后反向增加,曲线呈GHC变化,最后形成一条封闭的曲线。
P r和E c是反映铁电性能的重要指标,回线矩形度越好表明铁电性能越强,所以电滞回线是检测铁电性的一个重要标志[9]。
[8]。
1.3 PZT晶体结构与电畴钙钛矿结构是铁电材料典型晶体结构之一。
钙钛矿结构是ABO3型,A类原子位于立方体的8个顶角,氧原子位于六个面心,B类原子位于立方体的体心,或者称为氧八面体的中心,A和B原子的配位数分别为12和6,如图1.2所示。
铁电材料之所以具有铁电性,这与氧八面体的性质是分不开的,下面以PbTiO3(简称PT)为例加以说明。
当温度高于某一临界温度时,晶胞呈立方结构,Ti4+(B)处于氧八面体的中心,正负电荷中心重合,不存在自发极化,呈顺电相,不具有铁定性;当温度低于临界温度时,Ti-O八面体的正负电荷中心不重合,存在自发极化,呈铁电相,这里的临界温度叫做居里温度(T c),这一类从顺电相到铁电相的转变称为位移型相变。
图1.2 ABO3型晶体结构Pb(Zr x Ti1-x)O3(简称PZT)是迄今研究得最多的铁电薄膜之一,它具有较大的剩余极化强度P r 和较大的介电常数,是比较成熟的铁电材料之一。
PZT具有典型的钙钛矿结构,它是由PbTiO3和PbZrO3形成的固溶体,Pb占据A位,Zr/Ti共同占据B位,O占据面心位置。
铁电体的另一个主要特征就是具有铁电畴。
自发极化方向一致的小区域称为电畴,不同极化方向电畴间的交界面称为畴壁。
一个晶粒可以具有很多个电畴,这是由于单畴体不稳定,能量较高,所以它会自发的形成多畴结构。
根据电畴间夹角的大小,铁电材料电畴可分为180º畴、90º畴、60º畴、120º畴、71º畴和109º畴等,按极化方向可以分为a畴和c畴。
电畴可以通过偏光显微镜、SEM、TEM和扫描探针显微镜等仪器来观察[9]。
1.4铁电薄膜的制备和性质薄膜制备是一种重要技术,应用于现代材料科学。
铁电薄膜一般都是化学组成复杂的多组元氧化物,时而还会按需求对其进行掺杂改性。
微电子技术所用铁电薄膜厚度一般在50--500rim。
光电子技术所用铁电薄膜一般则在1-21ma范围内,一小部分能达到10纳米的铁电薄膜。
目前采用物理或化学的途径制备薄膜的技术有许多种,常用的制备技术如下:物理方法:脉冲激光沉积(PLD)、溅射、真空蒸发、分子束外延(MBE)等;化学方法:溶胶.凝胶(S01.Gel)、化学气相沉积(CVD,MOCVD)等。
铁电薄膜材料具有一系列独特的性质,在微电子学、光电子学、光子学、集成铁电学、微机电学、微机械学、微光机电学等领域中具有重要广泛的应用。
这些性质包括高介电性、热释电性、铁电性、压电性、电光特性、声光特性、非线性光学、光铁电性、磁电性等。
铁电薄膜的诸多特性也使得它在制备铁电随机存储器FRAM、光电波导器件、动态随机存储器等方面已成为首选材料。
铁电薄膜的主要性能如下:自发极化、极化反转与电滞回线、介电常数、铁电相变等指标。
2 PZT薄膜PLD制备及性能测试2.1 脉冲激光沉积系统(PLD)本实验所用真空系统为中科院沈阳科学仪器研制中心生产PLD-300型脉冲激光沉积系统,如图3.1所示。
真空室配备机械泵、分子泵等,极限真空可达6.67×10Pa。
基片最高加热温度为800℃有四个装靶位,换靶方式灵活,方便多层薄膜的沉积。
可以用于制备超导薄膜、半导体薄膜、铁电薄膜和超硬材料薄膜等。
脉冲准分子激光使用的是德国Lambda Physik公司生产的COMPEX-205脉冲准分子激光器,如图3.1所示。
其工作气体为KrF,激光波长为248nm,脉冲宽度20ns,最大重复频率50Hz,单脉冲最大能量可达750mJ。
高能准分子激光脉冲经光学系统聚焦后照射在靶材表面,靶材被蒸发形成高温高压的等离子羽辉,在衬底上形成薄膜。
图中的右上角的小图部分为薄膜沉积时拍摄下来的等离子体羽辉照片。
通过调整合适的沉积参数,如:激光脉冲的能量和重复频率、基片温度、沉积氧压、沉积时间、退火温度,退火氧压以及退火时间等可获得与靶材化学计量比一致,且结晶性能良好的薄膜2.2 PZT 靶材因为要制备性能优良的热释电薄膜,不但要求它的热释电系数大,而且要求它的热释电优值也要好,即同时要求它的介电常数和损耗尽量小。
从图2.3和2.7中PZT的相图和介电常数图可以看出,在准同型相界附近,PZT的介电常数非常大。
因此制备性能良好的PZT热释电薄膜,锆钛比的选择必须远离准同型相界附近。
当PZT发生相变时,它的晶格结构发生变化,极化强度变化较大,此时容易获得较高的热释电系数。
从相图中可以看出,在富钛一侧,PZT缺乏相变,因此不容易获得较高的热释电系数;而在富锆一侧尤其在锆钛比较高(Zr>90mol%)处,PZT具有众多的相,当温度发生变化时PZT的相变丰富,容易获得较高的热释电系数,而且此配比的PZT的介电常数较低,容获得较高的热释电优值。
但当Zr含量大于95%时,PZT变为反铁电相,无压电性能和剩余极化强度,因此PZT中锆含量应该控制在90~95%之间2.3 PZT 薄膜的沉积制备2.3.1 基片的净化薄膜对灰尘、杂质等微粒极为敏感,如果沉积薄膜时基片上有杂质颗粒,薄膜的质量将受到较大的影响,例如:一般微电子行业薄膜的制备都在超净间完成。
因此实验前必须对基片表明进行彻底的清洁。
本实验所采用的基片是经抛光处理的单晶Si,在进行薄膜的沉积前用去离子水、乙醇和丙酮对基片进行多次超声清洗,以获得高洁净度的基片。
2.3.2 LSMO 底电极的制备在沉积PZT薄膜之前,先用PLD方法在STO基底上制备一层LSMO薄膜作为PZT薄膜电性质测量的底电极。
结合前人的研究规律和自己试验过程中的探索,发现在基底温度800℃、氧气压力为26Pa 时,制得LSMO薄膜的结晶性能和导电性能最优。
LSMO薄膜的XRD图谱如图3.6所示,从LSMO薄膜的XRD图谱中可以看出,薄膜在和LSMO靶材相同的(110)和(116)方向上具有衍射峰,而且(110)方向上的衍射峰非常强,LSMO薄膜为(110)方向择优生长,具有很好的结晶性能。
薄膜的电阻经LCR测试仪测定约在几十到几百Ω左右,导电性能良好,适宜作为PZT薄膜的底电极2.4 PZT 薄膜沉积和退火参数选择2.4.1 沉积氧气压力PZT和LSMO都为氧化物,所以在沉积时通入氧气可以提高薄膜的质量。
PLD沉积薄膜时,靶材粒子被溅射到基片上后,部分粒子吸附在基片的表面然后聚集成膜,一部分粒子将逸出。
研究表明Pb 的逸出倾向较大,容易使沉积的PZT薄膜因为缺Pb,成分无法保持而形成焦绿石相结构,从而无法钙钛矿相结构的PZT薄膜。
研究表明Pb的含量随沉积室氧气压力成线性增长[42],当沉积室压力增高时,气体分子的碰撞频率增加,抑制了Pb从基片上的逸出。