专题七 物质结构与化学键
- 格式:ppt
- 大小:5.00 MB
- 文档页数:57
专题突破练七物质结构与性质(A)一、选择题1.(2021北京石景山一模)下列关于元素及元素周期律的说法,正确的是( )A.同主族元素的原子,最外层电子数相等且等于主族序数B.铝元素在周期表中位于第四周期ⅢA族C.410Be的原子核内中子数是10D.第117号元素Ts的非金属性强于Br2.(2021湖北八市联考)长征六号运载火箭将卫星送入预定轨道的过程中,提供动力的化学反应为C2H8N2+2N2O43N2+2CO2+4H2O。
下列说法错误的是( )A.N2的电子式:··N︙︙N··B.CO2的空间填充模型:C.CO2是氧化产物D.电负性大小:O>N3.(2021湖北七市州教科研协作体联考)NF3与汞共热得到N2F2和一种汞盐,下列有关说法错误的是( )A.NF3的空间结构为三角锥形B.N2F2的结构式为F—N N—FC.NF3的沸点一定高于NH3的沸点D.N2F2:分子存在顺反异构4.(2021湖北教科研协作体联考)一种用于治疗流行性感冒的药物的主要成分的结构简式如图。
下列关于该有机物的说法错误的是( )A.分子中只有1个手性碳原子B.分子中共平面碳原子最多有7个C.键角α>βD.1 mol该有机物消耗Na与NaOH的物质的量之比为3∶25.(2021山东烟台诊断性测试)已知W、X、Y、Z为短周期元素,原子序数依次增大。
W、Z同主族,X、Y、Z同周期,其中只有X为金属元素。
下列说法一定错误的是( )A.电负性:W>Z>Y>XB.气态氢化物熔、沸点:W > ZC.简单离子的半径:W>X>ZD.若X与W原子序数之差为5,则形成化合物的化学式为X3W26.(2021湖南永州第三次模拟)如表所示为元素周期表的一部分,其中X、Y、Z、W为短周期元素,T的单质常温下为液体。
下列说法错误的是( )A.X、Y的单质均存在同素异形体B.Y、Z的简单氢化物的稳定性依次递增C.R的单质可用于制造半导体材料D.Y、Z、W元素简单阴离子的半径大小:Y>Z>W7.(2021辽宁葫芦岛第一次模拟)一种新型电池的电解质是由短周期主族元素组成的化合物,结构如右图所示。
高中化学物质结构与性质专题讲解乐享集团公司,写于2021年6月16日一. 学习内容:分子结构与晶体结构二.学习目标了解化学键的含义,理解并掌握共价键的主要类型及特点,共价键、离子键及金属键的主要区别及对物质性质的影响;能根据杂化轨道理论和价层电子对互斥模型判断简单分子或离子的空间构型,了解等电子体的含义;了解原子晶体、分子晶体和金属晶体的结构特征,掌握不同晶体的构成微粒及微粒间的相互作用力,掌握影响晶体熔沸点、溶解性的因素;三.学习重点、难点分子结构与晶体结构的特点,影响物质熔沸点和溶解性、酸性的因素四.学习过程一化学键与分子结构:1、化学键:相邻的两个或多个原子之间强烈的相互作用,通常叫做化学键;三种化学键的比较:离子键共价键金属键形成过程阴阳离子间的静电作用原子间通过共用电子对所形成的相互作用金属阳离子与自由电子间的相互作用构成元素典型金属含NH4+和典型非金属、含氧酸根非金属金属实例离子化合物,如典型金属氧化物、强碱、大多数盐多原子非金属单质、气态氢化物、非金属氧化物、酸等金属配位键:配位键属于共价键,它是由一方提供孤对电子,另一方提供空轨道所形成的共价键,例如:NH4+的形成在NH4+中,虽然有一个N-H键形成过程与其它3个N-H键形成过程不同,但是要存在于双键、叁键以及环状化合物中;σ键较稳定,而π键一般较不稳定;共价键具有饱和性和方向性两大特征;2、分子结构:价层电子对互斥理论:把分子分成两大类:一类是中心原子上的价电子都用于形成共价键;如CO2、CH2O、CH4等分子中的C原子;它们的立体结构可用中心原子周围的原子数来预测,另一类是中心原子上有孤对电子未用于形成共价键的电子对的分子;如H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥;因而H2O分子呈V型,NH3分子呈三角锥型;杂化轨道理论:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道;据参与杂化的s轨道与p轨道的数目,存在sp3、sp2、sp三种杂化;CO202sp直线型NH314sp3三角锥型NH4+04sp3正四面体H2O 24sp3V形H3O+14sp3三角锥型价层电子对互斥模型判断简单分子或离子的空间构型电子对数目电子对的空间构型成键电子对数孤电子对数电子对的排列方式分子的空间构型实例2 直线 2 0 直线CO2、C2H23 三角形3 0 三角形BF3、SO32 1 V形SnCl2、PbCl24 四面体4 0 四面体CH4、SO42-CCl4、NH4+3 1 三角锥NH3、PCl32 2 V形H2O、H2S说明:1等电子原理是指原子总数相同,价电子总数相同的分子或离子,对于主族元素而言,价电子就是其最外层电子数,即为最外层电子总数相等;这一类分子或离子具有相似的化学键特征、分子结构以及部分物理性质相似,但一般情况下,化学性质并不相似;同样,化学键相似,并不是指键角等一定相同;利用等电子原理可判断一些简单分子或离子的主体构型,如:CO2、CNS-、NO2+、N3-的原子总数均为3,价电子总数均为16,因此,它们的空间构型均为直线型;2运用价层电子对互斥模型可预测分子或离子的空间构型,但要注意判断其价层电子对数,对ABn型分子或离子,其价层电子对数的判断方法为:n=在确定中心原子的价层电子对数时应注意如下规定:①作为配体原子,卤素原子和氢原子提供一个电子,氧族元素的原子不提供电子;②作为中心原子,卤素原子按提供7个电子计算,氧族元素的原子按提供6个电子计算;③对于复杂离子,在计算价层电子对数时,还应加上负离子的电荷数或减去正离子的电荷数;④计算电子对数时,若剩余1个电子,也当作1对电子处理,双键、叁键等多重键作为1对电子看待;3、杂化类型的判断:①公式:n=;或:n=中心原子的孤对电子对数+配位原子总数②根据n值判断杂化类型:n=2时,sp杂化;n=3时,sp2杂化;n=4时,sp3杂化;③当电荷数为正值时,公式中取“-”,当电荷数为负值时,公式中取“+”;当配位原子为氧原子或硫原子时,成键电子数为0;④杂化轨道所形成的化学键一般为单键,即为σ键;4、价层电子对互斥模型和杂化轨道理论:说明的是价层电子对杂化轨道形成的σ键的共用电子对和孤对电子对的空间构型,而分子的空间构型指的是形成σ键电子对的空间构型,不包括孤对电子; 它包括两种类型:①当中心原子无孤对电子时,两者的构型一致;②当中心原子有孤对电子时,两者的构型不一致;如:物质H2O NH3CH4CCl4中心原子孤对电子对数2 1 无无价层电子对互斥模型四面体四面体四面体四面体分子的空间构型V 三角锥正四面体正四面体键角105°107°109°28′109°28′杂化类型sp3sp3sp3sp3 5、键的极性和分子的极性并非完全一致,只有极性键形成的分子不一定是极性分子,如CH4、CO2等;极性分子中也不一定不含非极性键;所以,二者不是因果关系;只含非极性键的分子是非极性分子,如H2、N2等;含极性键的分子,若分子空间构型是对称的是非极性分子,如CO2、CH4等,分子空间构型不对称的是极性分子;如H2O、NH3等;它们的关系表示如下:6、配合物的命名①关键在于配合物内界即配离子的命名;其命名顺序一般为:自左向右:配位体数即配位体右下角的数字-配位体名称-“合”字或“络”字-中心离子的名称-中心离子的化合价;如:ZnNH32SO4内界为二氨合锌ⅡK 3FeCN6内界合称为:六氰合铁Ⅲ②配合物可看作盐类,若内界为阳离子,则外界必为阴离子;若内界为阴离子,则外界必为阳离子;可按盐的命名方法命名:自右向左为:某酸某或某化某;③配合物易溶于水电离为内界配体离子和外界离子,而内界的配体离子和分子通常不能电离;二晶体结构:几种类型的晶体的比较晶体类型金属晶体离子晶体原子晶体分子晶体结构构成微粒金属阳离子和自由电子阴、阳离子原子分子微粒间作用力金属键离子键共价键分子间作用力性质熔、沸点随金属键强弱变化,差别较大较高很高较低硬度随金属键强弱变化,差别较大较大很大较小导电性良好水溶液和熔融状态能导电一般不导电一般不导电举例所有固态金属NaCl、CsCl、CaF2金刚石、晶体硅、SiO2干冰、冰、I2典型离子晶体的结构特征NaCl型晶体CsCl型晶体每个Na+离子周围被六个离子所包围,同样每个离子也被六个Na+所包围; 每个正离子被8个负离子包围着,同时每个负离子也被8个正离子所包围;金属通性解释金属光泽金属中的自由电子能在一定范围内自由活动,无特征能量限制,可以在较宽范围内吸收可见光并随即放出,因而使金属不透明、具一定金属光泽多数为银白色;导电在外加电场的作用下,自由电子在金属内部发生定向运动,形成电流;导热自由电子把能量从温度高的区域传到温度低的区域,从而使整块金属达到同样的温度;有延展性当金属受到外力作用时,金属原子之间发生相对滑动,表现为良好的延展性;钠、钾、铬、钨等体心立方堆积镁、钛、锌等六方堆积金、银、铜、铝等面心立方堆积1、分子晶体的微粒间以分子间作用力或氢键相结合,因此,分子晶体具有熔沸点低、硬度密度小,较易熔化和挥发等物理性质;影响分子间作用力的大小的因素有分子的极性和相对分子质量的相对大小;一般而言,分子的极性越大、相对分子质量越大,分子间作用力越强;分子晶体的熔沸点的高低与分子的结构有关:在同样不存在氢键时,组成与结构相似的分子晶体,随着相对分子质量的增大,分子间作用力增大,分子晶体的熔沸点增大;对于分子中存在氢键的分子晶体,其熔沸点一般比没有氢键的分子晶体的熔沸点高,存在分子间氢键的分子晶体的熔沸点比存在分子内氢键的分子晶体的熔沸点高;分子晶体的溶解性与溶剂和溶质的极性有关:一般情况下,极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂――这就是相似相溶原理;如:HCl、NH3等分子晶体易溶于水,而溴和碘等分子则易溶于汽油和四氯化碳等非极性溶剂;分子间作用力不具有方向性和饱和性,而氢键具有方向性和饱和性;所以,不存在氢键的分子晶体可以以紧密堆砌的方式排列,而存在氢键的分子晶体则必须在一定的方向上堆砌排列;由于水中存在氢键,所以水在凝结成冰时,体积增大,密度减小;2、原子晶体的构成微粒是原子,原子间通过共价键相互结合,因此原子晶体的物理性质与分子晶体有明显的不同,熔沸点高,硬度、密度大等特点;原子晶体中不存在分子,其化学式表示晶体中各组成微粒的原子个数比;3、金属晶体的熔沸点差异很大,主要与金属键的相对强弱有关,一般情况下,金属原子半径越小,电荷越大,金属键越强,金属晶体的熔沸点越高,反之越低;4、离子键的实质是阴阳离子间的静电作用,它包括阴、阳离子间的静电引力和两种离子的核之间以及它们的电子之间的静电斥力两个方面,当静电引力与静电斥力之间达到平衡时,就形成了稳定的离子化合物,它不再显电性;离子键不具有方向性和饱和性;决定离子晶体结构的因素有几何因素和电荷因素,除此以外还有键性因素;1几何因素:晶体中正负离子的半径比2电荷因素:晶体中阴、阳离子电荷比3键性因素:离子键的纯粹程度对晶体构型相同的离子化合物,离子电荷数越多,核间距越小,晶格能越大;晶格能越大,离子键越强,晶体越稳定,熔点越高,硬度越大;典型例题例1. 若ABn的中心原子A上没有未用于形成共价键的孤对电子,运用价层电子对互斥模型,下列说法正确的是:A、若n=2,则分子的立体构型为V形B、若n=3,则分子的立体构型为三角锥形C、若n=4,则分子的立体构型为正四面体形D、以上说法都不正确解析:若ABn的中心原子A上没有未用于形成共价键的孤对电子,则根据斥力最小的原则,当n=2时,分子结构为直线形;n=3时,分子结构为平面三角形;n=4时,分子结构为正四面体形;故本题答案为C答案:C例2. 向盛有少量NaCl溶液的试管中滴入少量的AgNO3溶液,再加入氨水,下列关于实验现象的叙述不正确的是A、生成白色沉淀,加入足量氨水后沉淀消失B、生成的沉淀为AgCl,它不溶于水,但溶于氨水,重新电离成Ag+和Cl-C、生成的沉淀为AgCl,加入氨水后生成可溶性的配合物AgNH32ClD、若向AgNO3溶液直接滴加氨水,产生的现象也是先出现白色沉淀后消失解析:本题要从所学的配合物的知识解释沉淀消失的原因;Ag+和NH3能发生如下的反应:Ag++NH3·H2O=AgOH+NH4+;AgOH+2NH3=AgNH32++OH-,而AgCl存在微弱的电离:AgCl Ag++Cl-,向其中滴加氨水后会使电离平衡向右移动,最终因生成可溶性的AgNH32Cl而溶解;故本题答案为B答案:B例3.试判断下列分子中中心原子的杂化类型:1NI3 2CH3Cl3CO2 4SO2解析:根据杂化轨道数的计算方法:n=;或:n=中心原子的孤对电子对数+配位原子总数1中n=1+3=4,属于sp3杂化2中n=0+4=4,属于sp3杂化3中n=0+2=2,属于sp杂化4中n=1+2=3,属于sp2杂化答案:1sp3杂化2sp3杂化3sp杂化4sp2杂化例4.在短周期元素中,由三种元素组成的既有离子键又有共价键和配位键,且阴阳离子含电子总数相等的物质是,物质的电子式为;解析:配位键是单方提供孤对电子而另一方有接受孤对电子的空轨道,短周期元素中常见的如:NH4+与H3O+;本题中含有三种化学键的物质一般为铵盐,而铵根离子含有10个电子,所以阴离子必为10个电子,即为F-,则该化合物为NH4F;有的同学可能会考虑到10个电子的OH-,但OH-与NH4+会反应生成NH3·H2O,是一种共价化合物,不含有离子键故不正确;答案:NH4F 电子式略。
教学过程一、复习预习1、陌生离子反应方程式的书写;2、与量有关的离子反应方程式的书写。
二、知识讲解考点1、原子的构成质子(Z个)原子核1.原子A Z X 中子(N个)核外电子(Z个)R 的质子数与质量数,中子数,电子数之间的关系:2.Z A n①数量关系:核内质子数=核外电子数②电性关系:原子:核电荷数=核内质子数=核外电子数=原子序数阳离子:核外电子数=核内质子数-电荷数阴离子:核外电子数=核内质子数+电荷数③质量关系:质量数(A)=质子数(Z)+中子数(N)考点2、元素、核素、同位素1.元素:具有相同质子数的同一类原子的总称(质子数相同的同种原子)。
2.核素:具有一定数目的质子和一定数目的中子的一种原子叫做核素。
3.同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素。
特别提示:1.任何微粒都有质子,但不一定有中子,也不一定有核外电子。
2.同一元素的各种核素化学性质相似,物理性质不同。
3.同位素:“位”即核素的位置相同,在元素周期表中占有同一个位置。
考点3、核外电子排布的规律1.电子是在原子核外距核由近及远、能量由低至高的不同电子层上分层排布。
2.电子一般总是尽先排在能量最低的电子层里,即最先排第一层,当第一层排满后,再排第二层,等等。
3.每层最多容纳的电子数为2n2(n代表电子层数)。
4.最外层电子数则不超过8个(第一层为最外层时,电子数不超过2个)。
电子层 1 2 3 4 n电子层符号K L M N ……离核距离近远电子的能量低高最多能容纳的电子数 2 8 18 32 2n2考点4、元素周期表1.编排原则:①按原子序数递增的顺序从左到右排列②将电子层数相同..。
(周期序数=原子的电子层数)......的各元素从左到右排成一横行③把最外层电子数相同........的元素按电子层数递增的顺序从上到下排成一纵行..。
(主族序数=原子最外层电子数)2.结构特点:核外电子层数元素种类第一周期 1 2种元素短周期第二周期 2 8种元素周期第三周期 3 8种元素元(7个横行)第四周期 4 18种元素素(7个周期)长周期第五周期 5 18种元素周第六周期 6 32种元素期不完全周期第七周期7 未填满(已有26种元素)表主族:ⅠA~ⅦA共7个主族族副族:ⅢB~ⅦB、ⅠB~ⅡB,共7个副族(18个纵行)第Ⅷ族:三个纵行,位于ⅦB和ⅠB之间(16个族)零族:稀有气体考点5、元素周期律元素性质的周期性变化是元素原子的核外电子排布的周期性变化的必然结果1.核电荷数:同周期从左到右逐渐增大,同主族从上到下逐渐增大。
一. 学习内容:分子结构与晶体结构二. 学习目标了解化学键的含义,理解并掌握共价键的主要类型及特点,共价键、离子键及金属键的主要区别及对物质性质的影响。
能根据杂化轨道理论和价层电子对互斥模型判断简单分子或离子的空间构型,了解等电子体的含义。
了解原子晶体、分子晶体和金属晶体的结构特征,掌握不同晶体的构成微粒及微粒间的相互作用力,掌握影响晶体熔沸点、溶解性的因素。
三. 学习重点、难点分子结构与晶体结构的特点,影响物质熔沸点和溶解性、酸性的因素四. 学习过程(一)化学键与分子结构:1、化学键:相邻的两个或多个原子之间强烈的相互作用,通常叫做化学键。
三种化学键的比较:离子键共价键金属键形成过程阴阳离子间的静电作用原子间通过共用电子对所形成的相互作用金属阳离子与自由电子间的相互作用构成元素典型金属(含NH4+)和典型非金属、含氧酸根非金属金属实例离子化合物,如典型金属氧化物、强碱、大多数盐多原子非金属单质、气态氢化物、非金属氧化物、酸等金属配位键:配位键属于共价键,它是由一方提供孤对电子,另一方提供空轨道所形成的共价键,例如:NH4+的形成在NH4+中,虽然有一个N-H键形成过程与其它3个N-H键形成过程不同,但是一旦形成之后,4个共价键就完全相同。
共价键的三个键参数概念意义键长分子中两个成键原子核间距离(米)键长越短,化学键越强,形成的分子越稳定键长、键能决定共价键的强弱和分子的稳定性:原子半径越小,键长越短,键能越大,分子越稳定。
共价键按成键形式可分为σ键和π键两种,σ键主要存在于单键中,π键主要存在于双键、叁键以及环状化合物中。
σ键较稳定,而π键一般较不稳定。
共价键具有饱和性和方向性两大特征。
2、分子结构:价层电子对互斥理论:把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。
如CO2、CH2O、CH4等分子中的C原子。
它们的立体结构可用中心原子周围的原子数来预测,概括如下:另一类是中心原子上有孤对电子(未用于形成共价键的电子对)的分子。
二轮专题七以前四周期元素位置推理及电子排布为主体突破物质结构、元素周期律【课堂目标】1.熟悉1~36号元素的名称、元素符号及电子排布式(构造原理)、物质的结构式、电子式。
2.理解元素的第一电离能、电负性,熟悉元素的性质与第一电离能、电负性的关系,熟悉元素原子半径、主要化合价、元素性质等周期性变化规律。
3.了解化学键和分子间作用力的区别。
理解化学键类型(σ、π键)、化学键的极性和分子的极性、分子间作用力(重点是氢键),熟悉氢键的存在对物质熔沸点、溶解性的影响。
4.理解等电子体含义,熟悉杂化轨道类型(sp,sp2,sp3),能用杂化轨道理论解释常见的简单分子或者离子的空间结构。
5.了解简单配合物的成键情况、配位数、配合物等知识的应用,熟悉晶体类型(熔沸点比较、晶格能)。
6.借本专题着力提高高考试题中第10题、第21题的有效得分率。
【基础梳理】活动一:元素周期表的结构及元素性质的周期性变化规律1.了解元素周期表的结构2.掌握金属性、非金属性强弱判断方法:(1)元素的金属性越强①单质与水(或酸)反应越容易置换出氢(或越剧烈)②最高价氧化物对应的水化物碱性越强③单质的还原性越强、阳离子氧化性越弱。
(活泼金属能把上不活泼金属从其盐溶液中置换出来。
)金属性:Na>Mg>Al;氢氧化物碱性强弱:NaOH>Mg(OH)2>Al(OH)3[NaOH强碱,Mg(OH)2是中强碱,Al(OH)3是两性氢氧化物](2)元素的非金属性越强①单质与氢气越容易化合②气态氢化物越稳定③最高价氧化物对应的水化物(含氧酸)酸性越强④单质的氧化性越强、简单阴离子(或氢化物)还原性越弱。
非金属性:Si<P<S<Cl;酸性强弱:H3PO4<H2SO4<HClO4;(H3PO4是中强酸,H2SO4是强酸,HClO4是最强酸)氢化物的稳定性:SiH4<PH3<H2S<HCl(元素的非金属性越强,形成的氢化物越稳定) 3.熟练掌握常见10电子微粒,了解18常见电子微粒。