Convolution Neural Network CNN ver. 4.11a 13
Architecture (exercise: write formulas for A1(i=4) and A2(k=3)
A1
P(j=1) P(j=2) P(j=9) P(j=1) P(j=2)
1 A 2 1 e (W2 (i 1,k 1) A1 ( k 1) W2 (i 2,k 1) A2 ( k 1)... b 2 ( k 1)) 1 e W1 ( j 1,i 1) P1 W1 ( j 2,i 1) P2 ... b1 (i 1)
图文并茂的 cnn介绍 ppt convolutionneural network cnn tutorialkh wong convolution neural network cnn ver. 4.11a verypopular: toolboxes:cuda-convnet caffe(user friendlier) highperformance classifier (multi- class) handwrittenoptical character ocr recognition, speech recognition, image noise removal etc. learningconvolution neural network cnn ver. 4.11a fullyconnected back propagation neural networks (bpnn) part1a: feed forward processing part1a: feed backward processing convolutionneural networks (cnn) part2a: feed forward part2b: feed backward cnnconvolution neural network cnn ver. 4.11a fullyconnected back propagation (bp) neural net convolution neural network cnn ver. 4.11a theoryfully connected back propagation neural net (bpnn) usemany samples weights,so unknowninput differentclasses aftertraining: forward pass biases(using forward backwardpasses) convolution neural network cnn ver. 4.11a (useforward, backward passes) iter=1:all_epocks (each forwardpass eachoutput neuron: usetraining samples: feedforward backward