微分方程的多解与变号解
- 格式:doc
- 大小:34.00 KB
- 文档页数:6
2.7.微分方程初步2.7.1 概说涉及到量的变化率满足的制约关系,通常是含有导数的方程——微分方程。
简单例子:(1)放射性物质,在每一时刻t ,衰变的速率dm dt -(由于是减少,因此0dm dt<,速率为标量,是正值)正比于该放射性物质尚存的质量,因此质量应满足一下微分方程。
dmkm dt-= (2)质量为m 的物体自由落体,取坐标轴沿竖直方向指向地心,下落距离()y y t =应该满足牛顿第二定律F ma =,即22d ymg m dt=(3)质量为m 的跳伞员下落,所受空气阻力正比下降的速度,取坐标轴沿竖直方向指向地心,则t 时刻下降距离()y y t =满足22dy d y mg k m dt dt-=(1)如下图所示,钢球在以水平光滑杆上,受到弹力而来回整栋,原点位置为O ,钢球在t 时刻的坐标()x x t =满足微分方程()22d x kx m dt-=如果钢球还受到一个与速度成正比,方向与速度相反的阻尼力的作用,那么它所满足的微分方程是22dx d xkx h m dt dt--=总结:最简单的一阶微分方程是()dxf t dt= 其中t 是自变量,上述方程的一般解应该是()x f t dt C =+⎰最简单的n 阶方程()n nd xf t dt = 它等价于说11n n d xdt--是()f t 的原函数,即11()n n d xf t dt C dt --=+⎰则再次积分,一直积分下去得到111()(1)!n n n t x f t dtdt C C t C n --=++++-⎰⎰2.7.2 一阶线性微分方程考察下面的方程()()dxa t xb t dt+= 方程中有未知函数的一阶导数,且其一阶导数的系数为常数,其余部分未知函数最高层次数为一次,称为线性,上述方程为一阶线性微分方程。
如果()0a t =,则称为一阶线性常微分方程。
试着求解上述方程,方程两端都乘以()a t dte ⎰,得到()()()()()a t dta t dt a t dt dxe a t e x b t e dt⎰⎰⎰+= 即为下面的形式()()()()a t dta t dta t dt d e dxe x b t e dt dt ⎛⎫⎰ ⎪⎝⎭⎰⎰+=即()()()a t dta t dt d xeb t e dt⎛⎫⎰ ⎪⎝⎭⎰=于是有()()()a t dta t dtxe b t e dt C ⎰⎰=+⎰那么有()()()a t dt a t dt x e b t e dt C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这就是一阶线性微分方程的一般解。
微分方程的应用嘿,朋友!想象一下,你正走在繁忙的街道上,周围的人们行色匆匆。
突然,你的脑海中蹦出了一个奇怪又神秘的词——微分方程。
是不是觉得这东西好像跟咱们的日常生活风马牛不相及?那你可就大错特错啦!其实,微分方程就像一个隐藏在幕后的超级英雄,默默为我们解决着各种看似无解的难题。
比如说,当医生在研究药物在人体内的代谢过程时,微分方程就派上了大用场。
你看,药物进入身体后,它的浓度会随着时间不断变化。
这时候,微分方程就像一个精准的导航仪,能够帮助医生预测在不同时间点药物的浓度分布,从而确定最佳的用药剂量和时间间隔。
这难道不神奇吗?再想想咱们每天都离不开的手机。
手机电池的充电和放电过程,其实也可以用微分方程来描述。
要是没有对这个过程的精确理解和控制,咱们的手机可能一会儿就没电啦,那得多让人崩溃!还有交通领域,你有没有想过为什么交通信号灯能合理地控制车流量?这背后也有微分方程的功劳。
它能够模拟车辆的流动情况,帮助交通规划师设计出更高效的道路系统和信号灯设置。
就像你在玩游戏时,需要掌握规则才能玩得好,微分方程就是这些现实问题中的“游戏规则”。
你可能会疑惑,这东西这么厉害,难道就没有搞不定的时候?嘿,还真有!但这并不妨碍它在大多数情况下大显身手。
想象一下,如果没有微分方程,我们的世界会变成什么样?可能医生治病就像盲人摸象,交通会乱成一锅粥,各种技术发展也会停滞不前。
所以说,微分方程可不仅仅是那些数学课本里枯燥的公式和符号,它是实实在在影响着我们生活的重要工具。
它在我们看不见的地方默默发挥着作用,让我们的生活变得更加便捷、高效和美好。
朋友,现在你还觉得微分方程离我们很遥远吗?相信你已经明白,它就在我们身边,无处不在,为我们的生活保驾护航!。
matlab求解微分方程解析解在数学和工程学科中,微分方程是一种重要的数学工具,它涉及到很多实际问题的模型和解决方法。
而Matlab作为一款强大的数学软件,可以方便地求解微分方程的解析解。
Matlab中求解微分方程的一种常见方法是使用符号计算工具箱(Symbolic Math Toolbox),它可以处理符号表达式和符号函数,包括微积分、代数、矩阵、符号等数学操作。
首先,我们需要定义微分方程的符号变量和初值条件。
例如,我们假设要求解的微分方程为dy/dx = x^2,初值条件为y(0)=1,则可以使用如下代码:syms x yode = diff(y,x) == x^2;cond = y(0) == 1;然后,我们可以将微分方程和初值条件作为参数传递给dsolve函数来求解微分方程的解析解。
例如:sol = dsolve(ode, cond);其中,sol为求解得到的符号表达式,可以使用vpa函数将其转换为数值解。
例如:sol_num = vpa(sol, 5);这样,我们就得到了微分方程的解析解,并将其转换为5位有效数字的数值解。
除了使用符号计算工具箱,Matlab还提供了许多数值方法来求解微分方程的数值解。
例如,可以使用ode45函数来求解微分方程的数值解。
例如,求解dy/dx = x^2,y(0)=1的数值解可以使用如下代码:fun = @(x,y) x^2;[t,y] = ode45(fun, [0,1], 1);其中,fun为微分方程的函数句柄,[0,1]为求解区间,1为初值条件。
t和y分别为求解得到的时间序列和解向量。
总之,Matlab提供了多种方法来求解微分方程的解析解和数值解,可以根据实际问题的需要选择不同的方法来求解。
变微分方程
变微分方程是指对已知的微分方程进行变换,以便将其转化为更简单或更易于解析的形式。
这种变换可以通过代换、变量替换、参数化等方式进行。
下面是一些常见的变微分方程的方法:
1. 代换法:通过引入一个新的变量或函数,将原微分方程转化为一个新的微分方程。
这个新的微分方程可能更容易求解或转化为已知的标准形式。
常见的代换包括指数代换、三角函数代换等。
2. 变量替换法:通过引入新的变量,将原微分方程转化为关于新变量的微分方程。
这样可以改变微分方程的形式,使其更容易求解或分离变量。
常见的变量替换包括极坐标替换、球坐标替换等。
3. 参数化方法:将原微分方程的解表示为一个参数方程,通过引入参数,将微分方程转化为一个关于参数的方程。
这样可以将原微分方程的求解问题转化为参数方程的求解问题。
4. 齐次化方法:对于非齐次微分方程,可以通过适当的变量替换将其转化为齐次微分方程。
这样可以简化求解过程,因为齐次微分方程的解结构更简单。
5. 线性化方法:对于非线性微分方程,可以通过适当的变换将其转化为线性微分方程。
线性微分方程的求解通常更为直接和简单。
需要注意的是,变微分方程的方法取决于具体的微分方程形
式和求解目标。
不同的微分方程可能需要使用不同的方法进行变换。
因此,在变微分方程之前,需要对原微分方程的形式和性质进行分析,并选择合适的变换方法。
微分方程的多解与变号解【摘要】:偏微分方程解的存在性与多重性是非线性分析的一个重要研究内容,有着广泛的背景,它来源于物理、生物工程、化学和医学等领域.近年来,许多学者对偏微分方程进行了研究,例如利用变分方法和临界点理论研究了各种Schrodinger方程解的存在性与多解性.这些研究都进一步促进了非线性分析的发展.本文利用变分方法、Morse 理论、临界点理论、拓扑度理论研究了几类偏微分方程的解与变号解.本文分为五章.第一章,我们介绍一些研究背景,国内外研究现状及本文的一些主要结果.第二章中,我们对经典椭圆方程Dirichlet边值问题进行了研究,其中Q(?)RN是具有光滑边界的有界区域,f∈C1(Ω×R1,R1)满足次临界增长条件|ft’(x,t)|≤C(1+|t|p-2),(x,t)∈Ω×R1,其中C0是一正常数,p∈(2,2’),如果N≥3,则2*=2N/(N-2);如果N-1,2,则2*-∞.我们把拓扑度、临界群、不动点指数结合起来,得到它们之间的一些转化关系,给出一些假设条件,使得非线性项f在0点和∞共振和跨特征值.我们解决了仅仅使用不动点指数和拓扑度理论不能研究共振情形的问题,如文献[1](J.Math.Anal.Appl.314(2006)464-476).我们考虑在0点和∞都共振的情形,这是一般文章都没有考虑的情形.而且我们的共振条件去掉了[2](Math.Z.233(2000)655-677)中的有界性条件.我们还研究了单边共振的情形,这种共振条件又比我们常见的要弱,它去掉了极限存在的要求和增长性条件.我们得到的结论是:f在0点共振或跨特征值,在∞点共振或单边共振或跨特征值,那么上述边值问题都有七个非平凡解,其中两个正解、两个负解、三个变号解.在维数N=1时,我们可以进一步计算第七个解的临界群,从而得到第八个解,这个解是变号解,所以在维数为一的情形下,我们得到两个正解、两个负解、四个变号解.在维数N=1,方程是四阶时,就化为[1]中所研究的问题.我们不仅给出了零点和无穷远点共振的情形,而且当0点共振到奇特征值或跨奇特征值时,还可以通过计算临界群,得到七个非平凡解,其中三个变号解,这种情形利用[1]中的方法,不能考虑.而在0点和∞都共振到偶特征值时,得到六个非平凡解,这样的共振情形也是[1]中的方法所不能研究的.[1]中只能考虑在零点和无穷远点都是跨偶数个特征值的情形.从而我们推广了[1]的结论,而且得到比[1]中更好的结果.我们假设以下条件:(f1)f(x,t)t≥0,(x,t)∈Ω×R1;(f2)存在n0≥2满足λ。
0λn0+1,使得ft’(x,0)=λn0+1,xΩ.且存在δ0,使得f(x,t)t≤λn0+1t2,(x,t)∈Ω×[-δ,δ];(f3)存在b0,使得|f(x,t)|b,(x,t)∈Ω×[-bc,bc],其中c=maxx∈Ωe(x),且e是边值问题:的解;(f4)存在满足λn1-1λn1的正整数n11及C10,α∈(0,1),使得(?)f(x,t)/t=λn1,对x∈Ω一致成立,|f(x,t)-λn1t|≤C1(1+|t|α),(x,t)∈Ω×R1,且(?)1/|t|2α(F(x,t)-1/2λn1t2)=(-1)n1+1∞对x∈Ω一致成立,其中F(x,t)=∫0tf(x,s)ds,(x,t)∈Ω×R1;(f5)存在n1,ε,R0,使得λ21-1+ε≤f(x,t)/t≤λ2n1,x∈Ω,|t|≥R,且(?)1/|t|(F(x,t)-1/2λn1t2)=-∞对x∈Ω一致成立;(f6)存在n1,ε,R0,使得λ2n1≤f(x,t)/t≤λ2n1+1-ε,x∈Ω,|t|≥R,且(?)1/|t|(F(x,t)-1/2λn1t2)=+∞对x∈Ω一致成立;(f7)存在n0≥2,使得λn0λn0+1且λn0ft’(x,0)λn0+1对x∈Ω一致成立;(f8)存在满足A2n1入2n1+1的n11,使得α(x)=(?)f(x,t)/t存在且λ2n1α(x)λ2n1+1对x∈Ω一致成立.定理2.1.1.设条件(f1)-(f3)成立,(f4),(f5),(f6),(f8)有一个成立,则边值问题(2.1.1)至少有七个非平凡解,其中两个正解,两个负解,三个变号解.定理2.1.2.设条件(f1),(f3)及(f7)成立,(f4),(f5),(f6),(f8)有一个成立,则边值问题(2.1.1)至少有七个非平凡解,其中两个正解,两个负解,三个变号解.在第三章中,我们考虑了RN上半线性椭圆方程-△u+u=f(x,x),u∈H1(RN)的解.在一些假设条件下,我们利用下降流线给出无穷多变号解的存在性.文献[3](Adv.Math.222(2009)2173-2195)中研究的是有界区域上的半线性椭圆方程的无穷多变号解,这里我们改进到无界区域.同时,我们也改进了文献[4](Comm.Math.Phys.55(1997)149-162)中只得到无穷多解,而没有确定出它们的符号的结论.本章中,我们给出以下条件:(A1)存在p∈(2,2*)及c0,使得|f(x,t)|≤c(|t|+|t|p-1),(x,t)∈RN×R1;(A2)存在α2,R0,使得αF(x,t)≤t,(x,t),(x,t)∈RN×R1,(?)F(x,t)0,其中F(x,t)=∫0t(x,s)ds,(x,t)∈RN×R1;(A3)limt→0f(x,t)/t=0在RN上一致成立;(A4)f(gx,t)=f(x,t),9∈O(N),(x,t)∈RN×R1;(A5)f(x,-t)=-f(x,t),tf(x,t)≥0,(x,t)∈RN×R1.那么我们有如下结果:定理3.1.1.假设(A1)-(A5)成立,则方程(3.1.1)有无穷多变号解.第四章中,我们研究Schrodinger-Poisson系统正径向解的存在性,其中f∈C(R1,R1).我们假设f满足limt→+∞f(t)/tp+∞,利用变分方法,当λ和p在不同范围时,给出一些解的存在性与不存在性结果.我们把[5](J.Funct.Anal.237(2006)655-674)中非线性项f(u)-up的结果推广到一般的非线性项.f,而且改进了文献[6](Ann.I.Poincare-AN,27(2010)779-791)中只对很小的参数得到一个正径向解的结论.事实上,我们假设以下条件:(H1)存在p∈(1,5),使得limsuPt→+∞f(t)/tp+∞;(H2)limt→0f(t)/t=0;(H3)f(t)t≥4F(t),t∈R1;(H4)存在q∈(2,5),使得liminft→+∞f(t)/tq0;(H5)limt→+∞f(t)/t=+∞.其中F(t)=∫0tf(s)ds.那么我们有下列结论.定理 4.1.1.如果条件(H1)中p∈(1,2),且(H2)及(H5)成立,则存在λ00,使得对所有的入∈(0,λ0),系统(4.1.1)至少有两个正径向解.定理4.1.2.如果条件(H1)中p∈(3,5),且(H2)-(H4)成立,则对所有的λ0,系统(4.1.1)至少有一个正径向解.定理4.1.3.如果条件(H1)中p∈[2,3],且(H2)及(H5)成立,则存在A00,使得对所有λ∈(0,入0),系统(4.1.1)至少有一个正径向解.定理4.1.4.如果条件(H1)中p∈(1,2],且(H2)成立,则存在λ00,使得对所有A∈(λ0,∞),系统(4.1.1)没有正解.我们的主要结果可以用下图表示.第五章中,我们研究了广义Kadomtsev-Petviashvili方程wt+wxxx+(f(w))x=Dx1-wyy的基态孤立波,其中我们在一些假设条件下,利用变分方法给出非平凡基态孤立波的存在性.我们去掉了[7](Appl.Math.Lett.15(2002)35-39)和[8](MinimaxTheorems,1996)中的条件:存在υ0∈Y:={gx:g∈C0∞(R2)},使得lims→+∞F(sυ0)/s2→+∞.这是研究广义Kadomtsev-Petviashvili方程经常会假设的条件.并且在本章中,相应的泛函不满足(PS)条件和(c)条件.我们假设(B1)f∈C(R1,R1),f(0)=0,且对某一p∈(3,6),(B2)limt→0,f(t)/t=0;(B3)存在θ≥1,使得θG(t)≥G(st),t∈R1,s∈[0,1],其中G(t)=f(t)t-2F(t).定理 5.1.1.假设(B1)-(B3)成立,那么问题(5.1.1)有一基态孤立波.另外,我们还研究了变系数的广义Kadomtsev-Petviashvili方程的基态孤立波:(-uxx+Dx-2uyy+a(x,y)u-f(u))x=0,(5.4.1)其中(x,y)∈R2.我们假设a∈C(R2,R1)且存在正数α,β,使得Oα≤a(x,y)≤β∞.且a(x,y)满足以下条件:a(x,y)a∞=(?)a(x,y)∞,(x,y)∈R2(a)这里我们同样也去掉了[9](J.Math.Anal.Appl.361(2010)48-58)中研究变系数p-Laplace方程所作的周期性假设.从而推广了[9]中的方法.则我们有下列结论:定理5.4.1.假设对p∈(3,4],(B1)-(B3)成立,且条件(a)成立,那么问题(5.4.1)有一基态孤立波.【关键词】:临界群拓扑度变号解Schr(o|¨)dinger-Poisson 系统广义Kadomtsev-Petviashvili方程基态孤立波【学位授予单位】:山西大学【学位级别】:博士【学位授予年份】:2011【分类号】:O175.2【目录】:中文摘要6-11ABSTRACT11-17第一章引言17-27第二章半线性椭圆方程的多解与变号解27-51§2.1临界群、拓扑度以及不动点指数的转化27-40§2.2变号解和解的存在性与多重性40-46§2.3维数为一的情形46-51第三章R~N上半线性椭圆方程的无穷多变号解51-63§3.1准备工作51-53§3.2一些必要的引理53-58§3.3无穷多变号解的存在性58-63第四章Schrodinger-Poisson系统的正解63-79§4.1主要结果63-64§4.2一些必要的引理64-75§4.3主要定理的证明75-79第五章广义Kadomtsev-Petviashvili方程的基态孤立波79-97§5.1广义Kadomtsev-Petviashvili方程孤立波的转化79-80§5.2一些必要的引理80-85§5.3常系数情形下主要定理的证明85-88§5.4变系数的情形88-97参考文献97-102攻读博士学位期间的主要研究成果102-103个人简介及联系方式103-104致谢104-106 本论文购买请联系页眉网站。