产甲烷细菌
- 格式:ppt
- 大小:732.00 KB
- 文档页数:21
颗粒污泥类型说明
一般将颗粒污泥分为以下三种类型。
①A型颗粒污泥。
颗粒污泥中的产甲烷细菌以巴氏甲烷八叠球菌为主体,外层常有丝状产甲烷杆菌缠绕。
该类颗粒污泥比较密实,粒径较小,约为0.1mm 左右。
②B型颗粒污泥。
B型颗粒污泥以丝状产甲烷杆菌为主,表面规则,外层绕着各种形态的产甲烷杆菌的丝状体。
在各种UASB反应器中出现的频率极高,该类污泥颗粒大且密度高,粒径约为1~3mm,密度为1.033~1.054g/cm³。
③C型颗粒污泥。
C型颗粒污泥由疏松的纤丝状细菌粘连在惰性微粒上形成球状团粒,也称丝菌颗粒。
粒径一般为1~5mm,密度为1.01~1.05g/cm³,沉降速度一般为5~10mm/s。
不同类型颗粒污泥的形成与污水中的营养基质和无机物有关,当反应器中乙酸浓度较高时,容易形成A型颗粒污泥;当乙酸浓度降低后,A型颗粒污泥将逐步转变为B型颗粒污泥;当存在适量的悬浮固体时,易形成C型颗粒污泥。
厌氧产甲烷的原理和应用一、原理厌氧产甲烷是一种由微生物在无氧环境中通过生物反应产生的过程。
在这个过程中,厌氧性细菌和古细菌通过分解有机废弃物和有机质,产生甲烷气体。
以下是厌氧产甲烷的主要原理:1.厌氧消化:厌氧细菌和古细菌通过厌氧消化过程分解有机废弃物和有机质,产生甲烷气体。
这个过程主要发生在缺氧的环境中,比如封闭式垃圾填埋场、沼气池等。
2.有机物分解:厌氧细菌通过分解有机物质,例如蛋白质、碳水化合物和脂肪,形成醋酸、氨和二氧化碳等中间产物。
这些中间产物随后被其他细菌和古细菌进一步转化为甲烷气体。
3.甲烷生成:产生的醋酸、氨和二氧化碳等中间产物被甲烷生成细菌转化为甲烷气体。
这个过程主要发生在厌氧环境中,厌氧产甲烷的典型例子是沼气池。
二、应用厌氧产甲烷具有广泛的应用领域,以下列举了一些常见的应用:1.能源生产:厌氧消化过程生成的甲烷可被用作清洁能源。
沼气是一种重要的可再生能源,可用于取暖、烹饪和发电等用途。
同时,厌氧消化还可以减少有机废弃物的处理问题,提高利用率。
2.废水处理:厌氧消化可以用于废水处理。
有机废水经过厌氧消化处理后,产生的甲烷气体可以用于发电或者热能回收。
此外,在废水处理过程中还可以回收其他有价值的副产物,比如肥料。
3.农业:厌氧产甲烷可以应用于农业领域。
沼气可以用作肥料,提高土壤的肥力,并减少对化学肥料的需求。
此外,沼气还可以用于温室供暖和提供动力,提高农场的能源自给自足性。
4.环境保护:厌氧生物反应可以减少有机废弃物的堆积和运输,降低污染物排放。
通过厌氧处理有机废弃物,可以有效回收有机质和能源,同时减少温室气体的排放,有利于环境保护。
三、厌氧产甲烷的优势和挑战优势:•清洁能源:厌氧产甲烷是一种清洁能源,甲烷燃烧释放的二氧化碳比其他化石燃料少,对环境影响较小。
•循环利用:厌氧处理废物可以有效回收有机物和能量,减少资源浪费。
•减少温室气体排放:厌氧产甲烷过程可以减少温室气体的排放,帮助应对气候变化问题。
厌氧消化中的产甲烷菌研究进展公维佳,李文哲*,刘建禹(东北农业大学工程学院,黑龙江哈尔滨150030)摘要:在厌氧消化过程中,通过控制产甲烷菌的活动可显著提高厌氧消化效率。
文章介绍了厌氧消化中产甲烷菌的生理生化特征及代谢途径,综述了微量元素、硫酸盐、pH值、氧化还原电位等显著影响因子对产甲烷菌活动和甲烷产量的影响。
关键词:厌氧消化;产甲烷菌;显著影响因子中图分类号:X703文献标识码:A收稿日期:2005-12-12基金项目:国家自然科学基金项目(50376009);黑龙江省科技攻关(GC03A304)作者简介:公维佳(1981-),女,黑龙江人,硕士研究生,研究方向为生物质能源。
*通讯作者目前能源与环境已成为影响人类社会可持续发展的重大问题,厌氧消化技术在能源生产和环境保护等方面具有突出的优势而倍受青睐。
沼气发酵是自然界极为普遍而典型的厌氧消化反应,各种各样的有机物通过沼气发酵,不断地被分解代谢产生沼气,从而构成了自然界物质和能量循环的重要环节。
厌氧消化是极为复杂的生物过程,在参与反应的众多微生物中,产甲烷菌的优劣和密度是影响厌氧消化效率和甲烷产量的重要因素,因此对产甲烷菌特征以及影响因子的研究成为重点。
本文试图对这些研究进行综合性的分析总结,为今后的研究提供参考。
1产甲烷菌概述产甲烷菌的研究开始于1899年,当时俄国的微生物学家奥姆良斯基(Omelianski)将厌氧分解纤维素的微生物分为两类,一类是产氢的细菌,后来称产氢、产乙酸菌;另一类是产甲烷菌,后来称奥氏甲烷杆菌(Methanobaci11usomelauskii)。
1901年Sohzgen对产甲烷菌的特征及对物质的转化进一步作了详细的研究。
1936年Barker对奥氏甲烷菌又作了分离研究。
但这些研究,由于厌氧分离甲烷菌的技术尚不完备,均未取得大的进展。
直到1950年Hungate第一次创造了无氧分离技术才使甲烷菌的研究得到了迅速的发展[1]。
《微生物学》课程论文论文题目:产甲烷杆菌的研究和其利用前景工艺学学院:生命与地理科学学院专业:生物科学班级:S10A学号:20101911131姓名:刘韬成绩:目录1 产甲烷菌的分类................................................................................................................................ -2 -2.产甲烷菌的生态多样性.................................................................................................................... - 2 - 3.生长繁殖特别缓慢.......................................................................................................................... - 3 -4.产甲烷菌代谢途径............................................................................................................................ - 3 -5.甲烷合成的途径................................................................................................................................ - 3 -6.沼气池中产甲烷杆菌和不产甲烷菌的关系.................................................................................... - 4 -6.1不产甲烷细菌为产甲烷菌提供生长基质和产甲烷所需的底物 ......................................... - 4 -6.2不产甲烷细菌为产甲烷菌创造适宜的厌氧环境................................................................. - 4 -6.3不产甲烷细菌为产甲烷菌清除有毒物质............................................................................. - 4 -6.4产甲烷菌为不产甲烷细菌生化反应解除反馈抑制............................................................. - 4 -6.5共同维持沼气发酵环境中的适宜pH值............................................................................... - 5 -6.6不产甲烷细菌构建了产甲烷菌的“古环境” ....................................................................... - 5 -7.产甲烷杆菌的应用前景.................................................................................................................... - 5 -7.1废水处理................................................................................................................................. - 5 -7.2酿酒工业上的应用................................................................................................................. - 5 -7.3产甲烷菌在煤层气开发中的应用......................................................................................... - 6 -8. 结语................................................................................................................................................ - 6 - 参考文献................................................................................................................................................ - 6 -产甲烷杆菌的研究和其利用前景10级生物科学 20101911131 刘韬摘要产甲烷菌是一类重要的极端环境微生物,在地球生物化学碳素循环过程中起着关键作用. 目前,根据产甲烷菌的系统发育和生理生化特性可将已培养的产甲烷菌分为5大目. 产甲烷菌广泛分布在海底及淡水沉积物、水稻田、动物胃肠道、地热及地矿等环境中,生态学研究表明,产甲烷菌在不同的生态环境里具有不同的群落分布特点,并且受不同环境因子的影响而显示出不同的生理代谢功能. 本文综述了国内外近年来产甲烷菌的分类及生态多样性研究进展,同时简述了产甲烷菌在厌氧生物处理和工业酿酒中广阔应用前景.关键词产甲烷菌;分类;生态多样性;废水处理;泸州老窖Methanobacterium research and its prospect Abstract methanogens is an important kind of extreme environmental microbial, in the biogeochemistry of carbon cycle plays a key role in the process. At present, according to the methanogenic bacteria phylogeny and physiological and biochemical characteristics can be cultured methanogens have been divided into 5heads. Methane producing bacteria widely distributed in marine and freshwater sediments rice, water, animal gastrointestinal tract, geothermal and geological environment, ecological studies have indicated, methanogenic bacteria in different ecological environment has different characteristics of community distribution, and affected by different environmental factors and show different physiological and metabolic function. This article reviews the domestic and abroad in recent years and the classification of methane producingbacteria biodiversity research progress, at the same time on themethanogenic bacteria in anaerobic biological treatment and broadapplication prospects in industrial saccharomyces.Key words methanogens; classification; biodiversity; wastewatertreatment; Lu zhou产甲烷菌是一类严格厌氧的原核微生物,是有机物甲烷化作用中食物链的最后一组成员,其独特的厌氧代谢机制使其在自然界物质循环中起着重要作用. 一方面,产甲烷菌是产生温室气体的主要因素,全球甲烷的排放量每年大约是500 t,其中74%是由产甲烷菌代谢产生[1];另一方面,产甲烷菌在有机质的厌氧生物处理工业应用中发挥着关键的作用,如沼气发酵、煤层气开发等. 因此,对产甲烷菌的研究具有重要的理论和实践意义. 随着厌氧培养技术和微生物分子生态技术的发展,更多的实验室能对产甲烷菌进行多角度的研究. 这些研究揭示出产甲烷菌分类地位的多样性,展示出不同环境下产甲烷菌的生态及生理特性的差异性,同时也为产甲烷菌的实际工业应用指明了方向.1 产甲烷菌的分类1776年,Alessandro Volta首次发现了湖底的沉积物能产生甲烷,之后历经一个多世纪的研究,利用有机物产甲烷的厌氧微生物才大致被分为两类:一类是产氢、产乙酸菌,另一类就是产甲烷菌. W.E. Balch等在1979年报道了3个目、4个科、7个属和13个种的产甲烷微生物,他们的分类是建立在形态学、生理学等传统分类特征以及16S rRNA寡核苷酸序列等分子特征基础上的[2].随着厌氧培养技术和菌种鉴定技术的不断成熟,产甲烷菌的系统分类也在不断完善. 《伯杰系统细菌学手册》第9版将近年来的研究成果进行了总结和肯定,并建立了以系统发育为主的产甲烷菌最新分类系统. 产甲烷菌分可为5个大目,分别是:甲烷杆菌目(Methanobacteriales)、甲烷球菌目(Methanococcales)、甲烷微菌目(Methanomicrobiales)、甲烷八叠球菌目(Methanosarcinales)和甲烷火菌目(Methanopyrales) [3],上述5个目的产甲烷菌可继续分为10个科与31个属,它们的系统分类及主要代谢生理特性见表1.2.产甲烷菌的生态多样性产甲烷球菌发现于1982年,生活在260m深、200atm、94℃的海底火山口附近,属于原核生物中的古菌域,具有其它细菌如好氧菌、厌氧菌和兼性厌氧菌所不同的代谢特征. 产甲烷菌的甲烷生物合成途径主要是以乙酸、H2/CO2、甲基化合物为原料[4]. 产甲烷菌在自然界中分布极为广泛,在与氧气隔绝的环境几乎都有甲烷细菌生长,如海底沉积物、河湖淤泥、水稻田以及动物的消化道等. 在不同的生态环境下,产甲烷菌的群落组成有较大的差异性,并且其代谢方式也随着不同的微环境而体现出多样性.3.生长繁殖特别缓慢甲烷细菌生长很缓慢,在人工培养条件下需经过十几天甚至几十天才能长出菌落。
L IN Dai 2yan 1 , L IN Xin 2jian 2 , YAN G Jing 1 , YE Mei 2feng 1 世纪 70年代中期 ,产甲烷菌只有 1个科 (甲烷杆 菌科) ,分 3个属、9个种。
随着研究手段的发展 以及人们对产甲烷菌的关注 ,据杨秀山等 1991年 报道 ,美国奥斯冈 ( Orego n)产甲烷菌保藏中心 当时收藏的产甲烷菌有 215株分属于 3目、6科、 55种 ,可能是当时最完备的目录 [ 3 ]。
从系统发育 来看 ,到目前为止 ,产甲烷菌分成 5个目 ,分别为 关系 ,望能为产甲烷菌在污水处理工程中发挥更大 1 产甲烷菌研究历史RNA 的同源性进行分类取得了较为满意的结果 ;福建农业学报 23 (1) :106~110 ,2008Fu j i an J ou rnal of A g ricult u ral S ciences文章编号 : 1008 - 0384 ( 2008) 01 - 0106 - 05产甲烷菌在厌氧消化中的应用研究进展林代炎1 ,林新坚2 ,杨 菁1 ,叶美锋1(1.福建省农业科学院农业工程技术研究所 ,福建 福州 350003 ; 2.福建省农业科学院土壤肥料研究所 ,福建 福州 350013)摘 要 :简述了产甲烷菌研究史 ,分析了厌氧消化领域研究进展以及产甲烷菌代谢机理和生理生化特征的关系。
关键词 :厌氧消化 ;产甲烷菌 ;厌氧反应器 中图分类号 : X 703文献标识码 : AAdvance in utilization of methanobacteria f or anaerobic digestion studies( 1 . A ricult ural En gi neeri n g I nstit ute , Fuj i an A ca dem y of A g ricult u ral S ciences , Fuz hou , Fu j i an 350003 , Chi na; 2 . S oi l an d Ferti li z er I nstit ute , Fu j i an A ca dem y of A g ricult uralS ciences , Fuz hou , Fu j i an 350013 , Chi na)so analyzes t he relatio nship between t he research develop ment in anaerobic digestio n and t he metabolic mechanism and t he p hysiological and biochemical characteristics of met hanobacteria. Key words : anaerobic digestion ; met hanogens bacteria ; anaerobic reactor随着人们认识到厌氧发酵技术在污水处理及生制 , 1950年 , Hungate 创造了无氧分离技术才使产 产沼气能源等方面的突出优势 ,对产甲烷菌在厌氧甲烷菌的研究得到了迅速的发展 [ 1 - 2 ]。
温度对产甲烷菌代谢途径和优势菌群结构的影响吴美容;张瑞;周俊;谢欣欣;雍晓雨;闫志英;葛明民;郑涛【摘要】Methanogens are strictly anaerobic archaea, which not only take part in the methanogenesis procedure but also limit this process. Temperature plays a key role in the anaerobic fermentation. Temperature could not only directly alter the community structure and function of methanogenic archaea,but also affect the supply of substrates for methanogens,which in turn indirectly regulates the pathways of methanogenic archaea.There are three pathway for methanogenesis, and they are started from acetic acid, H2/CO2 and C-1 compound respetively. Acetoclastic methanogenesis accounts for about two-thirds of the total methane production globally, while hydrogenotrophic methanogenesis accounts for about one third. Methanol- and methyl amine-derived methanogensis is restricted in ocean and saline water. Acetoclastic methanogenesis is the predominant methanogenesis at a low temperature, and methane is produced by acetoclastic andhydrogenotrophic methanogenesis at a medium temperature, while methane is exclusively produced by hydrogenotrophic methanogenesis at a high or ultra-high temperature.%产甲烷菌是严格厌氧的古菌,由其完成的产甲烷过程通常是厌氧微生物生化代谢中最重要的限速步骤。
产甲烷菌的分离纯化培养及其培养基对于菌株的选择作用庞德公;杨红建【摘要】产甲烷菌是一类能够将无机或有机化合物经过厌氧发酵转化成甲烷和二氧化碳的严格厌氧古细菌,其参与的产甲烷作用通常发生在厌氧发酵过程的最后一步.发酵产物甲烷则是目前加剧全球气候变暖的一种重要温室气体.为了进一步了解不同种类产甲烷菌的生物学特性,近10年来对于产甲烷菌分离培养技术的研究不断深入并受重点关注.作者介绍了产甲烷菌的典型生境与生物学地位、产甲烷菌的分类及生理特征,并着重阐述了产甲烷菌分离纯化培养技术及培养基中不同底物与化学抑制剂对于产甲烷菌的选择作用.【期刊名称】《中国畜牧兽医》【年(卷),期】2010(037)006【总页数】4页(P32-35)【关键词】产甲烷菌;分离纯化;选择性培养基【作者】庞德公;杨红建【作者单位】中国农业大学动物科技学院,北京,100193;中国农业大学动物科技学院,北京,100193【正文语种】中文【中图分类】Q93-3产甲烷菌是水生古细菌门(euryarchaeota)中一类可将无机或有机化合物经厌氧发酵转化成甲烷和二氧化碳的严格厌氧古菌,由于其所参与的甲烷生物合成是自然界碳素循环中的关键链条,同时也是温室气体甲烷最主要的生物学合成途径,因而在全球气候变暖的大趋势下,产甲烷菌的生活习性及甲烷生物合成的机理与调控受到了人们极大的关注。
为了进一步了解不同种类产甲烷菌的生物学特性,有关产甲烷菌分离培养技术的研究也取得了较大的进步。
作者着重回顾了产甲烷菌分离纯化培养技术及培养基中不同成分对于产甲烷菌的选择作用。
1 自然界中的产甲烷菌1.1 产甲烷菌的典型生境产甲烷菌广泛存在于各种厌氧环境与极端环境中,目前产甲烷菌的分离培养大多来自以下3种生境:①水沉积物、沼泽、苔原、稻田、腐败的树木心材及厌氧污泥消化器;②瘤胃、盲肠和肠;③地热温泉、洋脊热液喷口和非洲的基伍湖(丁安娜等,1991)。
据报道在中国柴达木盆地地下1701 m深的岩芯中也发现了具有生物活性的产甲烷菌(周翥虹等,1990)。
生物甲烷的概念生物甲烷,又称生物甲烷气体,是一种在自然界中产生的甲烷气体,它是由微生物通过生物化学过程在生物体内或生物体外产生的甲烷。
生物甲烷可以通过不同的生物途径产生,在自然界中存在着丰富的生物甲烷资源。
生物甲烷作为一种清洁、可再生的能源资源,受到了广泛关注。
生物甲烷的产生主要与微生物有关,微生物是能够利用有机物质产生甲烷的生物体。
在自然界中,生物甲烷的主要产生途径包括沼气发酵和产甲烷细菌两种。
沼气发酵是一种由微生物在缺氧条件下分解有机废弃物产生甲烷和二氧化碳的过程,产甲烷细菌则是一类能够利用碳化合物、醇类、酸类等有机废物产生甲烷的细菌。
在这些生物过程中,微生物利用有机物质进行氧化还原反应,产生甲烷作为终产物释放到环境中。
在生物甲烷资源的利用方面,生物甲烷可以被广泛应用于工业生产、能源供应、清洁燃料等领域。
生物甲烷作为一种清洁能源,具有很高的环保和可再生性,对环境没有污染,而且可以通过不断循环利用有机废弃物来产生甲烷,有助于减少对化石能源的依赖。
因此,生物甲烷被广泛应用于替代传统的化石能源,成为一种重要的可再生能源。
生物甲烷在工业生产中有着广泛的应用,例如在化工生产、炼油工业、品质检测等方面都需要用到甲烷气体。
而生物甲烷作为一种清洁环保的能源资源,被广泛应用于燃料电池、燃气轮机等发电设备中,可以替代传统的天然气,减少燃烧产生的污染排放。
同时,生物甲烷还可以用作城市燃气供应,为居民生活提供清洁、便捷的能源。
在能源供应领域,生物甲烷还可以被应用于交通运输、暖通系统等方面。
生物甲烷作为一种清洁的车用燃料,可以广泛应用于汽车、公交车等交通工具,减少车辆尾气排放对环境的污染。
同时,生物甲烷还可以作为清洁燃料应用于供暖系统中,取代传统的燃煤、燃油等能源,减少对大气环境的污染。
生物甲烷的利用还可以带来经济效益。
随着对可再生能源的需求不断增加,生物甲烷的产业链也在不断完善和发展,从生物废弃物的收集、处理到甲烷的生产、储存、运输等环节都会形成一条完整的产业链。